
7/25 Lecture Agenda
● Announcements

● Part 5-1: Bellman-Ford

● 10 minute break!

● Part 5-2: Intro to Dynamic Programming



Announcements: Remaining Assignments
Remaining assignments shifted back to avoid overlap (due dates updated 
on site). (These are firm release dates)

○ Pre-HW5 out this Wednesday evening (due Weds. next week) – to 
give a bit more time for remaining midterm grading on Mon

○ HW5 out this Friday evening (due Fri. next week)

○ Pre-HW6 out Weds. next week (due Weds. of last week)

○ HW6 out Fri. next week (due Thu. of last week, but can still use late 
days until Sat. as usual)
■ this one will be less time-consuming and will designed to be 

quick to grade (e.g., give straightforward or numerical answers, 
no proofs), submission on Gradescope



Announcements: The Final
● Friday, August 12, 3:30-6:30 PM

● Unlike the midterm, our final exam is in 200-002 (Lane 
History Corner, the southeast corner of the Main Quad)

● The final will cover all six units, but the Special Topics 
lecture has been removed from scope and is now totally 
optional.

● HW4 has a question where you can share feedback on 
the midterm and suggestions for the final



Announcements: Grades and Friday's deadline

● Midterm grades will be released on Wednesday (mostly 
graded, just waiting for remote ones)

● HW2 grading will be complete by Thursday, and then I'll 
release some overall context to give you a better idea of 
where you stand

● The Summer Quarter deadline for withdrawal or grading 
basis change is this Friday at 5 PM
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Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic 
Programming
Greed & Flow

Special Topics

Bellman-Ford: Beyond Dijkstra



Flashback to

which, because we're at Stanford, already seems like

12 DAYS AGO

12 WEEKS AGO



What's wrong with negative edge weights?
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For one thing, we 
may stop too early, 
with an answer that 
is too big!

(Here we get 2 for C 
to D, but the answer 
is 1)



wait, weren't those 
edges undirected last 
time we saw this?

Yes – but a negative 
undirected edge makes 
the solution arbitrarily 
small (just go back and 
forth), so we're 
focusing on directed 
graphs now.
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What's wrong with negative edge weights?
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A possible fix:

● Add the most negative 
weight to every edge.

● Run the algorithm.
● Subtract off the added 

weights at the end.

Does this work? No! We still 
end up picking the bad path 
because it has fewer steps.

total 36

total 52



We could have asked: Why not just check again?

A = 
9

C = 
0 E 

= 1

B = 
18

D 
= 2

9

9

-17

1
1

9

Dijkstra's goes 
through the entire 
graph, right? So when 
we're inspecting
this edge…

why not just re-check 
our estimate for D, 
even though we called 
it "sure"?



So why not just check again?

● OK, so sometimes an 
edge makes us check and 
update a node again.

● Wouldn't the running 
time still be bounded by 
the number of edges, like 
before?



It's even worse than that!

● We might need to fix almost every estimate in 
the graph!
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It's even worse than that!

● We might need to fix almost every estimate in 
the graph!
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It's even worse than that!

● We might need to fix almost every estimate in 
the graph!
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Negative edges break everything…

…but we can fix it by shifting the edge costs?

…or by just checking the estimates again?

OK I bet they're not even important anyway!



Negative edges break everything…

…but we can fix it by shifting the edge costs?

…or by just checking the estimates again?

OK I bet they're not even important anyway!
● Profits and costs for performing certain actions!

● Elevation! An example from StackExchange: electric cars 
use energy on uphills, regenerate on downhills



OK, so what do we do?
● We need to handle negative edges correctly and 

realize when we're in a negative cycle.

● We can't just look at every possible path/cycle! There 
could be something like O(mn) of those.

If the top is still 
spinning, we're stuck in 
an infinite negative 
loop!



The key observation
● In each step of Dijkstra's, we only "process" 

edges originating from the current node we're 
looking at (the one with the lowest estimate).

○ "Process" = if using the edge improves the 
estimate for the edge's destination node, we 
update that estimate.



The key observation
● In each step of Dijkstra's, we only "process" 

edges originating from the current node we're 
looking at (the one with the lowest estimate).

