
CS161 Summer 2022 Problem Session 1

It’s Friday! And we (probably) have no power! Might as well distract ourselves with some
powerful practice problems.

You can work at your own pace (there are more problems here than can be finished in
an hour!), and either solo or with a group. We will circulate so that we can listen to your
thoughts and offer help. The solutions are also given throughout, but we recommend that
you check a solution only once you have made a complete and earnest attempt to solve the
problem... you will learn (and retain) much more that way!

The Problems

Problem 1: Asymptotic Families

This is a very hard problem and a big leap past what we covered in lecture. Consider
starting it, then working on some of the others, then coming back.

Arrange the following functions into “families” such that within a family, each function
is Θ() of every other function in the family. Then arrange the families from bottom to top
so that any member of a family is O() of every member of every family below it.

For example, for the set log2 n,
n
2
, n2, 2n, log22 n, the list would look like:

• log2 n, log22 n

• n
2
, 2n

• n2

Here’s the list. (You do not need to try to attempt a formal Big-O proof for each relationship.

Rather, find informal ways of convincing yourself.)

4n, 4log2 n, n!, n log 4n, n log n log log n, 2n, (n + 4)!, log2 4, 4n log n,

nn, n2, n22n, 22n, n log log n, (4n)!, log4 n, n log n4,
4

n
,

n

log n
, (log4 n)

2

Some advice on how to proceed:

• Sometimes, two expressions will be the same except for one part, and then you can
just compare those parts directly.

• Consider comparing expressions term-by-term. Is each term in one always greater than
each term in the other, in a way that ends up being a non-constant?
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This is quite challenging! You wouldn’t need to do anything this grueling on an exam,
but it’s nice to work through something like this once.

• 4
n
(admittedly it is hard to imagine an algorithm with running time that would

behave like this, but terms like 1
ϵ
, where ϵ is some bound on error, show up all

the time in big-O expressions)

• log2 4 (a constant, 2)

• log4 n

• (log4 n)
2 – this beats log4 n just as n2 beats n

• n
logn

– any polynomial beats any log term, so the n alone is enough to beat the
log-only functions. What about the division by a log? Well, n

logn
is to log n as n

is to log2 n (the square of log n).

• n log log n

• n log 4n (this is the same as n log 4 + n log n), 4n log n, n log n4 (this is the same
as 4n log n) – log n beats log log n just as n beats log n

• n log n log log n – as n → ∞, both log n and log log n are positive regardless of
the base. Compared to either n log n or n log log n, n log n log log n has an extra
positive, non-constant term. (This may seem like a silly function, but we did
briefly see it show up as the running time of a multiplication algorithm.)

• 4log2 n (this is equal to (22)log2 n = (2(log2 n))2 = n2), n2

• 2n – any exponential beats any polynomial

• n22n – this shows up in some solutions to the Traveling Salesman Problem, which
we will mention later in the course. It clearly beats 2n, but loses to 4n because
the extra 2n beats the extra n2.

• 4n, 22n – these are identical since 4n = (22)n = 22·n, and 4n beats 2n since
every term of the former dominates every term of the latter, and there can be
arbitrarily many terms as n → ∞

• n! (any factorial beats any exponential, since as n → ∞, the terms in the factorial
product grow but the terms in the exponential product stay the same)

• (n+4)! – this is (n+4)(n+3)(n+2)(n+1)n! = Θ(n4n!), so it dominates Θ(n!)

• nn – This is tricky. It beats n! because each of the n terms in nn is n, but the
terms in n! are n, n− 1, ..., 1. It beats (n+4)! because the extra Θ(n4) does not
make a difference – we can just increase n by 4. But...

• (4n)! – this has 4 times as many terms as nn, and 3
4
of those are greater than n.2



Problem 2: Divide and Struggle

Recall from Pre-Homework 1 that Indy likes to ask this interview question: Given a list L
of n (not necessarily distinct) integers, determine whether there are two elements in the list
that sum to exactly k, where k is some integer.

