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Why are you here? Why take CS161?

Some reasons, maybe from less to more interesting?

● You might have to for your degree

● Heard it was useful for technical interviews?

● Algorithms are beautiful and fun!

● Algorithms can solve – and, uh, cause – pressing societal 
problems!



A Word On Tech Interviews
Good news: CS161 will help (to some extent!)

● Practice with designing algorithms / problem-solving
● Intro to some topics like dynamic programming which are 

overrepresented in tech interviews 

Bad news? CS161 is not an interview prep class

● We have CS9 for that (I will probably teach it this Autumn)
● Tech interviews are their own weird, broken thing
● Not everyone wants to go into industry…



Algorithms and Society
What is "The Algorithm"?

And why does it

● deny me a loan
● hide my social media posts

● boost sensational and false news stories

What does that have to do with, like, sorting a list?



What even is an "algorithm"?

A process for solving a problem!

Name derives from Muḥammad 
ibn Mūsā al-Khwārizmī

● Headed the Grand Library of 
Baghdad (House of Wisdom) in the 
9th century!

● Also gave us algebra

The Compendious Book on Calculation by 
Completion and Balancing, AKA Algebra

https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing
https://en.wikipedia.org/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing


All of these are algorithms
● Solving a quadratic equation with a formula 

(al-Khwārizmī)

● Finding a quotient via long division

● Sorting a list of integers using MergeSort

● Finding the fastest route between two places using 
Dijkstra's Algorithm

● Detecting spam using Naive Bayes modeling

● Deciding who should be released early from jail, 
using a complicated and probably biased model

}CS161 is here, 
roughly



  at least it's (mostly) discrete math though! no integrals!



Why bother? Isn't CS just AI/ML now?

I didn't cherrypick this – this is 
the first thing it came up with



OK, that wasn't fair, but
● ML is offering some great insights into math and algorithms, but not 

every problem should be solved by throwing it into TensorFlow

● In CS161, we'll mostly study very fast, deterministic algorithms that 
produce exact solutions to well-defined problems

● But there's a bigger world out there too, e.g.:
○ Intractable problems for which we suspect that no efficient 

algorithm can possibly exist
○ Problems that don't fit on one machine and must be distributed
○ Ambiguous problems (like modeling climate change)
○ Randomized algorithms – is it OK to be wrong if we can try again?
○ Approximation algorithms – is a close solution good enough?
○ Quantum algorithms that are dark magic and break all the rules…



Think of CS161 as a "classic" toolbox

But there are always more toolboxes!

Dijkstra's algorithm

Dynamic programming

Big-O

Universal hashing Bloom filters

Max flow and bipartite matching

Heaps and 
priority 
queues

Self-balancing 
binary trees

Spanning trees

Minimax
Topological sort

MergeSort, 
QuickSort,
Radix Sort

BFS, DFS

Median and Selection Divide and 
conquer

Greedy



Why not just jump right to the modern toolbox?
● Well, people still use hammers all the time, right?

● (The algorithms we will learn in CS161 are still 
relevant!)



see, at least one person on Quora still thinks sorting 
algorithms are cool!



Me
● Weird background in 

chemistry, biology, 
environmental science, 
premodern Japanese 
literature (yes, I am a parody 
of myself)

● I love CS theory, math 
(especially discrete math and 
combinatorics), and AI!

● Worked at Google for 8 years 
on Search and then Code Jam 
(an algorithm coding contest)



Our awesome course staff

Goli

Ziang

LucasIvan

Ricky Rishu

bios will be on the site!



Some more shout-outs

● This class is professionally 
recorded!
○  Be very thankful that it's not 

me doing it

● I'll be borrowing some slides 
(and the mascots idea) from 
Mary Wootters, who is awesome
○ Seriously, take all her classes



Course Policies

● See the syllabus (linked from Canvas and 
cs161.stanford.edu) for full details!

● Overall theme: I believe we learn by doing, not just 
by listening
○ So, I want to provide lots of practice problems 

and opportunities, but not in an overwhelming 
or stressful way



Prereqs
● CS103 (mathematical foundations)
● CS106B (coding, basic data structures)
● CS109 (probability)

● As in general at Stanford, these are not "firm" 
prereqs. In this case I (mostly) agree

● See the Prereq Review notes I've put together for 
recaps of the most crucial topics. (I also take 
requests, but may not get to them ASAP)



Organization
● Six "units"

● Each has:
○ two lectures (2 halves each)
○ an optional Problem Session
○ a Pre-Homework
○ a Homework

● Two exams

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics



Problem Sessions
● Optional meetings (same room, same time of day, 

usually Fridays but sometimes Mondays)

● Solo or in groups, work through problems at your 
own pace. We'll circulate to help!

