
CS161: Design And Analysis of
Alligators Algorithms

Summer 2022
Ian Tullis

6/20 Lecture Agenda
● Part 0: Course overview and policies

● 10 minute break!

● Part 1-1: Big-O and friends

6/20 Lecture Agenda
● Part 0: Course overview and policies

● 10 minute break!

● Part 1-1: Big-O and friends

Why are you here? Why take CS161?

Some reasons, maybe from less to more interesting?

● You might have to for your degree

● Heard it was useful for technical interviews?

● Algorithms are beautiful and fun!

● Algorithms can solve – and, uh, cause – pressing societal
problems!

A Word On Tech Interviews
Good news: CS161 will help (to some extent!)

● Practice with designing algorithms / problem-solving
● Intro to some topics like dynamic programming which are

overrepresented in tech interviews

Bad news? CS161 is not an interview prep class

● We have CS9 for that (I will probably teach it this Autumn)
● Tech interviews are their own weird, broken thing
● Not everyone wants to go into industry…

Algorithms and Society
What is "The Algorithm"?

And why does it

● deny me a loan
● hide my social media posts

● boost sensational and false news stories

What does that have to do with, like, sorting a list?

What even is an "algorithm"?

A process for solving a problem!

Name derives from Muḥammad
ibn Mūsā al-Khwārizmī

● Headed the Grand Library of
Baghdad (House of Wisdom) in the
9th century!

● Also gave us algebra

The Compendious Book on Calculation by
Completion and Balancing, AKA Algebra

https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing

All of these are algorithms
● Solving a quadratic equation with a formula

(al-Khwārizmī)

● Finding a quotient via long division

● Sorting a list of integers using MergeSort

● Finding the fastest route between two places using
Dijkstra's Algorithm

● Detecting spam using Naive Bayes modeling

● Deciding who should be released early from jail,
using a complicated and probably biased model

}CS161 is here,
roughly

 at least it's (mostly) discrete math though! no integrals!

Why bother? Isn't CS just AI/ML now?

I didn't cherrypick this – this is
the first thing it came up with

OK, that wasn't fair, but
● ML is offering some great insights into math and algorithms, but not

every problem should be solved by throwing it into TensorFlow

● In CS161, we'll mostly study very fast, deterministic algorithms that
produce exact solutions to well-defined problems

● But there's a bigger world out there too, e.g.:
○ Intractable problems for which we suspect that no efficient

algorithm can possibly exist
○ Problems that don't fit on one machine and must be distributed
○ Ambiguous problems (like modeling climate change)
○ Randomized algorithms – is it OK to be wrong if we can try again?
○ Approximation algorithms – is a close solution good enough?
○ Quantum algorithms that are dark magic and break all the rules…

Think of CS161 as a "classic" toolbox

But there are always more toolboxes!

Dijkstra's algorithm

Dynamic programming

Big-O

Universal hashing Bloom filters

Max flow and bipartite matching

Heaps and
priority
queues

Self-balancing
binary trees

Spanning trees

Minimax
Topological sort

MergeSort,
QuickSort,
Radix Sort

BFS, DFS

Median and Selection Divide and
conquer

Greedy

Why not just jump right to the modern toolbox?
● Well, people still use hammers all the time, right?

● (The algorithms we will learn in CS161 are still
relevant!)

see, at least one person on Quora still thinks sorting
algorithms are cool!

Me
● Weird background in

chemistry, biology,
environmental science,
premodern Japanese
literature (yes, I am a parody
of myself)

● I love CS theory, math
(especially discrete math and
combinatorics), and AI!

● Worked at Google for 8 years
on Search and then Code Jam
(an algorithm coding contest)

Our awesome course staff

Goli

Ziang

LucasIvan

Ricky Rishu

bios will be on the site!

Some more shout-outs

● This class is professionally
recorded!
○ Be very thankful that it's not

me doing it

● I'll be borrowing some slides
(and the mascots idea) from
Mary Wootters, who is awesome
○ Seriously, take all her classes

Course Policies

● See the syllabus (linked from Canvas and
cs161.stanford.edu) for full details!

