
CS161 Midterm Exam, Summer 2022

You have 85 minutes to complete the exam. You may use up to 5 pages (front/back) of
notes that you may have prepared, but you may not use other materials or confer with anyone.

The last page contains information (e.g., the Master Theorem, rules for red-black trees)
that you may find convenient, although it is not an exhaustive resource. (It was posted on
Ed on Tuesday night.) You may detach it before the exam begins, and need not hand it in.

Unless explicitly otherwise stated in a question, assume that:

• Big-O and big-Ω are meant in their informal “tight” sense. E.g., if we ask for the big-O
or big-Ω running time of MergeSort, it would not be acceptable to say O(n2) or Ω(1).

• Operations such as addition, multiplication, array lookups – the ones that we generally
consider to take O(1) time in our course – also take O(1) time here.

Please also familiarize yourself with directions for the first two parts of the exam:

• Problem 1: “Determine whether each of the following statements is true or false, and
provide a brief but specific and convincing justification of your answer. Explanations
that merely reword the statement (or its opposite) will receive no credit; insightful but
incorrect explanations may receive some credit.”

• Problem 2: “For these problems, you do not need to show your work, and grading will
be based only on the final answer, although some answers may receive partial credit.”

Because some people are taking the exam remotely, we will not provide clarifications
during the exam itself. There are no intentional ambiguities, but if you believe you have
encountered an ambiguity, please briefly note any assumptions you are making and move on.

Finally, please consider the following advice:

• The exam has many (small) problems, none of which require detailed explanations,
and some of which require no explanations at all. Make sure you provide what each
problem asks for, but do not waste time providing overly detailed or artfully-worded
explanations; this will probably not help you (and will probably cost you valuable
time!)

• Do not get too hung up on any one problem, especially not until you have looked at
everything. The goal is to provide you many different opportunities to show what you
know, instead of just a few high-stakes ones. Perfection is not expected. Good luck!

Name: SUID (e.g., itullis):

1

This page is for any extra work, in case you require extra space for any problems. Please
clearly indicate which problem(s) you are using this page for, if any, and please also make a
note on those problems themselves.

2

Problem 1: True/False (5 pts. each, 30 pts. total)

Determine whether each of the following statements is true or false, and provide a brief but
specific and convincing justification of your answer. Explanations that merely reword the
statement (or its opposite) will receive no credit; thoughtful but incorrect explanations may
receive some credit.

(a) RadixSort is a stable sort.

(b) If f(n) is not Ω(g(n)), then log2(f(n)) is not Ω(log(g(n)).

For this question, use the exact definition of big-Omega, not the infor-
mal “tight” one. Also, you do not need to write a full proof; if the statement is true,
give the gist of the argument, and if it is false, exhibit a counterexample.

(c) Suppose that we are MergeSorting a list of size 2k, with k > 1. For any two indices
i, j in the original list L, there is exactly one Merge step in which, at some point, L[i]
is directly compared to L[j] (i.e., they are at the heads of the two sublists).

3

(d) Given a list L of n distinct elements (with n ≥ 4), it is possible to do the following
using O(n2) time and O(n2) space: determine whether there are four different indexes
a, b, c, d such that L[a] · L[b] = L[c] · L[d].

(e) Suppose that H is a family of hash functions that hash the 100 elements in the universe
U = {0, 1, ..., 99} to 10 buckets. Also suppose that any hash function in this family
hashes exactly 10 elements in U to each of the 10 buckets. Then H must be universal.

(f) Consider the following (Las Vegas) randomized algorithm for finding an instance of
some element (call it E) that is known to appear at least

√
n times in a list L

of size n. It chooses a starting index in the list uniformly at random, and then loops
through the entire list in left-to-right order, checking each index to see if that element
is instance of E. When it finds one, it immediately returns True. If it reaches the end
of the list, it wraps around to the beginning.

Claim: The average-case running time of this randomized algorithm is O(
√
n).

4

Problem 2: Short Exercises (4 pts. each, 20 pts. total)

For these problems, you do not need to show your work, and grading will be based only
on the final answer, although some answers may receive partial credit.

(a) In each of the trees below, fill in the values 1, 2, 3, 4, 5 once each, such that the left
tree is a min heap, and the right tree is a binary search tree. (If there is more than
one possible answer, any valid answer is acceptable.)

(b) Suppose that one of the children of the root of a red-black tree is a black leaf (with two
NILs as usual for a leaf). How many nodes long, including the root and leaf
but not counting NILs, could the longest root-to-leaf path in such a tree possibly
be? (Note: nodes along a root-to-leaf path might have more than one child. But we
are counting only nodes along the path.)

5

(c) An inversion in a list L is a pair of indices i, j, with i < j, such that L[i] > L[j].
Suppose we take L = [1, 2, ..., n] – notice that every element is distinct – and we
randomly shuffle it such that any ordering is equally likely. What is the expected
number of inversions in the shuffled list, as an exact function of n?

(d) (This is the one place on the exam where you should treat multiplication as not being
O(1).) Suppose we have two 2n× 2n matrices, each of which has entries represented as
2n-bit integers. Then combining Karatsuba’s multiplication algorithm and Strassen’s
matrix multiplication algorithm (the efficient one from Homework 1) allows us to mul-
tiply two such matrices in (tight) O(kn) time, for a particular integer k. What is k?