● We will post the problems and detailed solutions. 
The sessions will not be recorded since there is 
kinda nothing to record, and the solutions should 
be self-contained.



Pre-Homeworks
● Work on these on Gradescope

● Multiple-choice questions, 
may be quite challenging!

● You can try as many times as 
you want and will get 
immediate feedback, and a full 
explanation when correct

● Collaboration is OK!

● Ask for help on Ed / from staff!



Homeworks
● Problem sets to ponder / write up

● 6 problems of equal weight
○ Always 1 coding problem
○ You can get full points from doing 5, but can do all 6!

● Collaboration is OK but
○ you cannot look at anyone else's solutions/code (or any online), 

and you must write up your own work

● We are here to help! (in office hours, on Ed…)

● 6 late days for Pre-HW/HW, max of 2 per assignment, see syllabus 
for details



A Word on Coding Problems…
● Still in development (since these are uncommon for CS161)

○ After all, we are a CS class, even if this is mostly math!

● Goal: practice implementing algorithms so that they work in 
practice and not just on paper

● Current plans are to support C++ and Python, but let us know if you 
do not know either language

● On Gradescope, autograded for immediate feedback (but test cases 
will not be visible)

● One per problem set. In theory you could skip all of them and still 
get full homework points



Exams
● Midterm: In class, July 22, covers Units 1, 2, 3 (and 4, in less 

depth)

● Final: August 12, 3:30-6:30 PM, covers entire class including 
Special Topics (more emphasis on Units 4, 5, 6)

● In scope: anything from the lectures, Pre-Homeworks, and 
Homeworks (though we won't ask about tiny details from 
these)

● Exams will be challenging to allow you to demonstrate 
mastery of the material, but not gratuitously hard to create a 
curve or whatever



Grading

● Pre-HW + HW points over 330 become bonus (at ⅓ value)
● Also bonus for Ed contributions etc. (total bonus capped at 24pts)
● Final grade will be based on performance and not on a planned 

curve. We will give an estimate after the midterm



A Plea Re: Grades from a survivor of gifted-kid burnout

● We are trained to focus on grades to get into college, I get 
that, but…
○ Grades are not a measure of personal worth or even of 

potential in a field
○ Many employers (especially in tech) don't care about GPA
○ High grades from playing the game + lack of 

understanding is a bad combination

● Focus on learning and understanding, and the grades will 
follow (not the other way around!)



Textbooks (optional)

CLRS: the classic, but buckle up

AI: more easily digestible,
by one of the best 
algorithms teachers 
Stanford has ever had



Other resources / Advice for success
● Go to office hours. (Schedule coming soon!)

● Post on our Ed forum. When something doesn't quite click, ask about it!
○ And don't be afraid to ask publicly (anonymously, if you prefer) – if you're 

confused, so are others. But private posts are OK.

● Get as much practice as you can! Attend the Problem Sessions (or work through 
the problems on your own, and read the solutions)

● Find a study group. (But try not to make the group too large.) There will be a thread 
about this on Ed.

● The Summer Academic Resource Center (SARC) may have free tutoring for CS161 
(and other core classes). See 
https://summer.stanford.edu/summer-academic-resource-center-sarc

https://summer.stanford.edu/summer-academic-resource-center-sarc


The Algorators!
● BRUTUS is the brute-force 

gator. Brutus is stronk. Brutus 
is in no danger of overthinking 
problems. Brutus is often in 
danger of underthinking 
problems.

Sometimes brute force 
really is the right 
approach! Easy to 
understand / maintain



The Algorators!
● INDY is the industry gator. "When would you 

ever use red/black trees?", he says, as he uses 
libraries based on red/black trees and asks 
candidates interview questions about 
red/black trees. Then he speeds home in his 
expensive car and rolls on his piles of 
quantum coins or whatever.

I am going to poke gentle fun at 
industry in this course, but Indy is 
not just a comic figure. Also, he 
makes way more than I do.