● Overall theme: I believe we learn by doing, not just
by listening
○ So, I want to provide lots of practice problems

and opportunities, but not in an overwhelming
or stressful way

Prereqs
● CS103 (mathematical foundations)
● CS106B (coding, basic data structures)
● CS109 (probability)

● As in general at Stanford, these are not "firm"
prereqs. In this case I (mostly) agree

● See the Prereq Review notes I've put together for
recaps of the most crucial topics. (I also take
requests, but may not get to them ASAP)

Organization
● Six "units"

● Each has:
○ two lectures (2 halves each)
○ an optional Problem Session
○ a Pre-Homework
○ a Homework

● Two exams

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Problem Sessions
● Optional meetings (same room, same time of day,

usually Fridays but sometimes Mondays)

● Solo or in groups, work through problems at your
own pace. We'll circulate to help!

● We will post the problems and detailed solutions.
The sessions will not be recorded since there is
kinda nothing to record, and the solutions should
be self-contained.

Pre-Homeworks
● Work on these on Gradescope

● Multiple-choice questions,
may be quite challenging!

● You can try as many times as
you want and will get
immediate feedback, and a full
explanation when correct

● Collaboration is OK!

● Ask for help on Ed / from staff!

Homeworks
● Problem sets to ponder / write up

● 6 problems of equal weight
○ Always 1 coding problem
○ You can get full points from doing 5, but can do all 6!

● Collaboration is OK but
○ you cannot look at anyone else's solutions/code (or any online),

and you must write up your own work

● We are here to help! (in office hours, on Ed…)

● 6 late days for Pre-HW/HW, max of 2 per assignment, see syllabus
for details

A Word on Coding Problems…
● Still in development (since these are uncommon for CS161)

○ After all, we are a CS class, even if this is mostly math!

● Goal: practice implementing algorithms so that they work in
practice and not just on paper

● Current plans are to support C++ and Python, but let us know if you
do not know either language

● On Gradescope, autograded for immediate feedback (but test cases
will not be visible)

● One per problem set. In theory you could skip all of them and still
get full homework points

Exams
● Midterm: In class, July 22, covers Units 1, 2, 3 (and 4, in less

depth)

● Final: August 12, 3:30-6:30 PM, covers entire class including
Special Topics (more emphasis on Units 4, 5, 6)

● In scope: anything from the lectures, Pre-Homeworks, and
Homeworks (though we won't ask about tiny details from
these)

● Exams will be challenging to allow you to demonstrate
mastery of the material, but not gratuitously hard to create a
curve or whatever

Grading

● Pre-HW + HW points over 330 become bonus (at ⅓ value)
● Also bonus for Ed contributions etc. (total bonus capped at 24pts)
● Final grade will be based on performance and not on a planned

curve. We will give an estimate after the midterm

A Plea Re: Grades from a survivor of gifted-kid burnout

● We are trained to focus on grades to get into college, I get
that, but…
○ Grades are not a measure of personal worth or even of

potential in a field
○ Many employers (especially in tech) don't care about GPA
○ High grades from playing the game + lack of

understanding is a bad combination

● Focus on learning and understanding, and the grades will
follow (not the other way around!)

Textbooks (optional)

CLRS: the classic, but buckle up

AI: more easily digestible,
by one of the best
algorithms teachers
Stanford has ever had

Other resources / Advice for success
● Go to office hours. (Schedule coming soon!)

● Post on our Ed forum. When something doesn't quite click, ask about it!
○ And don't be afraid to ask publicly (anonymously, if you prefer) – if you're

confused, so are others. But private posts are OK.

● Get as much practice as you can! Attend the Problem Sessions (or work through
the problems on your own, and read the solutions)

● Find a study group. (But try not to make the group too large.) There will be a thread
about this on Ed.

● The Summer Academic Resource Center (SARC) may have free tutoring for CS161
(and other core classes). See
https://summer.stanford.edu/summer-academic-resource-center-sarc

https://summer.stanford.edu/summer-academic-resource-center-sarc

The Algorators!
● BRUTUS is the brute-force

gator. Brutus is stronk. Brutus
is in no danger of overthinking
problems. Brutus is often in
danger of underthinking
problems.

Sometimes brute force
really is the right
approach! Easy to
understand / maintain

The Algorators!
● INDY is the industry gator. "When would you

ever use red/black trees?", he says, as he uses
libraries based on red/black trees and asks
candidates interview questions about
red/black trees. Then he speeds home in his
expensive car and rolls on his piles of
quantum coins or whatever.