Indy barely remembers the Divide and Conquer paradigm from his algorithms class be-
cause the only things he needs to divide up these days are his competitors and his fat stacks
of cash. But he thinks there might be a divide and conquer solution to his interview question.
He has a 15 minute break between pitches to VCs, so he thinks about it.

(We will assume for convenience, as we often do, that n is an integer power of 2.)

(a) Here is Indy’s first attempt at solving his own problem:

DetectPair(L, k):

• Base case: If there are only 2 elements in the list, return TRUE if the two elements
sum to k, and FALSE otherwise.

• Otherwise: Split the list into two halves. Recursively call DetectPair on each
half (keeping the same value of k). If at least one of those returns TRUE, return
TRUE. Otherwise, return FALSE.

What do you think the big-O running time of DetectPair is? And is it correct?

(b) Here is Indy’s second attempt at solving his problem, after he has had a 2 minute
micronap and Ω(n) cans of Red Bull:

DetectPair2.0(L, k):

• Base case: If there are only 2 elements in the list, return TRUE if the two elements
sum to k, and FALSE otherwise.

• Otherwise:

– Split the list into two halves.

– Recursively call DetectPair2.0 on each half (keeping the same value of k).

– If at least one of those calls returns TRUE, return TRUE.

– Otherwise, for each element ei in the left half, calculate k−ei. Iterate through
the right half to see if one of those elements is k − ei. If so, return TRUE.

– Finally, if we get this far, return FALSE.

What do you think the big-O running time of DetectPair2.0 is? (Assume that each
numerical calculation takes constant time.) And is it correct?
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(a) The bad news about DetectPair is that it is wrong. To quote the relevant
part of the above: the only pairs of elements that are ever actually checked are
the first and second, and the third and fourth, and so on. So if, e.g., the only
duplicated elements are the first and third, this algorithm will incorrectly return
FALSE.

The good news about DetectPair is that it is fast: it runs in O(n) time. At
the level just above the leaves, there are n

2
subproblems (comparing two leaves),

each of which takes constant time. Then the next level up processes n
4
pairs of

two Boolean results (with each such comparison also taking constant time), and
so on; the total work is n

2
· 1 + n

4
· 1 + ..., which is bounded above by n.a

(b) The good news about DetectPair2.0 is that it is correct, because it ends up
checking every possible pair of indices. That is, for any index, it is compared
with one index at the level above the leaves, and with two other indices at
the level above that, and so on... at the root level, it is compared with the
remaining n

2
indices!

The bad news is that since there are
(
n
2

)
= n(n−1)

2
= Θ(n2) pairs of in-

dices, this algorithm is Ω(n2). (Using Problem 3 on Homework 1, you can see
that it is O(n2).)

aStrictly speaking, we haven’t talked about the work to create the subproblems, but this is also
constant – the places to split the list can be calculated in constant time (so this work is just like the
work of the comparisons), and there is no need to make a bunch of copies of parts of the list.

Problem 3: ThergeSort?

Waverly is wondering why MergeSort breaks the list into exactly two parts of size n
2
each.

She considers breaking it into k parts of size n
k
each, for some integer k > 2. (For simplicity,

you don’t need to worry about parts being of uneven size – that is, you can assume that n is
always some power of k.) This all looks good until Waverly considers the Merge step... it’s
not immediately clear how to make the same idea work with more than two lists.

(a) Suppose that k = 3. Can the Merge step be easily adapted to fit Waverly’s idea while
keeping the linear time guarantee? If so, show how it can be done. If not, explain
where the difficulty arises.

(b) Now suppose that k is an arbitrary variable, not a constant, so that O(nk), for example,
is not the same thing as O(n). Can the Merge step be easily adapted to fit Waverly’s
idea while keeping the linear time guarantee? If so, show how it can be done. If not,
explain where the difficulty arises.
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(a) We can easily adapt Merge to work with three lists. We just have three pointers
instead of two. The major difference is that now whenever we find the smallest
element to add next, we have to check three lists. However, only entails doing
two comparisons (check the first candidate against the second, then check the
third candidate against the smallest of the first two). Then the same argument
from lecture holds – we advance each of the three pointers n

3
steps, and the

comparisons at each step take constant time, so the procedure is still linear in n.