The Algorators!
● SISI is the systems gator. She is practical and 

cares more about implementations and speed 
than about abstract performance guarantees.

Sometimes CS theorists get 
spirited fully away into big-O 
land and stop thinking about 
practical concerns. Sisi will 
remind us.



The Algorators!
● TERRY is the theory / academic gator. They 

are passionate about proofs and fine details, 
sometimes to the point of exasperating the 
other Algorators.

As we all know, academics wear their 
mortarboards around everywhere!

Terry can be pedantic, but hey, it's an 
algorithms class. Someone has to be 
rigorous and not gloss over "minor" points.



The Algorators!
● WAVERLY is the intuitive (some might say 

"handwavy") gator. She has a big-picture, 
intuitive understanding and does not like to 
get bogged down with extreme rigor.

Sometimes Terry can get so lost in 
the details that they miss high-level 
insights and ideas. Waverly explores 
and speculates and sometimes 
hands off a great new idea to Terry 
to examine thoroughly.
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Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Big-O and Friends



How Fast Does Our Code Run?
Suppose we are given a list 
L of integers, and we want 
to determine whether there 
are any repeated elements. 
One naive brute-force 
strategy is to check every 
pair of elements against 
each other.

This is "pseudocode" – i.e., not in 
any particular language, but 
readable by anyone familiar with at 
least one language. It has no fixed 
format, so don't worry about the 
specific syntax here.

i = 0
n = length(L)
while i < n - 1:
  j = i + 1
  while j < n:
    if L[i] == L[j]:
      return True
    j += 1
  i += 1
return False



Suppose that it takes 1 time unit to do 
any of these:
● initialize a value
● increment a value
● perform an addition/subtraction
● perform a comparison and react 

accordingly
● return a value
● find the length of a list
● access a list element

How long does this function take to 
run, depending on the size and 
content of the lists? Let's start with a 
simple example, the list [7, 6]...

i = 0
n = length(L)
while i < n - 1:
  j = i + 1
  while j < n:
    if L[i] == L[j]:
      return True
    j += 1
  i += 1
return False



● Initialize i to 0
● Find the length of L (2)
● Initialize n to 2
● Subtract 1 from 2 to get 1
● Compare i (0) and n-1 (1)
● Add i (0) and 1 to get 1
● Initialize j to 1
● Compare j (1) and n (2)
● Access L[0] to get 7
● Access L[1] to get 6
● Compare L[0] (7) and L[1] (6)
● Increment j to 2
● Compare j (2) and n (2)
● Increment i to 1
● Subtract 1 from 2 to get 1
● Compare i (1) and n-1 (1)
● Return False

i = 0
n = length(L)
while i < n - 1:
  j = i + 1
  while j < n:
    if L[i] == L[j]:
      return True
    j += 1
  i += 1
return False

You will not have to do this on a HW 
or exam. It's a little gross. (don't tell 
the Software Theory people I said so)



What A Mess!
● That was supposed to be a simple example, and look how 

complicated it got!

● Also, what if those operations don't really all take the 
same amount of time?
○ Some machine instructions are way more expensive 

than others!

● All we really want is some idea of how this function's 
running time depends on the size and content of the list, 
but here we're getting lost in details…

● And that was just for one input! What about others?



Pessimism to the Rescue
● One simplifying 

assumption we can make 
right away is that the 
contents of the list are as 
bad as possible for the 
algorithm.

● In this example, since this 
algorithm gets to quit early 
if it finds a duplicate, the 
worst case is for there to be 
no duplicates.



i = 0
n = length(L)
while i < n-1:
  j = i + 1
  while j < n:
    if L[i] == L[j]:
      return True
    j += 1
  i += 1
return False

once

once

once

n-1 times

   n times
n-1 times

n + (n-1) + … + 2 times

never

How Often Is Each Part Executed?
Here, for further simplicity, let's 
say each line takes the same 
time to execute (even if it 
includes both a subtraction and 
a comparison, for instance).

(n-1) + (n-2) + … + 1  times

(n-1) + (n-2) + … + 1  times



i = 0
n = length(L)
while i < n-1:
  j = i + 1
  while j < n:
    if L[i] == L[j]:
      return True
    j += 1
  i += 1
return False

once

once

once

n-1 times

   n times
n-1 times

n + (n-1) + … + 2 times

never

How Often Is Each Part Executed?