○ "Process" = if using the edge improves the 
estimate for the edge's destination node, we 
update that estimate. 

● What if we just process all the edges at each 
step?



How would this help with negative edges?
● Intuitively, there are no more nasty surprises 

where we prematurely call a node "done", but 
there's a better path (with a negative edge) 
that we missed.

● If there are no negative cycles, the longest 
possible path is n-1 steps (edges) long. So if 
we process all edges n-1 times, we can't miss 
the best path.
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Wait a minute
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What order should we 
visit the edges in?

Aren't there better and 
worse ones? e.g., what 
if we happen to pick a 
sequence of edges that 
is the best path to 
some node?



Wait a minute
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What order should we 
visit the edges in?

Aren't there better and 
worse ones? e.g., what 
if we happen to pick a 
sequence of edges that 
is the best path to 
some node?

Just do something 
arbitrary! And hope 
it'll all work out.
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Now edges are colorful 
instead of nodes, to 
indicate an order 
(which I picked at 
random!)

(If you can't 
distinguish all the 
colors, the order is also 
from thinnest to 
thickest.)
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Red: source is 
infinity, ignore

Orange: source is 
infinity, ignore
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Red: source is 
infinity, ignore

Orange: source is 
infinity, ignore

Yellow: following 
edge reduces 
destination estimate 
from ∞ to 1.
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Green: source is 
infinity, ignore

Blue: following edge 
reduces destination 
estimate from ∞ to 9.

Purple: following 
edge reduces 
destination estimate 
from ∞ to 2.
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But 2 was the bad 
answer for that node! 
Didn't we just cause 
the same problem?!?!?



Step 1
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But 2 was the bad 
answer for that node! 
Didn't we just cause 
the same problem?!?!?

Bellman-Ford isn't 
done yet! It's just 
getting started…



Step 2
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Red: following edge 
gives estimate of 18, 
not better than 1, 
ignore

Orange: source is 
infinity, ignore

Yellow: following 
edge gives estimate 
of 1, not better than 
1, ignore



Step 2
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This is just checking 
the same stuff over 
and over!



Step 2

9

0 1

18

2

9

9

-17

1

1

9

This is just checking 
the same stuff over 
and over!

True, but so is guard 
duty. And that's the 
whole point. We have 
to be EVER 
VIGILANT for 
changes that would 
need to be 
propagated forward 
to other nodes!



Step 3

9

0 1

18

1

9

9

-17

1

1

9

Red: following edge 
gives estimate of 18, 
not better than 1, 
ignore

Orange: following 
edge reduces 
estimate from 2 to 1

YAY!!!!!!!



Uh… the rest of Step 3?
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Bellman-Ford 
doesn't know it 
won't ever improve 
an estimate again. It 
goes through all the 
rest of Step 3, then 
Step 4.



We might need all n-1 rounds…
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We might need all n-1 rounds…

∞0 1 ∞1 1
∞ ∞
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Here, in each round, we only make one step 
of progress, because we chose a bad order in 
which to look at the edges…



1. Could we safely stop if 
we see a whole round 
with no changes?

2. After n-1 steps, are we 
guaranteed to see a 
round with no 
changes?



1. Could we safely stop if 
we see a whole round 
with no changes? Yes!
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round with no 
changes?



1. Could we safely stop if 
we see a whole round 
with no changes? Yes!

2. After n-1 steps, are we 
guaranteed to see a 
round with no 
changes?

Then the next round is 
necessarily exactly the 
same, i.e., also doesn't 
change.



1. Could we safely stop if 
we see a whole round 
with no changes? Yes!

2. After n-1 steps, are we 
guaranteed to see a 
round with no 
changes? Maybe…

Then the next round is 
necessarily exactly the 
same, i.e., also doesn't 
change.



1. Could we safely stop if 
we see a whole round 
with no changes? Yes!

2. After n-1 steps, are we 
guaranteed to see a 
round with no 
changes? Maybe…

Then the next round is 
necessarily exactly the 
same, i.e., also doesn't 
change.

The longest path is 
n-1 steps, so there is 
no more 
propagation… unless…
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After Round 1

2

0 ∞

2

1

-4



After Round 2
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After Round 3
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After Round 4…
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How do we deal with 
this? How can we 
detect a negative cycle 
without running 
arbitrarily many 
rounds?