I am going to poke gentle fun at
industry in this course, but Indy is
not just a comic figure. Also, he
makes way more than I do.

The Algorators!
● SISI is the systems gator. She is practical and

cares more about implementations and speed
than about abstract performance guarantees.

Sometimes CS theorists get
spirited fully away into big-O
land and stop thinking about
practical concerns. Sisi will
remind us.

The Algorators!
● TERRY is the theory / academic gator. They

are passionate about proofs and fine details,
sometimes to the point of exasperating the
other Algorators.

As we all know, academics wear their
mortarboards around everywhere!

Terry can be pedantic, but hey, it's an
algorithms class. Someone has to be
rigorous and not gloss over "minor" points.

The Algorators!
● WAVERLY is the intuitive (some might say

"handwavy") gator. She has a big-picture,
intuitive understanding and does not like to
get bogged down with extreme rigor.

Sometimes Terry can get so lost in
the details that they miss high-level
insights and ideas. Waverly explores
and speculates and sometimes
hands off a great new idea to Terry
to examine thoroughly.

6/20 Lecture Agenda
● Part 0: Course overview and policies

● 10 minute break!

● Part 1-1: Big-O and friends

6/20 Lecture Agenda
● Part 0: Course overview and policies

● 10 minute break!

● Part 1-1: Big-O and friends

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Big-O and Friends

How Fast Does Our Code Run?
Suppose we are given a list
L of integers, and we want
to determine whether there
are any repeated elements.
One naive brute-force
strategy is to check every
pair of elements against
each other.

This is "pseudocode" – i.e., not in
any particular language, but
readable by anyone familiar with at
least one language. It has no fixed
format, so don't worry about the
specific syntax here.

i = 0
n = length(L)
while i < n - 1:
 j = i + 1
 while j < n:
 if L[i] == L[j]:
 return True
 j += 1
 i += 1
return False

Suppose that it takes 1 time unit to do
any of these:
● initialize a value
● increment a value
● perform an addition/subtraction
● perform a comparison and react

accordingly
● return a value
● find the length of a list
● access a list element

How long does this function take to
run, depending on the size and
content of the lists? Let's start with a
simple example, the list [7, 6]...

i = 0
n = length(L)
while i < n - 1:
 j = i + 1
 while j < n:
 if L[i] == L[j]:
 return True
 j += 1
 i += 1
return False

● Initialize i to 0
● Find the length of L (2)
● Initialize n to 2
● Subtract 1 from 2 to get 1
● Compare i (0) and n-1 (1)
● Add i (0) and 1 to get 1
● Initialize j to 1
● Compare j (1) and n (2)
● Access L[0] to get 7
● Access L[1] to get 6
● Compare L[0] (7) and L[1] (6)
● Increment j to 2
● Compare j (2) and n (2)
● Increment i to 1
● Subtract 1 from 2 to get 1
● Compare i (1) and n-1 (1)
● Return False

i = 0
n = length(L)
while i < n - 1:
 j = i + 1
 while j < n:
 if L[i] == L[j]:
 return True
 j += 1
 i += 1
return False

You will not have to do this on a HW
or exam. It's a little gross. (don't tell
the Software Theory people I said so)

What A Mess!
● That was supposed to be a simple example, and look how

complicated it got!

● Also, what if those operations don't really all take the
same amount of time?
○ Some machine instructions are way more expensive

than others!

● All we really want is some idea of how this function's
running time depends on the size and content of the list,
but here we're getting lost in details…

● And that was just for one input! What about others?

Pessimism to the Rescue
● One simplifying

assumption we can make
right away is that the
contents of the list are as
bad as possible for the
algorithm.

● In this example, since this
algorithm gets to quit early
if it finds a duplicate, the
worst case is for there to be
no duplicates.

i = 0
n = length(L)
while i < n-1:
 j = i + 1
 while j < n:
 if L[i] == L[j]:
 return True
 j += 1
 i += 1
return False

once

once

once

n-1 times

 n times
n-1 times

n + (n-1) + … + 2 times

never

How Often Is Each Part Executed?
Here, for further simplicity, let's
say each line takes the same
time to execute (even if it
includes both a subtraction and
a comparison, for instance).