(n-1) + (n-2) + … + 1  times

(n-1) + (n-2) + … + 1  times

This stuff 
looks like it 
matters the 
most!



A Useful Math Fact

Side note: This is lesser-known but also sometimes useful.

As a boy, Gauss was asked to add the integers from 1 to 
100, and he observed that it's 50 pairs like the following: 
1 + 100, 2 + 99, 3 + 98, …, 50 + 51. So the answer is 50 
times 101, i.e. n/2 times n+1. You're too freakin clever, 
Gauss! Leave some math for the rest of us!



i = 0
n = length(L)
while i < n-1:
  j = i + 1
  while j < n:
    if L[i] == L[j]:
      return True
    j += 1
  i += 1
return False

once

once

once

n-1 times

   n times
n-1 times

n + (n-1) + … + 2 times

never

Totaling Up The Scorecard

(n-1) + (n-2) + … + 1  times

(n-1) + (n-2) + … + 1  times

an2 + bn + c, for some a, b, c

Now we know 
these resolve to 
expressions like
n2 / 2 + n / 2 



As n gets arbitrarily big…
What happens to an2 + bn + c?

● Eventually, bn dominates c, even if c was bigger 
than b to begin with.

● Eventually, an2 dominates bn, even if b was bigger 
than a to begin with.

So we really only care about the an2 part!

(Do we even care about the a? Wouldn't it be nice to 
only have to think in terms of n itself?)



Big-O notation, informally
● Consider two functions f(n) and g(n), each of 

which is defined (at least) on integer values.

● We say that f(n) is O(g(n)) ("big O of g(n)") if, as 
n gets bigger…

● … eventually, past a point, f(n) is always bounded 
above by some constant multiple of g(n).

● "f(n) is no worse than g(n)", in an asymptotic 
sense.



Why do we need the "past a point" part?

Looks like 
the blue 
curve is 
"smaller" 
than the 
magenta
curve…

Box of Mystery



Why do we need the "past a point" part?

Oh no! The 
blue curve is 
actually 
"bigger" 
past a point.



Why do we need the "constant multiple" part?

The whole 
idea is that we 
don't want to 
treat n and 
n+1 as 
different…

(2 times n 
dominates 
n+1)



Why do we need the "constant multiple" part?

…or even 
treat n and 
2n as 
different.

(3 times n 
dominates 
2n)



Why a constant multiple?
It'd be silly to 
say that 2n 
times n 
dominates 
n2, since we 
want n and 
n2 to be 
meaningfully 
different.



Big-O notation, formally
● Consider two functions f(n) and g(n), each of which is 

defined (at least) on integer values.

● We say that f(n) is O(g(n)) ("big O of g(n)") if and only 
if:
○ there exists some positive constant c
○ and there exists some integer n0
○ such that for all integers n ≥ n0, f(n) ≤ c * g(n)

● Equivalent notation: f(n) = O(g(n)), f(n) ∈ O(g(n))



Positive example: Show that n2 + 1 is O(n3)
● We need to find some positive constant c

○ and some integer n0
○ such that for all integers n ≥ n0, n2 + 1 ≤ c * n3

● How do we do this? A good first step is to just play around with 
some values and get a feel for the functions…



● We need to find some positive constant c
○ and some integer n0
○ such that for all integers n ≥ n0, n2 + 1 ≤ c * n3

● Let's examine the behavior of n2 + 1 and n3:
○ (1)2 + 1 = 2, which is bigger than 13 = 1.
○ (2)2 + 1 = 5, which is smaller than 23 = 8.
○ (3)2 + 1 = 10, which is smaller than 33 = 27.

■ and it's only going to go on like that…

● So it looks like we can choose c = 1, n0 = 2…

Note: There is no requirement that you choose an 
"optimal" or "elegant" c and n0. Any set that works is fine.



● How do we argue that n2 + 1 really is always smaller than 
1 * n3 for n ≥ 2?

● One way:
○ Let n ≥ 2. Consider the quantity n3 / (n2 + 1). 
○ That + 1 in the denominator is annoying. Can we get rid 

of it?
○ We can do what CS theory does best – use a ridiculously 

loose bound.



● How do we argue that n2 + 1 really is always smaller than 1 
* n3 for n ≥ 2?

