
7/27 Lecture Agenda
● Announcements (including midterm discussion)

● Part 5-3: Edit Distance

● 10 minute break!

● Part 5-4: Knapsack

● Pre-HW5 out tonight (due Weds. of next week)

● HW5 out on Friday (due Fri. of next week)

● Midterms are all graded but will be scanned after class.
Grades (and solutions) will be posted ASAP after that.

● The summer grading change basis / withdrawal deadline
is Friday at 5 PM. I will post some context (very rough
estimated grades) by Thurs.

Announcements

● It was hard. Really hard.

● I intended it to test deep understanding, but didn't mean to make
it that hard or time-crunch-y.

● Really hard exams can be discouraging.
○ I got a 15.5/32 (I still remember the score!) on a data structures midterm

and thought it meant I wasn't cut out for CS. But there's no reason to
believe that exam scores even measure that kind of potential – taking
exams and being a good algorithm designer are very different things…

● This was the first in-person exam I have written for a large CS
class. (Ironically, a takehome I wrote for 161 last year was widely
viewed as easier and fun)

Soooo, about the midterm

● Fewer questions overall (the issue was that I tried to
cover all major content at least somewhat)

● More questions testing foundational knowledge (like the
red/black tree and SelectSort ones), fewer questions
testing really deep / tricky understanding (like the
Karatsuba / Strassen one, or the Dijkstra's modification)

● Short answer questions were supposed to spare you
from writing out a lot of work, but giving partial credit
based only on the final answer was also not ideal

Things I wish I had done differently

● I don't like to change the rules after they've been stated if it ends up
hurting some while helping others.
○ e.g., I could have given really really generous partial credit, but that

would not have been consistent with people's expectations going into
(and during) the exam.

○ Something like "your final score can clobber your midterm score"
would've really needed to be in the syllabus from the start, and I can't
add that now.

● But I've always stated that I have discretion over the overall grade cutoffs.
○ The exam being really hard doesn't mean I'll give worse grades. If

anything I'll be even more sympathetic.
○ If I see someone improve a lot from the MT to the final, for example, I

can take that into account when setting cutoffs (for everyone).

My philosophy

Does this mean that in practice, final grades will depend almost entirely on
the midterm?
● No. The final, while it won't be as hard or time-intensive as the midterm,

will also allow demonstration of deep as well as basic understanding.
● Also, doing well on the homework is still meaningful (and there are bonus

opportunities.)
● The midterm, although it does have higher variance, is still 90 of the 600

total points.

Does this mean that we will all get lower grades?
● No. If anything it probably means the opposite, since I'll take into account

that it may have been hard to demonstrate your full knowledge on the
midterm under time pressure.

● HW4 has a midterm feedback question that is essentially
free points – please do share your opinions on the
midterm and your advice for the final!

● HW5 will also have a question that offers a chance to
take a second look at a part of the midterm that you
found difficult.

Final thoughts

7/27 Lecture Agenda
● Announcements (including midterm discussion)

● Part 5-3: Edit Distance

● 10 minute break!

● Part 5-4: Knapsack

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic
Programming
Greed & Flow

Special Topics

Edit D_stencce

Did you mean…

Did you mean…

Did you mean…

Did you mean…

The Compendious Book on
Calculation by Completion and
Balancing (al-Khwārizmī)

Edit distance
● How many steps apart are alligator and

algorithm?

● Suppose that one "step"
is any of the following operations:
● insert one letter
● delete one letter
● substitute one letter for another

One 7-step path
alligator
aligator delete first l
algator delete i
algotor substitute o for second a
algortor insert r
algoritor insert i
algorithr substitute h for second o
algorithm substitute m for second r

But is this optimal?

We could have done it with 6 substitutions…
alligator
algigator
algogator
algorator
algoritor
algorithr
algorithm

OK, this is hard to just eyeball.
We need an algorithm!

Wait a minute…
● If the two words we're

comparing are not the same
length, then we have to use
insertion(s) and/or deletion(s).

● But if the two words we're
comparing are the same length,
do we ever need
insertions/deletions?
○ and would we ever need to

use both? or just one or the
other?

Substitutions may not be enough!
Consider comparing sisi and iris.

If we used just substitutions, it would take 4 steps.

But we can do it in 3 steps with one deletion, one
substitution, and one insertion:

sisi
isi delete first s
iri substitute r for s
iris insert s

Why do we care?
● Besides spell-checking, that is…

● DNA / protein sequence alignment is a lot like this too! E.g., given a
bunch of sequences of the same gene / protein in different species,
which are most similar (and perhaps therefore closely related)?
○ (Though with some kinds of operations being much more

common/plausible than others…)

So how do we actualy find edit distance?

How about BFS?
● Start at the first word, try to reach the second

● Make all alterations that lead to strings 1 step away…

● Then make all alterations (to those) that lead to
strings 2 steps away…

● Repeat until the target is found

How about BFS?
Like an overambitious US road trip, this visits way too many states!

alligator -> blligator, …, lligator, …, aalligator…

How about BFS?
Like an overambitious US road trip, this visits way too many states!

alligator -> blligator, …, lligator, …, aalligator…

There are actually almost 500 first moves from here!
● 260ish insertions (10 places to insert * 20 letters)

○ actually fewer since there can be two ways to get the same result
● 9 deletions
● 225 substitutions (9 letters to overwrite * 25 new options)

This explodes too fast. We get overwhelmed before we find the target.