(Hint: even if you did not memorize the running times of these two algorithms, you
can re-derive them by remembering how they work; the reference sheet also has details
on them. Then do some log tricks.)

6

(e) Indy is running a new developers’ con with entry tickets that consist of three comma-
separated groups of three digits. E.g., one possible ticket is “000,999,064”, and another
is “369,103,161”. All three groups in a ticket are always different – no tickets like
161,103,161 can exist.

Indy uses a Bloom filter with 1000 bits (000 through 999) and two hash functions
h1 and h2 that select a ticket’s first and second groups of three digits, respectively. For
example, h1(369, 103, 161) = 369, and h2(369, 103, 161) = 103.

An attendee with a ticket that the Bloom filter thinks it has seen is not allowed in.
Otherwise, the attendee is let in, and the Bloom filter is updated according to that
ticket’s two hashes.

Suppose that people with all possible valid ticket numbers show up once each at the
con, in some order. What is the largest number of those people who could be
let in, in the best case? (Unlike in the HW problem, do not worry about people
leaving, trying to reuse tickets or make invalid tickets, etc.)

7

Problem 3: Best Case (2 pts. each, 16 pts. total)

When we determine the big-O running time of an algorithm – whether it is deterministic or
randomized – the convention unless otherwise stated is to assume a worst-case input. Let’s
consider an analogous situation for big-Ω, in which we will assume a best-case input! (In
the case of preexisting data structures, we also assume best-case contents.)

For each of the following algorithms/operations, check exactly one box corresponding to
the tightest possible big-Ω running time, assuming best-case inputs and/or structure
contents. No explanation necessary (grading will be based only on the check marks).

• The problems are asking about the operations and algorithms (and their implemen-
tations) that we saw in class, not about any way to implement the operation / any
algorithm that could solve the same problem.

• As usual in asymptotic analysis, assume that n can be arbitrarily large – the “best-case
input” is the best-case input of size n.

Algorithm Ω(1) Ω(log n) Ω(n) Ω(n log n) Ω(n2)
SAMPLE : InsertionSort on a list of n elements
(here the best-case input is an already-sorted list) ✓

SAMPLE : Add two n× n matrices
(here it doesn’t really matter what the input is) ✓

MergeSort on a list of n elements

k-Selecting the median of a list of n elements

QuickSort (with best-case randomness as well) on
a list of n distinct elements

One Delete from a hash table with Θ(n) buckets
(and chaining via doubly linked lists)

currently holding n2 distinct elements in total∗

One Insert into a min heap∗∗

currently holding n distinct elements
One Delete-Min from a min heap∗∗

currently holding n distinct elements
One Insert into a binary search tree
currently holding n distinct elements

Breadth-First Search on an unweighted, undirected
n-node tree, starting from a root given as input, to

definitively find the largest number of steps to any leaf

* Assume that the hash table only tries to find and delete a single element.
** (the array-based binary tree implementation we saw in class)

8

Problem 4: SelectSort (12 pts. total)

Waverly proposes the following SelectSort algorithm for sorting a list of n distinct compa-
rable objects:

• If n ≤ 99, sort the list in constant time using MergeSort. Otherwise:

• Run k-Select 9 separate times to find the ⌊ n
10
⌋-th, ⌊2n

10
⌋-th, ..., ⌊9n

10
⌋-th smallest elements

of the list. (Don’t worry about the floors here – the idea is to find 9 pivots that are as
evenly spaced as possible.)

• Partition the list into 10 groups: everything no smaller than the ⌊ n
10
⌋-th smallest

element, everything larger than that element but no smaller than the ⌊2n
10
⌋-th smallest

element, etc. Because there are 9 pivots to consider, each individual element can be
placed in the appropriate group in O(1) time.

• Recursively call SelectSort on each of these 10 groups.

• Concatenate the results of those calls together (assume this is also O(1)) to get the
final sorted list.

(a) (4 pts.) Write a recurrence for SelectSort. You may assume that the base case is
T (n) = 1 for n ≤ 99; you don’t need to write this out again. You do not need to worry
about floors, ceilings, etc. – for the purposes of this problem, you can just pretend the
split is into equally-sized parts. Your recurrence should include a tight big-O term. No
justification needed.

9

(b) (4 pts.) Give a tight big-O bound on the running time of SelectSort, and briefly justify
or demonstrate how you got your answer. (You should not need to write a formal
proof for this part.)

(c) (4 pts.) Terry wonders whether there is some way to modify k-Select to be able to find
multiple values efficiently. For example, consider this proposed algorithm, which (like
Waverly’s) runs on a list of distinct values that are not necessarily integers:

MultiKSelect(L, q): finds the ⌊n
q
⌋-th, ⌊2n

q
⌋-th, ..., ⌊ (q−1)n

q
⌋-th smallest values of an

n-element list L, in O(n log(log q)) time, and returns them in order. (Note: 2 ≤ q ≤ n.)