● One way:
○ Let n ≥ 2. Consider the quantity n3 / (n2 + 1). 
○ Notice that 2n2 is always bigger than n2 + 1, since n ≥ 2.
○ Therefore replacing n3 / (n2 + 1) with n3 / 2n2 can only 

make that quantity smaller.
○ Now we're almost there! We just need to make an 

argument about n3 / 2n2. 



● How do we argue that n2 + 1 really is always smaller than 1 
* n3 for n ≥ 2?

● One way:
○ Let n ≥ 2. Consider the quantity n3 / (n2 + 1). 
○ Notice that 2n2 is always bigger than n2 + 1, since n ≥ 2.
○ Therefore replacing n3 / (n2 + 1) with n3 / 2n2 can only 

make that quantity smaller.
○ But what is n3 / 2n2? It's just n/2. And for n ≥ 2, this is 

always at least 1.
○ Therefore n3 / (n2 + 1) is also at least 1… i.e., n3  is bigger 

than n2 + 1 for n ≥ 2.
■ which is what we wanted to show!



Some examples
● 1 = O(log n) Logs grow faster than constants (ofc).
● log n = O(n) Polynomials grow faster than logs.
● n = O(n log n)
● n log n = O(n2)
● n2 = O(2n) Exponentials grow faster than polynomials.
● 2n = O(n!) Factorials grow faster than exponentials.

This is far from the only set of "levels", though! For instance, 
what about log2 n? Or n1.5?

How do log n and the square root of n compare?



A word on logarithms
● The logarithms on the last slide had no bases given!

● This is because the base does not matter 
asymptotically. Here's an example of the argument:

● Suppose that some f(n) is O(log2 n).
● Then there exist c, n0 such that for all integers n ≥ n0, 

f(n) ≤ c * log2 n.
Note that we don't know (or 
need to know) what these 
values c and n0  actually are… 
just that they exist!



A word on logarithms
● The logarithms on the last slide had no bases given!

● This is because the base does not matter 
asymptotically. Here's an example of the argument:

● Suppose that some f(n) is O(log2 n).
● Then there exist c, n0 such that for all integers n ≥ n0, 

f(n) ≤ c * log2 n.
● But log2 n = (log3 n) /  (log3 2). (See the log review doc)



A word on logarithms
● The logarithms on the last slide had no bases given!

● This is because the base does not matter 
asymptotically. Here's an example of the argument:

● Suppose that some f(n) is O(log2 n).
● Then there exist c, n0 such that for all integers n ≥ n0, 

f(n) ≤ c * log2 n.
● But log2 n = (log3 n) /  (log3 2).
● Now take c' = c / (log3 2).
● Then for all integers n ≥ n0, f(n) ≤ c' * log3 n.
● So f(n) is also O(log3 n).

We used the big-O definition 
against itself!



OK but
How do we prove that something is NOT Big-O 

of something else?



Negative example: Show that n1/2 is not O(log n)
Intriguing, 
but not a 
proof!



Showing that n1/2 is not O(log n)
Looks less 
ambiguous, 
but still not a 
proof!



Showing that n1/2 is not O(log n)
Oh no! With 
the constant 
multiple in 
there, it's 
ambiguous 
again!



When in doubt, math it out…
…with a proof by contradiction!
Suppose (heading for a contradiction) that n1/2 = O(log2 n).

(Now what? All we have to work with is the definition of 
big-O, so let's try using that…)

We're using a specific 
base here to make the 
argument more 
tractable. But the 
following idea would 
extend to any base.



Suppose (heading for a contradiction) that n1/2 = O(log2 n).

Then there exist some constant c and some integer n0 such 
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.



Suppose (heading for a contradiction) that n1/2 = O(log2 n).

Then there exist some constant c and some integer n0 such 
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now what? How do we break this?

How about with a really big n?

The critical observation is that now the argument we're trying 
to break is stuck using a constant c, but we have the ability to 
make n as big as we want.



Suppose (heading for a contradiction) that n1/2 = O(log2 n).

Then there exist some constant c and some integer n0 such 
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now take n = 22k, for any k > 1 chosen such that 22k is ≥ n0. 
We can do this because n0 is a constant and we can just pump k 
as large as it needs to be. Notice that our argument has to 
ensure that n ≥ n0, because otherwise we are evaluating 
something outside of the scope of the original claim.



