
CS161 Summer 2022 Problem Session 2

Problem 1: Min Cut Heuristic

In lecture, we saw that the size of the minimum cut of a graph is no larger than the smallest
degree of any vertex in the graph – we can just take a smallest-degree vertex and remove all
of its edges, thereby disconnecting it from the graph.

Because of this, Waverly thinks that when trying to find a min cut, it might be a good
idea to look at edges for which the combined degree of the two attached vertices is small.
What do you think of this idea? Can you informally argue why it always works, or describe
a graph in which it would not work?

Problem 2: Decimation

Suppose that we get consistently unlucky when choosing random pivots in QuickSort, such
that we always end up splitting into two lists of 90% and 10% the size of the original. (We’ll
handwave away what happens to the pivot itself – this is OK because we’ll only make our
recurrence more conservative.)

Since Quicksort does linear work when partitioning around a random pivot, let’s say the
recurrence here is

• T (n) = 1, for 1 ≤ n ≤ 10

• T (n) = T (9n
10
) + T (n

10
) + an, for n > 10

where a is some constant reflecting how much work it actually takes to do the partitioning.
(This is some fixed but unknown value; you do not have to set it.)

Show that this recurrence is still O(n log n). (That is, it is asymptotically the same as
T (n) = 2T (n

2
).+Θ(n), even though that divides the list beautifully in half!)

(Hints: Follow the argument in class from Lecture 3, when we solved a similar-looking
recurrence, but here we just need to establish an asymptotic bound of n log n, not n as in
that example. Work with log2 to make the calculations more concrete. You will have to
do some messing around with log terms to make this work, using log tricks described in,
e.g., the first Prereq Review document. You can also make the upper bound looser when it
simplifies the analysis.)

1

Problem 1: This seems like a good idea, but unfortunately it won’t always work.
Consider the ”bowtie” example from class. In this case, the single edge that constitutes
the min cut is actually between the two vertices of highest degree!

Problem 2: We try an induction argument and defer our actual choice of c until the
end:

• Claim: T (n) ≤ cn log2 n, for n ≥ 2.

• Base case: T (2) = 1, which is ≤ c(2 log2 2) = 2c. (So we will need 2c ≥ 1.)

• Inductive step: Now suppose that T (n) ≤ cn log2 n for all 2 ≤ n < k. We will
show that the claim still holds for n = k:

T (k) = T (
9k

10
) + T (

k

10
) + an

≤ 9ck

10
log2

9k

10
+

ck

10
log2

k

10
+ ak

=
9ck

10
log2(

9

10
) +

9ck

10
log2(k) +

ck

10
log2(

1

10
) +

ck

10
log2(k) + ak

= ck log2 k +
9ck

10
log2 9−

9ck

10
log2 10−

ck

10
log2 10 + ak

= ck log2 k +
9ck

10
log2 9− ck log2 10 + ak

≤ ck log2 k +
9ck

10
log2 10− ck log2 10 + ak

= ck log2 k + ak − ck

10
log2 10

To get this to be ≤ ck log2 k, we need ck
10
log2 10 ≥ ak. We see we can divide out

the k here, and then we simply need c ≥ 10a
log2 10

. (We also need 2c ≥ 1 from the

base case, but this is a weaker requirement – a is surely at least 1 because we
have to make a pass through the whole list when partitioning.) Therefore, with
that choice of c, we have established the desired bound.

Notice that this analysis would work for any particular fixed split – even 99.9% and
0.1%, or worse!! Also notice that the exact value of a ultimately did not end up
mattering. This may help to explain why we can handwave away a term like an in a
recurrences as just Θ(n).

2

Problem 3: RaidxSort

Suppose that the phases of RadixSort went in any order other than least significant “digit”
to most significant “digit”. That is, just as a concrete example, suppose that we are Radix-
Sorting a list of 3-digit base 10 numbers, and we accidentally process the digits in the order:
second (10s place), third (1s place), first (100s place). Give an example of a list that would
be sorted incorrectly by this procedure.