For example, for L = [8, 7, 9, 6, 11, 10], q = 4, the algorithm would find the ⌊6
4
⌋-th

= 1st, ⌊12
4
⌋-th = 3rd, and ⌊18

4
⌋-th = 4th smallest elements of the list, which are 6, 8, 9,

and return the list [6, 8, 9].

Either informally describe how an algorithm that accomplishes the claimed task could
be implemented within the claimed time bound, or informally explain why no such
algorithm can exist. (Notice that the algorithm is not claiming that the q − 1 values
are necessarily exactly evenly spaced, and your argument should not center around
details of divisibility.)

10

Problem 5: (Low-)Weighted Graphs (12 pts. total)

Both parts of this problem deal with undirected graphs with n vertices and m edges, in which
the edges are weighted and all the weights are integers between 1 and 10, inclusive.
The two parts are totally independent and can be solved separately.

(a) (8 pts.) Without modifying the graph at all (or, e.g., creating or representing a
new copy of the graph), explain how to alter Dijkstra’s algorithm to run in O(n+m)
time (and O(n +m) space) on such graphs. You can assume that the graph is repre-
sented as an adjacency list that itself takes O(n +m) space. Also assume that, as in
class, we just want the total cost of a minimum-cost path, and not the path itself.

You can just say which part(s) you are modifying, and how; you don’t need to re-
iterate all of the details and data structures of the algorithm. You do not need to
justify correctness or running time, but make sure you describe all parts of your new
apparatus that are needed to ensure that the time and space limits really are satisfied.

(Hint: we do not recommend trying to change the overall way the algorithm works.
Instead, think about how you can change any part(s) of the standard setup that would
cause the new, stricter O(n+m) time bound to be exceeded.)

11

(b) (4 pts.) Without modifying Karger’s Algorithm at all, explain how to alter the
graph so that Karger’s can be used to find a min cut of the graph, i.e., a cut with
the smallest total of cut edge costs. Also give a tight big-O expression (in terms of n
and/or m) for the expected number of trials that it will take for Karger’s to run on
the graph.

You do not need to justify correctness of the algorithm on the modified graph, or
justify the bound on the expected number of trials. Note that we are not asking about
the running time of the algorithm.

12

Reference information

Some log stuff

logb(xy) = logb x+ logb y logb
x

y
= logb x− logb y

logb x
a = a logb x blogb a = a

Big-O definitions

We say that f(n) is O(g(n)) if and only if there exist some positive real constant c and some
integer n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

We say that f(n) is Ω(g(n)) if and only if there exist some positive real constant c and
some integer n0 such that for all integers n ≥ n0, f(n) ≥ c · g(n).

The Master Theorem

For recurrences of the form T (n) = aT (n
b
) +O(f(n)),

T (n) =

O(nd log(n)) if a = bd

O(nd) if a < bd

O(nlogb(a)) if a > bd

where a is the number of sub-problems, b is the factor by which the input size shrinks, and
nd is the work required to create all the sub-problems and combine their solutions. (Note
that the big-O values here are tight; for instance, if Θ(n2) work is required, use d = 2.)

Karatsuba’s algorithm

xy = (a · 10n/2 + b)(c · 10n/2 + d) = ac · 10n + (ad+ bc)10n/2 + bd

Recursively compute ac, bd, (a+ b)(c+ d).

Insertion sort

Take the second element in the list, and as long as there is a larger element to its left, keep
moving our element left. Repeat for the third, etc. elements in the list.

Combinatorics corner(
n

2

)
=

n(n− 1)

2

13

Strassen’s algorithm

P1 = A(F −H) P5 = (A+D)(E +H)

P2 = (A+B)H P6 = (B −D)(G+H)

P3 = (C +D)E P7 = (A− C)(E + F)

P4 = D(G− E)

XY =

[
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

]
Karger’s Algorithm analysis quick summary

Let c be the size of some particular min cut. Consider any stage in the edge contraction
algorithm; let k be the number of remaining vertices. We survive this round if and only if the
next edge we contract is not in our min cut. Now, the degree of every vertex in the graph
must be at least c (or else we could have just detached such a vertex as an even smaller
min cut), so there are at least kc

2
edges total. So our probability of surviving this round is

≥ 1− c
kc
2

= k−2
k
. Then the probability of surviving all rounds is ≥ k−2

k
· k−3
k−1

· ... · 2
4
· 1
3
= 2

n(n−1)
,

and therefore the expected number of rounds to find this min cut is the reciprocal of that,
i.e., n(n−1)

2
.

Universal hashing

Let U be the universe of all elements we could put in our hash functions, and let H =
{h1, ..., hm} be a family of hash functions hashing these elements to n buckets. Then H is
universal if and only if for every pair ui, uj of distinct elements in U ,

Prh in H[h(ui) = h(uj)] ≤
1

n

where the probability is over a (uniformly) random choice of a hash function h from the
family H.

Red-black tree rules

• Every node is colored red or black.

• The root node is a black node.

• Any missing children (a leaf has two of these, an internal node with only one child has
one of these) are NILs that count as black nodes.

• Children of a red node are black nodes.

• For any node x, all paths from x to NILs have the same number of black nodes.

14