Suppose (heading for a contradiction) that n0.5 = O(log2 n).

Then there exist some constant c and some integer n0 such 
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now take n = 22k, for any k > 1 chosen such that 22k is ≥ n0. 
Then (22k)1/2 ≤ c * log2 (22k), i.e., 2k ≤ 2ck.

Now what? We want to show that whatever c was chosen can't 
possibly be big enough. It sure looks like that, since 2k grows 
faster than 2k, but it can be a little tricky to pin down formally.



Suppose (heading for a contradiction) that n0.5 = O(log2 n).

Then there exist some constant c and some integer n0 such 
that for all integers n ≥ n0, n1/2 ≤ c * log2 n.

Now take n = 22k, for any k > 1 chosen such that 22k is ≥ n0. 
Then (22k)1/2 ≤ c * log2 (22k), i.e., 2k ≤ 2ck.

But now observe that if we increase k by 1, we multiply the left 
side by a factor of 2 and the right side by a factor of (k+1)/k, 
which is less than 2 since k > 1. Therefore, if we make k large 
enough, the left side becomes bigger than the right, regardless 
of what c is, and we have our contradiction.

● Therefore n0.5 is not O(log2 n).



Big-O was "no worse"; Big-Omega is "no better"
● We say that f(n) is Ω(g(n)) ("big Omega of g(n)") if 

and only if:
○ there exists some positive constant c
○ and there exists some integer n0
○ such that for all integers n ≥ n0,
○ f(n) ≥ c * g(n)

this ≥ is the only 
difference from Big-O!

● e.g., n3 is Ω(n2). 
● In the context of algorithm analysis, we usually care more 

about how bounding how bad something can get, but 
sometimes it's also useful to know the best we can hope for.



Theta is "asymptotically the same"
● Consider two functions f(n) and g(n), each of which is 

defined (at least) on integer values.

● We say that f(n) is ϴ(g(n)) ("Theta of g(n)") if and only 
if:
○ f(n) is O(g(n)), and
○ f(n) is Ω(g(n))

● e.g., n3 + 1 is ϴ(n3).

● Another note: We never say O(2n3+n) or ϴ(n3+1), for 
instance… why not? (The whole point is to ditch the 
constants and lower-order terms)

why not "Big Theta"? We'll 
see in a bit



A warning about "Big-O" in the "real world"
● In my experience, everywhere outside CS161 (even in CS 

theory classes), people often use big-O as if it were Theta.

● For example, it is not technically wrong to say that 
something that is O(n2) is also O(n3). But when people say 
"O(n3)", what they usually mean is that they think (or know) 
that the algorithm is ϴ(n3). That is, they use big-O in a tight 
way.

● We will misuse this notation even in CS161.



Some other notation we won't use as much
● Little o is like Big-O, but with the strict sense of "better" 

rather than "no worse".
○ e.g., n3 is O(n3), but not o(n3).
○ n2.99999 is o(n3).

● Little ω is like Big-Ω, but with the strict sense of "worse" 
rather than "no better".
○ e.g., n3 is Ω(n3), but not ω(n3).
○ n3.00001 is ω(n2).

● These have formal definitions but you aren't responsible 
for them. I may use them occasionally, so it's good to 
understand what they mean.



Asymptotics matter!
Me in 2013: A tragedy in one act

"This kind of record shows up pretty rarely. It's probably 
fine to just compare every pair of these. Sure, it's O(n2), 
but the code is simpler and more maintainable!"

But at a company that processes billions of records a day, 
one-in-a-billion things happen several times per day…

What if there's that one pathological example where 
suddenly, your O(n2) algorithm gets n = 1000000?



What about real-world systems details?
● Wait, did we just crawl up our own theory asses, so to speak?

● Constant factors do matter in the real world!
● We never actually dealt with the fact that some machine 

instructions cost much more!
● What about L1, L2, … caching?

An alarming talk: https://youtu.be/r-TLSBdHe1A
(essentially, runtime improvements from changing 
an algorithm may actually just be due to changes in 
memory layout)

https://youtu.be/r-TLSBdHe1A


Waverly says: Relax, it'll be fine

● The point of big-O is to simplify a complex problem so we can 
talk at a high level and get things done…

● …but never forget that it's still a complex problem!

See you on Wednesday!