Problem 4: HubrisCorp

Indy has had an idea for a new k-Select algorithm. He has the following conversation with
Terry about it:

• Terry: But you know you have to at least look at every element of the list to be sure
you have the k-th smallest, right? And that takes Ω(n) time.

• Indy: (to someone offscreen) Hey, back up the swamp jacuzzi into the corner there!
(to Terry) Just getting the new office building ready.

• Terry: Did you hear what I said?

• Indy: Of course I did! And that’s why before we do any k-Selecting, we put everything
in a hash table. And yeah, I know that takes O(n) time. But once we do that just
once, all future calls to our new proprietary k-Select algorithm take o(log n) time each,
whereas our competitors are stuck at O(n) each time they want to select, like it’s 2021!
It even works on arbitrary elements, not just numbers, since it’s totally comparison-
based. Well, that’s what those brainy crocs in R&D tell me.

• Terry: Hmm. That all sounds interesting. How does that work?

• Indy (grinning toothily): I said proprietary, Terry. Now if you’ll excuse me, I have
some resumes to skim.

Even without knowing the proprietary details or doing any thinking about hash tables, how
can Terry argue that Indy’s strategy can’t possibly work?

Problem 5: Polynomial Comparison

Here’s a problem that you will have already seen if you took CS9. Suppose you are given
three polynomials (of very large degree) p1, p2, p3, and you are asked whether p1p2 = p3.
That is, is the product of the first two polynomials the same as the third one? (“Same” here
means that (p1p2)(x) = p3(x), for all x.)

One way to do this would be to multiply p1 and p2 together and then compare all of the
coefficients of that with the coefficients of p3. But this can be quite computationally cum-
bersome, and there is an easier way to solve the problem with a randomized algorithm. Can
you come up with the idea behind that? (Don’t worry too much about the details here.)

3

Problem 3: One such example, with just two elements, is: 998, 989. Suppose they
are in that order originally. Then the orders after each phase are:

• After digit 2: 989, 998

• After digit 3: 998, 989 (here is where the problem arises!)

• After digit 1: 998, 989

That is, the “digit 1” phase trusts that all previous phases were handled correctly,
and so it does not (and cannot) correct the earlier mistake.

Problem 4: If what Indy were saying were true, we could sort a list in
o(n log n) time by calling k-Select once per element. The total cost would be
O(n) + n · o(log n) = o(n log n). But since Indy claimed that the method was entirely
comparison-based, he is subject to the Ω(n log n) limit on sorting a list.

Problem 5: The idea is to just try plugging in a random value – choose
some a and find (p1p2)a and p3(a). If these come out the same, i.e., (p1p2 − p3)a = 0
it’s because either p1p2 and p3 really are the same, or because we just happened to
pick a root of p1p2 − p3. But polynomials can only have so many roots, so if we try
enough different random values, we will eventually either find proof that the two
polynomials are different, or conclude that they are the same.

See https://web.stanford.edu/class/cs9/slides/w9-2_problem_solving.pdf

if you want more details (since there definitely are more details!)

Problem 6: Median Heuristics

Waverly is at it again, trying to come up with ways of estimating a median that are simpler
than the MedianOfMedians procedure. She decides to MergeSort the first ⌊ n

11
⌋ elements of

the list, and use the median of that sublist as the estimate of the overall median.

What is the asymptotic running time of this strategy, and how far off (in terms of in-
dex, not value) that the estimate can possibly be, in the worst case, on a list of size 121 (just
for convenience)? The elements in the list might have any values, but you can assume here
that there are no ties.

4

• MergeSorting the sublist of size ⌊ n
11
⌋ takes O(⌊ n

11
⌋ log⌊ n

11
⌋) = O(n log n) time,

unfortunately. (Asymptotically speaking, we might as well just sort the entire
list and then take the exact median!)

• The worst case occurs when, e.g., the first ⌊ n
11
⌋ elements of the list are the

smallest in the list; with our n = 121 example, the list is of size 11 and we get
the 6th smallest element as our median estimate. The actual median is the 61st
largest, so we are 55 indices off.

5