(n-1) + (n-2) + … + 1 times

(n-1) + (n-2) + … + 1 times

i = 0
n = length(L)
while i < n-1:
 j = i + 1
 while j < n:
 if L[i] == L[j]:
 return True
 j += 1
 i += 1
return False

once

once

once

n-1 times

 n times
n-1 times

n + (n-1) + … + 2 times

never

How Often Is Each Part Executed?

(n-1) + (n-2) + … + 1 times

(n-1) + (n-2) + … + 1 times

This stuff
looks like it
matters the
most!

A Useful Math Fact

Side note: This is lesser-known but also sometimes useful.

As a boy, Gauss was asked to add the integers from 1 to
100, and he observed that it's 50 pairs like the following:
1 + 100, 2 + 99, 3 + 98, …, 50 + 51. So the answer is 50
times 101, i.e. n/2 times n+1. You're too freakin clever,
Gauss! Leave some math for the rest of us!

i = 0
n = length(L)
while i < n-1:
 j = i + 1
 while j < n:
 if L[i] == L[j]:
 return True
 j += 1
 i += 1
return False

once

once

once

n-1 times

 n times
n-1 times

n + (n-1) + … + 2 times

never

Totaling Up The Scorecard

(n-1) + (n-2) + … + 1 times

(n-1) + (n-2) + … + 1 times

an2 + bn + c, for some a, b, c

Now we know
these resolve to
expressions like
n2 / 2 + n / 2

As n gets arbitrarily big…
What happens to an2 + bn + c?

● Eventually, bn dominates c, even if c was bigger
than b to begin with.

● Eventually, an2 dominates bn, even if b was bigger
than a to begin with.

So we really only care about the an2 part!

(Do we even care about the a? Wouldn't it be nice to
only have to think in terms of n itself?)

Big-O notation, informally
● Consider two functions f(n) and g(n), each of

which is defined (at least) on integer values.

● We say that f(n) is O(g(n)) ("big O of g(n)") if, as
n gets bigger…

● … eventually, past a point, f(n) is always bounded
above by some constant multiple of g(n).

● "f(n) is no worse than g(n)", in an asymptotic
sense.

Why do we need the "past a point" part?

Looks like
the blue
curve is
"smaller"
than the
magenta
curve…

Box of Mystery

Why do we need the "past a point" part?

Oh no! The
blue curve is
actually
"bigger"
past a point.

Why do we need the "constant multiple" part?

The whole
idea is that we
don't want to
treat n and
n+1 as
different…

(2 times n
dominates
n+1)

Why do we need the "constant multiple" part?

…or even
treat n and
2n as
different.

(3 times n
dominates
2n)

Why a constant multiple?
It'd be silly to
say that 2n
times n
dominates
n2, since we
want n and
n2 to be
meaningfully
different.

Big-O notation, formally
● Consider two functions f(n) and g(n), each of which is

defined (at least) on integer values.

● We say that f(n) is O(g(n)) ("big O of g(n)") if and only
if:
○ there exists some positive constant c
○ and there exists some integer n0
○ such that for all integers n ≥ n0, f(n) ≤ c * g(n)

● Equivalent notation: f(n) = O(g(n)), f(n) ∈ O(g(n))

Positive example: Show that n2 + 1 is O(n3)
● We need to find some positive constant c

○ and some integer n0
○ such that for all integers n ≥ n0, n2 + 1 ≤ c * n3

● How do we do this? A good first step is to just play around with
some values and get a feel for the functions…

● We need to find some positive constant c
○ and some integer n0
○ such that for all integers n ≥ n0, n2 + 1 ≤ c * n3

● Let's examine the behavior of n2 + 1 and n3:
○ (1)2 + 1 = 2, which is bigger than 13 = 1.
○ (2)2 + 1 = 5, which is smaller than 23 = 8.
○ (3)2 + 1 = 10, which is smaller than 33 = 27.

■ and it's only going to go on like that…

● So it looks like we can choose c = 1, n0 = 2…

Note: There is no requirement that you choose an
"optimal" or "elegant" c and n0. Any set that works is fine.

● How do we argue that n2 + 1 really is always smaller than
1 * n3 for n ≥ 2?