(b) Now we have a problem, because when we have to look at the pointers of k lists
to choose the next smallest element, this takes O(k) time. That is, when the
number of lists can get arbitrarily big, we can no longer handwave away that
number as a constant. Later in the quarter, we will see a way to deal with this
somewhat by using a priority queue, but even then, we cannot make that check
constant-time. So Waverly’s idea does not hold water.

Problem 4: Inversion-Counting

Consider a list L of n integers. An inversion is a pair of indices i, j of the list, with i < j,
such that L[i] > L[j]. That is, the elements at these indices are in a sense “out of order”
relative to each other.

For example, in the list [3, 1, 4, 1, 5, 9, 2], there are seven inversions: Indices 0 and 1 (3
vs. 1), Indices 0 and 3 (3 vs. 1), Indices 0 and 6 (3 vs. 2), Indices 2 and 3 (4 vs. 1), Indices
2 and 6 (4 vs. 2), Indices 4 and 6 (5 vs. 2), Indices 5 and 6 (9 vs. 2).

(a) Give an exact (not big-O) expression for the maximum number of inversions that can
be present in a list of length n (with n ≥ 2). Justify your answer mathematically.

(b) Describe an O(n2) algorithm to count the number of inversions in such a list. (Think
like Brutus!)

(c) Now let’s try to do better! Notice that the number of inversions is directly related to
how close to sorted the list is. This suggests that maybe we can adapt our MergeSort al-
gorithm to count inversions as we’re sorting – specifically, by modifying the Merge step.

Without changing the backbone of how MergeSort works, find a way to add some
additional variables/calculations to the Merge step such that the procedure also re-
turns the number of inversions in the list.

(d) Informally justify that the runtime of this modified procedure is still O(n log n), just
as for MergeSort.

(e) Suppose we wanted to instead print all the pairs of inversions, instead of just counting
them. Explain why no O(n log n) algorithm for that problem exists.
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(a) The worst case occurs when every pair of indices is an inversion, which happens

when the entire list is in reverse sorted order. There are
(
n
2

)
= n(n−1)

2
distinct

pairs of indices, so this is the maximum number of inversions.

(b) We can just check every pair of indices (e.g., with a double for loop) for an
inversion, and keep track of the total number of inversions.

(c) When we perform a Merge step, we merge two already-sorted lists, so there are
no inversions within either of the lists. So we only need to count the number
of pairs of inversions that span the two lists – i.e., we can compare all indices
in the left list with all indices in the right list. Wait a minute – isn’t this what
Indy tried to do in Problem 2(b)? Well, here we have a trick up our sleeve.

Suppose that our left list is [1, 4, 6, 7], and our right list is [2, 3, 5, 8]. We
start our pointers off at 1 and 2, respectively, and then we choose 1 as our first
new list element and advance the first pointer to 4. Then we choose 2 as our
next new list element.

At the time we choose 2, we note that it is actually smaller than every
remaining element in the left list! Why? Because if we are choosing 2 as the
next smallest element for our new list, we must have already chosen everything
smaller from the left list!

Therefore we can add three inversions to our total – just the remaining
length of the left list. (We don’t need to go through this list to find out how big
it is – we know how big it was to start, and we know where the pointer is now,
so we can calculate the remaining length directly.)

Continuing in this fashion, we find that 3 also gives us three inversions, 5
gives us two, and 8 gives us none (after all, it is the biggest element overall!)
We total all these up and pass the total up the tree, and the final answer is the
total of all the inversions counted by all the Merge steps.

A couple lingering questions:

• How do we know this doesn’t double-count? Convince yourself that every
pair of distinct indices is on opposite sides of exactly one Merge step.

• What if there are ties? Then we have to be careful to choose the left list’s
value first whenever the two lists have a tie. (We only count inversions
when processing an element from the right list, so by the time we do this,
all duplicates will have been removed from the left list. And duplicates in
the right list will be handled separately, which is what we want.)