Our Strategy

● Do n-1 rounds of processing all edges.

● Then do one extra round. If anything 
changes, we have a negative cycle. 
Otherwise, we're fine.



Finding actual paths / negative cycles
● Have each node store an extra piece of information: its 

predecessor.
○ The starting node, of course, has no predecessor.

● When updating a node's estimate, we also update its 
predecessor (the node we just used).

● To reconstruct a path, start at the end and follow the 
predecessor chain backwards.

● Can do this with Dijkstra's as well!



(We'll just do Dijkstra's here, rather 
than Bellman-Ford, to illustrate the 
idea.)
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(We work backwards to find the path 
from C to D.)
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Hey, we built a tree!



How fast is it?
● We do n rounds of looking at m edges each. 

● Each check of an edge (and update of the destination's 
estimate and predecessor) takes O(1) time.

● Therefore: O(nm) overall.
○ For a dense graph with m = O(n2), could be O(n3). 

● Implementation: Easy! We no longer need a 
super-complicated heap, because we no longer try to 
pick the node with the smallest estimate.



Does it work?
● We may deal with some part of the proof on HW5.

● The idea: show that after k rounds, each vertex v's 
estimate is no greater than the cost of any source-to-v 
path that uses at most k edges.
○ This gets around the issue the Dijkstra's proof would 

have with negative edges.

● Also need to show that negative cycles get detected, but 
this is easier – just show that only they keep changing 
estimates even on an n-th round.



Bellman-Ford in practice
● Dijkstra's needs to know every vertex's estimate at all times, but 

notice that Bellman-Ford operates more locally (there is no heap of 
estimates). 

● This can make it good for situations with changing values (though 
the changes may take a while to propagate).
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Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic 
Programming
Greed & Flow

Special Topics

What Even Is Dynamic Programming?



What did we just do?
● Bellman-Ford let us avoid explicitly checking all 

possible paths through the graph.

● We found a way to divide the process into rounds.

● We maintained estimates of the form "this is the best 
we can do so far on this round".

● This is the essence of dynamic programming: find 
some substructure and exploit it to avoid doing 
redundant work.



"Dynamic 
programming" is 
a basically 
meaningless 
name

but the story is funny



Indy loves DP questions
In interviews, DP is kind of a screen for "have you taken an 
algorithms class?"

It appears to be a sufficiently difficult idea to create 
sufficient "spread" among candidates

It's also fairly easy to write DP problems.



Is DP actually useful beyond interviews?
● Yes, in that it is used in a number of fundamental 

algorithms that make computing and the Internet 
work. (compilers! networking! string searching! etc. 
etc.)

● Maybe?, in that you can probably have a stellar career 
in industry or research (or whatever!) without ever 
implementing your own DP.
○ But it's still worth knowing it when you see it, and 

understanding the overall idea.



You already know some DP!
● Bellman-Ford, as mentioned.

● Dijkstra's is arguably also DP and I will fight any 
algorithms person who insists it's not.
○ We will never have an exam question like "is this DP?"

● You may have seen the idea of memoization (that is 
not a typo for "memorization"!)
○ Fib(10) = Fib(9) + Fib(8) = Fib(8) + Fib(7) + Fib(8)...
○ Instead of computing Fib(8) over and over, store the result 

in a table the first time you compute it. Then just look up 
that result every time.

memoized!



Top-down vs. bottom-up
● Top-down: Start from the original problem, e.g., 

Fib(5). Remember the solutions to subproblems 
(memoization).

● Bottom-up: Start from the base case(s), e.g., Fib(0) 
and Fib(1). Use these to compute Fib(2), then use this 
info to compute Fib(3), etc. 

● Bottom-up is often a better choice since it avoids the 
overhead of lookups and storing a bunch of 
intermediate data. But it's also often harder to write.



This is all very abstract! Let's understand DP 
by example.