● One way:
○ Let n ≥ 2. Consider the quantity n3 / (n2 + 1).
○ That + 1 in the denominator is annoying. Can we get rid

of it?
○ We can do what CS theory does best – use a ridiculously

loose bound.

● How do we argue that n2 + 1 really is always smaller than 1
* n3 for n ≥ 2?

● One way:
○ Let n ≥ 2. Consider the quantity n3 / (n2 + 1).
○ Notice that 2n2 is always bigger than n2 + 1, since n ≥ 2.
○ Therefore replacing n3 / (n2 + 1) with n3 / 2n2 can only

make that quantity smaller.
○ Now we're almost there! We just need to make an

argument about n3 / 2n2.

● How do we argue that n2 + 1 really is always smaller than 1
* n3 for n ≥ 2?

● One way:
○ Let n ≥ 2. Consider the quantity n3 / (n2 + 1).
○ Notice that 2n2 is always bigger than n2 + 1, since n ≥ 2.
○ Therefore replacing n3 / (n2 + 1) with n3 / 2n2 can only

make that quantity smaller.
○ But what is n3 / 2n2? It's just n/2. And for n ≥ 2, this is

always at least 1.
○ Therefore n3 / (n2 + 1) is also at least 1… i.e., n3 is bigger

than n2 + 1 for n ≥ 2.
■ which is what we wanted to show!

Some examples
● 1 = O(log n) Logs grow faster than constants (ofc).
● log n = O(n) Polynomials grow faster than logs.
● n = O(n log n)
● n log n = O(n2)
● n2 = O(2n) Exponentials grow faster than polynomials.
● 2n = O(n!) Factorials grow faster than exponentials.

This is far from the only set of "levels", though! For instance,
what about log2 n? Or n1.5?

How do log n and the square root of n compare?

A word on logarithms
● The logarithms on the last slide had no bases given!

● This is because the base does not matter
asymptotically. Here's an example of the argument:

● Suppose that some f(n) is O(log2 n).
● Then there exist c, n0 such that for all integers n ≥ n0,

f(n) ≤ c * log2 n.
Note that we don't know (or
need to know) what these
values c and n0 actually are…
just that they exist!

A word on logarithms
● The logarithms on the last slide had no bases given!

● This is because the base does not matter
asymptotically. Here's an example of the argument:

● Suppose that some f(n) is O(log2 n).
● Then there exist c, n0 such that for all integers n ≥ n0,

f(n) ≤ c * log2 n.
● But log2 n = (log3 n) / (log3 2). (See the log review doc)

A word on logarithms
● The logarithms on the last slide had no bases given!

● This is because the base does not matter
asymptotically. Here's an example of the argument:

● Suppose that some f(n) is O(log2 n).
● Then there exist c, n0 such that for all integers n ≥ n0,

f(n) ≤ c * log2 n.
● But log2 n = (log3 n) / (log3 2).
● Now take c' = c / (log3 2).
● Then for all integers n ≥ n0, f(n) ≤ c' * log3 n.
● So f(n) is also O(log3 n).

We used the big-O definition
against itself!

OK but
How do we prove that something is NOT Big-O

of something else?

Negative example: Show that n1/2 is not O(log n)
Intriguing,
but not a
proof!

Showing that n1/2 is not O(log n)
Looks less
ambiguous,
but still not a
proof!

Showing that n1/2 is not O(log n)
Oh no! With
the constant
multiple in
there, it's
ambiguous
again!

When in doubt, math it out…
…with a proof by contradiction!
Suppose (heading for a contradiction) that n1/2 = O(log2 n).

(Now what? All we have to work with is the definition of
big-O, so let's try using that…)

We're using a specific
base here to make the
argument more
tractable. But the
following idea would
extend to any base.

Suppose (heading for a contradiction) that n1/2 = O(log2 n).

Then there exist some constant c and some integer n0 such
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Suppose (heading for a contradiction) that n1/2 = O(log2 n).

Then there exist some constant c and some integer n0 such
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now what? How do we break this?

How about with a really big n?

The critical observation is that now the argument we're trying
to break is stuck using a constant c, but we have the ability to
make n as big as we want.

Suppose (heading for a contradiction) that n1/2 = O(log2 n).