(d) The new procedure involves keeping track of a new variable and passing it up the
tree, but all of these operations take constant time – no worse than the constant
work we already do at each step of a Merge operation.

(e) In part (a), we saw that there can be Θ(n2) inversions. Since printing each one
takes some time, any such algorithm is Ω(n2).
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(Answers to all three of these remaining problems are on the next pages.)

Problem 5: Polynomial Big-O

We have informally seen that only the highest-degree term of a polynomial function mat-
ters for Big-O. That is, 0.01n3+9999n2−7 is O(n3). In this problem, we’ll make that rigorous.

Suppose we have a function f(n) =
∑d

i=0 ain
i, with a0, ..., ad being constants with ad nonneg-

ative. (It wouldn’t really be useful in the context of algorithmic analysis for this leading coef-
ficient to be negative!) Note that each of the other coefficients could be positive, negative, or
zero. (In the example in the first paragraph, we have a0 = −7, a1 = 0, a2 = 9999, a3 = 0.01.)

Prove that f(n) is O(nd). The tricky part here is figuring out which values of c and n0

to choose...

Problem 6: Cramped Aisle

There’s an aisle of theater seats numbered 1 through n. Seat 1 is against a wall, so the only
entrance to the aisle is by seat n. Therefore, when someone enters the aisle and wants to
get to some seat k, they must walk by seats n, n− 1, ..., k + 1, and anyone already sitting
in those seats must stand up to let the new person go by. (Then they sit down again.)

You have a list of the order in which the n ticketholders (who are also numbered 1 through
n, matching their seat numbers) will arrive. Describe an algorithm to calculate the total
number of instances of standing up. (The same person might stand up multiple times, and
all of those instances count separately.) Your algorithm must run in O(n log n) time.

Problem 7: A Big-O Surprise

It is natural to assume that all functions fall into some kind of hierarchy of families as
in Problem 1, but this turns out not to be true! That is, it is possible to find functions
f(n), g(n) such that f(n) is not O(g(n)), and g(n) is not O(f(n)). Can you give an example
of such a pair?
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Answer to Problem 5

To show that f(n) = O(nd), we need to exhibit a c and n0 such that for all n ≥ n0,
f(n) =

∑d
i=0 ain

i ≤ c · nd.

What value of n0 should we choose? We know that as n increases, things will
only get more favorable for our claim, since nd will grow faster than lower-order
terms. So let’s choose n0 = 1, where we will be at our weakest, and think about what
value of c we’ll need.

If we plug in 1 for every power of n in the polynomial, what do we end up
with? The sum of all of the coefficients! So if we take c to be at least as large as the
sum of all the coefficients? Then the bound certainly holds for n = 1.

What about for larger n? Well, because ni ≤ nd for all i ≤ d, we have

f(n) =
d∑

i=0

ain
i ≤

d∑
i=0

cin
d s.t. ci ≥ ai ∀i ∈ [0, d]

≤ nd

d∑
i=0

ci = nd · c

(where we were able to move the nd out of the summation because it has no dependency
on i.) Therefore we have chosen a c and n0 and demonstrated that they establish an
upper bound, so the proof is complete.

Answer to Problem 6

Notice that if the theatergoers arrived in the order 1, 2, ..., n, nobody would ever have
to stand up. In fact, every instance in which person a has to stand up for person
b corresponds to an inversion, i.e., a is numbered higher than b but arrives before
b. Therefore the problem can be solved using our inversion-counting algorithm from
Problem 4.
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Answer to Problem 7

We saw an example of this on Pre-Homework 1: we can choose f(n) = 1 for odd
n and n for even n, and g(n) = 1 for even n and n for odd n. Then no constant
multiplier can make g(n) upper-bound f(n) on even n (since g(n) is always 1 there),
and no constant multiplier can make f(n) upper-bound g(n) on odd n (since f(n) is
always 1 there).

Another example pair (which I believe is the “classic” answer to this question)
is f(x) = sinx, g(x) = cos x. The argument is similar to the above.
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