Mario's extremely basic adventure
(probably like 50 bucks on Switch) 



In this game, Mario has two kinds of move
Option 1: Go forward one step



Option 2: Jump



coins are good
you want as many as possible
because Mario's life is empty



enemies do not move
(they've been doing this for 35+ years, the 
excitement isn't there anymore)



not OK to walk into enemies
how did you get hit, it was just standing there 



OK to land on enemies
because Mario is an asshole 

c'mon man



Greedy strategies aren't always
optimal 

2 coins



What we should have done

3 coins



Why not just try every path?
Exponential number…



Why not just try every path?
Exponential number… so any solution that 
explicitly considers them all is exponential 



0

0

what? we can't get here… 
but you'll see why we 
need it

Solving via DP
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Wait a minute...
Isn't this just the "exponential" slide again?
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Wait a minute...
Isn't this just the "exponential" slide again?
No! We took linear time.



once we get this far, the strategy 
from then on doesn't depend on 
how we got there



Code!



More space-efficient code!



Even more space-efficient code (thx Manas!)

This eliminates 
the need for a 
2D array – and 
now only uses 
3 values – but 
is a little harder 
to understand. 



Key points
● That was a bottom-up approach. We started at the beginning of 

the "stage" rather than working backwards from the end.
○ Top-down would have been: best at position n = max(best at 

position n-1 if we didn't jump, best at position n-1 if we did 
jump), etc.

● We were able to divide the problem into "rounds" in a natural way 
(each round = one step forward to the right) such that each round 
depended only on the previous round's results.

● We only cared about: "what's the best we can do up to this point?"



What if there's a more clever approach?
● In this problem, there quite possibly is. But hey, this DP was 

already linear-time. We're not going to do asymptotically better.

● In more complicated problems, it is way harder to spot a simple 
rule / "greedy" approach.
○ and much easier to spot a tantalizing but incorrect greedy 

approach…



Another problem (if time): frog friends!
● Fizz and Buzz are two frog friends who live on a very long linear 

chain of lilypads.
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Another problem (if time): frog friends!
● Fizz and Buzz are two frog friends who live on a very long linear 

chain of lilypads.

● The Internet ruined the frog emoji a while ago, so just imagine 
cute, wholesome frogs.

● Fizz can put Buzz on her back and jump exactly 3 lilypads to the 
right, but this requires 2 flies' worth of energy.

● Buzz can put Fizz on his back and jump exactly 2 lilypads to the 
right, but this requires 1 fly worth of energy.

● Goal: reach a particular lilypad using as little energy as possible.



The obvious greedy strategy: Jump as far as possible! Go, Fizz, go!

total cost 6

But this actually turns out 
not to be optimal!



OK, let's use as little energy as possible! Go, Buzz, go!

can't reach end. RIP



An optimal solution uses both.

total cost 5



DP: ask – what is the least we can have spent to get this far?

0
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0 2

We can either use Fizz, who costs 2…



DP: ask – what is the least we can have spent to get this far?

0 1 2

We can either use Fizz, who costs 2…
…or Buzz, who costs 1.



DP: ask – what is the least we can have spent to get this far?

0 1 2

We can either use Fizz, who costs 2…
…or Buzz, who costs 1.
That's all our options from the first position, so we are done with that 
(because there is no moving backward…)



DP: ask – what is the least we can have spent to get this far?

0 1 2

There is no lilypad at 1, so we move on.



DP: ask – what is the least we can have spent to get this far?

0 1 2 2 3

We can either use Fizz, who costs 2…
…or Buzz, who costs 1.



DP: ask – what is the least we can have spent to get this far?

0 1 2 2 3 4

Here, if we use Buzz, we can get to the highlighted lilypad with cost 3. 
But we already had a way to do that in 3.



DP: ask – what is the least we can have spent to get this far?

0 1 2 2 3 3

Here, if we use Buzz, we can get to the highlighted lilypad with cost 3. 
This is better than our previous estimate of 4, so we replace it.

(Also, we can't use Fizz from here.)



DP: ask – what is the least we can have spent to get this far?

0 1 2 2 3 3 5



DP: ask – what is the least we can have spent to get this far?

0 1 2 2 3 3 4 5



DP: ask – what is the least we can have spent to get this far?

0 1 2 2 3 3 4 5

So we can do better than 6.



Extension: what if the frogs can jump either direction?

Is DP the right call here? How would you solve it with 
DP?

What, if anything that we've learned, might be a 
better fit?