Then there exist some constant c and some integer n0 such
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now take n = 22k, for any k > 1 chosen such that 22k is ≥ n0.
We can do this because n0 is a constant and we can just pump k
as large as it needs to be. Notice that our argument has to
ensure that n ≥ n0, because otherwise we are evaluating
something outside of the scope of the original claim.

Suppose (heading for a contradiction) that n0.5 = O(log2 n).

Then there exist some constant c and some integer n0 such
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now take n = 22k, for any k > 1 chosen such that 22k is ≥ n0.
Then (22k)1/2 ≤ c * log2 (22k), i.e., 2k ≤ 2ck.

Now what? We want to show that whatever c was chosen can't
possibly be big enough. It sure looks like that, since 2k grows
faster than 2k, but it can be a little tricky to pin down formally.

Suppose (heading for a contradiction) that n0.5 = O(log2 n).

Then there exist some constant c and some integer n0 such
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now take n = 22k, for any k > 1 chosen such that 22k is ≥ n0.
Then (22k)1/2 ≤ c * log2 (22k), i.e., 2k ≤ 2ck.

But now observe that if we increase k by 1, we multiply the left
side by a factor of 2 and the right side by a factor of (k+1)/k,
which is less than 2 since k > 1. Therefore, if we make k large
enough, the left side becomes bigger than the right, regardless
of what c is, and we have our contradiction.

● Therefore n0.5 is not O(log2 n).

Big-O was "no worse"; Big-Omega is "no better"
● We say that f(n) is Ω(g(n)) ("big Omega of g(n)") if

and only if:
○ there exists some positive constant c
○ and there exists some integer n0
○ such that for all integers n ≥ n0,
○ f(n) ≥ c * g(n)

this ≥ is the only
difference from Big-O!

● e.g., n3 is Ω(n2).
● In the context of algorithm analysis, we usually care more

about how bounding how bad something can get, but
sometimes it's also useful to know the best we can hope for.

Theta is "asymptotically the same"
● Consider two functions f(n) and g(n), each of which is

defined (at least) on integer values.

● We say that f(n) is ϴ(g(n)) ("Theta of g(n)") if and only
if:
○ f(n) is O(g(n)), and
○ f(n) is Ω(g(n))

● e.g., n3 + 1 is ϴ(n3).

● Another note: We never say O(2n3+n) or ϴ(n3+1), for
instance… why not? (The whole point is to ditch the
constants and lower-order terms)

why not "Big Theta"? We'll
see in a bit

A warning about "Big-O" in the "real world"
● In my experience, everywhere outside CS161 (even in CS

theory classes), people often use big-O as if it were Theta.

● For example, it is not technically wrong to say that
something that is O(n2) is also O(n3). But when people say
"O(n3)", what they usually mean is that they think (or know)
that the algorithm is ϴ(n3). That is, they use big-O in a tight
way.

● We will misuse this notation even in CS161.

Some other notation we won't use as much
● Little o is like Big-O, but with the strict sense of "better"

rather than "no worse".
○ e.g., n3 is O(n3), but not o(n3).
○ n2.99999 is o(n3).

● Little ω is like Big-Ω, but with the strict sense of "worse"
rather than "no better".
○ e.g., n3 is Ω(n3), but not ω(n3).
○ n3.00001 is ω(n2).

● These have formal definitions but you aren't responsible
for them. I may use them occasionally, so it's good to
understand what they mean.

Asymptotics matter!
Me in 2013: A tragedy in one act

"This kind of record shows up pretty rarely. It's probably
fine to just compare every pair of these. Sure, it's O(n2),
but the code is simpler and more maintainable!"

But at a company that processes billions of records a day,
one-in-a-billion things happen several times per day…

What if there's that one pathological example where
suddenly, your O(n2) algorithm gets n = 1000000?

What about real-world systems details?
● Wait, did we just crawl up our own theory asses, so to speak?

● Constant factors do matter in the real world!
● We never actually dealt with the fact that some machine

instructions cost much more!
● What about L1, L2, … caching?

An alarming talk: https://youtu.be/r-TLSBdHe1A
(essentially, runtime improvements from changing
an algorithm may actually just be due to changes in
memory layout)

https://youtu.be/r-TLSBdHe1A

Waverly says: Relax, it'll be fine

● The point of big-O is to simplify a complex problem so we can
talk at a high level and get things done…

● …but never forget that it's still a complex problem!

See you on Wednesday!

