
Prereq Review #1: Logarithms

Ian Tullis, CS161 Summer 2022

You can’t study algorithms for long before encountering logarithms.1 They arise in a
very natural way when studying the performance of many algorithms and data structures –
for example, binary search (the subject of another of our prereq reviews) takes logarithmic,
rather than linear, time. As the quarter goes on, we’ll develop more of an intuition for
why logarithms show up so often in CS theory, but our purpose here is to review how to
manipulate them.

Definition

Taking a logarithm is the inverse of exponentiation. For positive real numbers b (the base)
and x, we say

y = logb x

if and only if

x = by

For example, log3 9 = 2 because 9 = 32.

Here are a couple of useful observations about logarithms that hold regardless of the base:

• logb 1 = 0, which makes sense because any quantity raised to the 0th power is 1. The
log of any positive number less than 1 is a negative number, and the log of any number
greater than 1 is a positive number. Here’s a plot with log2 x in blue and log3 x in red:

• As the graph suggests, the log function is strictly increasing : for two values x1 and x2,
f(x1) > f(x2) if and only if x1 > x2, and f(x1) = f(x2) if and only if x1 = x2.

2

1The words algorithm and logarithm even happen to be anagrams!
2You may have encountered one use of this in CS109, for example – if you’re trying to find a value that

maximizes some quantity, it is equivalent to finding the value that maximizes the log of that quantity.

1



Just what is log x?

If you have worked with logarithms in various classes at Stanford – especially across multiple
departments – you have probably seen “log x” (without an explicit base) used somewhat
confusingly to refer to all three of these things:

• log10 x. For me, this was the most common log in high school.

• loge x (AKA “ln x”). When I got to college and started studying chemistry, biology,
etc., log suddenly switched to meaning this by default.

• log2 x, which computer scientists sometimes abbreviate as “lg x”. This and the above
are the most common logs in CS.

So which one will we focus on in CS161? Refreshingly, the answer is usually none of them –
or, more accurately, every one everywhere all at once. As we will see, when we use asymptotic
(“big-O”) notation, the base of the log will not matter. However, sometimes we may run
into logs in situations in which we care about, e.g., the exact number of steps needed for
a procedure to complete, and then we will be careful to specify which base we mean. But
if you see me just saying “log x” and not specifying a base, you can safely assume that the
base does not matter.

Regular world and log world

You may have heard the old joke about logarithms and snakes – logarithms “help adders
multiply”. What does that mean? Consider the following hierarchy of operations:

• Addition: 2 + 3 = 2 + 1 + 1 + 1

• Multiplication: 2 · 3 = 2 + 2 + 2

• Exponentiation: 23 = 2 · 2 · 2

and so on.3 Working with logarithms (going into “log world”) lets you treat operations on
one of these levels in “regular world” as if they were one level earlier:

• logb(x1x2) = logb x1 + logb x2 (a product in regular world becomes a sum in log world)

• logb(x
a) = a logb x (an exponent in regular world becomes a product in log world)

3The next level up is called tetration – continuing with our pattern, it would be 22
2

, i.e., 2(2
2). This is

not important for CS161, but it actually does come up in CS theory.

2



Some log tricks

Here’s a list of a few properties that can be derived from the definition of the logarithm. I
am generally more of a fan of re-derivation than memorization, but these are so ubiquitous
that it’s worth becoming comfortable with them:

• logb
1
x
= − logb x. Note that this is just a special case of the rule for the log of an

exponentiated term (from the previous page), with b = −1.

• logb
x1

x2
= logb x1 − logb x2. You can see this by rewriting the left side as logb x1(x2)

−1,
then applying the rule for the log of a product (from the previous page) to get logb x1+
logb(x2)

−1, then using the rule for the log of an exponentiated term.

• blogb x = x. To verify this, we fall back on the definition of a logarithm. Let y equal
blogb x, whatever it is. Then we can write

y = blogb x

logb x = logb y

And therefore y = x, since (as we saw at the end of page 1) two variables that have
the same log value (in the same base) must be the same. Intuitively, this is what we
would hope would happen – since taking a logarithm is the inverse of exponentiating,
the two operations should cancel each other out.

This one may seem particularly arcane, but it’s fairly common in CS theory to try
to stuff everything up into an exponent in order to make an argument easier.

• logb a = logc a
logc b

, for any base c. To see this, rewrite the equation as logc a = logb a logc b,

then use the definition of the logarithm on the left: a = clogb a logc b = (clogc b)logb a. Then,
by the previous bullet point, we have blogb a, which is just a.

Some common mistakes

These are written in red so that you don’t try them.

• logb(x1 + x2) ̸= logb x1 + logb x2. This is trying to treat a sum in regular world as a
sum in log world. But regular world and log world are not on the same level.

• logb x1

logb x2
̸= logb

x1

x2
. Again, this is trying to treat a quotient (a kind of multiplication) in

regular world as a quotient in log world.

3