How about BFS?
Like an overambitious US road trip, this visits way too many states!

alligator -> blligator, …, lligator, …, aalligator…

There are actually almost 500 first moves from here!
● 260ish insertions (10 places to insert * 20 letters)

○ actually fewer since there can be two ways to get the same result
● 9 deletions
● 225 substitutions (9 letters to overwrite * 25 new options)

This explodes too fast. We get overwhelmed before we find the target.
This is more like CS109. The exact details aren't as important
for us here.

Meet in the middle
Does the BFS work better if we
simultaneously explore from
both ends?

Answer: Yes, and it makes a
practical difference, but it's not
enough to truly solve this
problem.

Meet in the middle
Does the BFS work better if we
simultaneously explore from
both ends?

Answer: Yes, and it makes a
practical difference, but it's not
enough to truly solve this
problem.

1

000

Meet in the middle
Does the BFS work better if we
simultaneously explore from
both ends?

Answer: Yes, and it makes a
practical difference, but it's not
enough to truly solve this
problem.

1

∅, 0, 01, 10, 11

000

Meet in the middle
Does the BFS work better if we
simultaneously explore from
both ends?

Answer: Yes, and it makes a
practical difference, but it's not
enough to truly solve this
problem.

1

∅, 0, 01, 10, 11

000

00, 001, 010, 100,
0000, 0001, 0010,
0100, 1000

Meet in the middle
Does the BFS work better if we
simultaneously explore from
both ends?

Answer: Yes, and it makes a
practical difference, but it's not
enough to truly solve this
problem.

1

∅, 0, 01, 10, 11

00, 001, 010, 011,
100, 101, 110, 111

000

00, 001, 010, 100,
0000, 0001, 0010,
0100, 1000

Meet in the middle
Does the BFS work better if we
simultaneously explore from
both ends?

Answer: Yes, and it makes a
practical difference, but it's not
enough to truly solve this
problem.

1

∅, 0, 01, 10, 11

00, 001, 010, 011,
100, 101, 110, 111

000

00, 001, 010, 100,
0000, 0001, 0010,
0100, 1000Both explorations can still

get pretty big!

How about a more directed approach?

apple
pear

Step through the strings together, modifying
the first one.

What are our options here?

How about a more directed approach?

apple
pear

Step through the strings together, modifying
the first one.

What are our options here?

● Delete the a and advance the first pointer.

How about a more directed approach?

p
apple
pear

Step through the strings together, modifying
the first one.

What are our options here?

● Delete the a and advance the first pointer.
● Insert a p to match the p in pear, and

advance the second pointer. (The first
pointer is still pointing at a)

How about a more directed approach?

ppple
pear

Step through the strings together, modifying
the first one.

What are our options here?

● Delete the a and advance the first pointer.
● Insert a p to match the p in pear, and

advance the second pointer. (The first
pointer is still pointing at a)

● Change the a to p, and advance both
pointers.

When the pointers agree, we advance both for free!

apple
pear

When the pointers agree, we advance both for free!

apple
pear

This is "free" because it doesn't
correspond to an insertion, deletion,
or substitution.

Dealing with leftovers

peare
pear

Even though we reached the end of
pear, we need to pay to delete that
extra e… we're not done until both
pointers reach the end!

The choices

● Deletion: advance the first pointer and pay 1.
● Insertion: advance the second pointer and pay 1.
● Substitution: advance both pointers and pay 1.
● Both pointers point at the same thing: advance

both pointers and pay 0.

How do we minimize the total cost, without just
trying everything like in BFS?

Dynamic programming to the rescue!

A state in this problem is given by

(position of first pointer, position of second pointer)

We ask: what's the least we can have spent so far to
get to this state?

Then, what's the least we can have spent to get to
the final state?

apple
pear

solve(0, 0) = min(

 solve(1, 0) + 1, deletion

 solve(0, 1) + 1, insertion

 solve(1, 1) + 1) substitution

apple
pear

solve(0, 0) = min(

 solve(1, 0) + 1,

 solve(0, 1) + 1,

 solve(1, 1) + 1)

solve(1, 0) = min(

 solve(2, 0) + 1, deletion

 solve(1, 1) + 1, insertion

 solve(2, 1) + 0) free

Turning it into code

But we repeatedly compute the same subproblems!

We could have used a 2D array for
memo instead of a dictionary. I was
just being very lazy on a first pass.

This is top-down DP with
memoization. It's easier to write,
but less efficient due to the larger
call stack.

Running time

Notice that every choice advances at least one pointer.

Running time

Notice that every choice advances at least one pointer.

The pointers can only go so far, and there is no backtracking, so the
running time is O(L1L2), where L1 and L2 are the lengths of the two
words. (There are L1 + 1 places the first pointer could be, and L2 + 1
places the second pointer could be, so the product is O(L1L2).)

Space
What is the space complexity of this algorithm?

Space
What is the space complexity of this algorithm?

We memoize a result for each state, and there are O(L1L2) states, so
this is also O(L1L2).

The intermediate results
A value in the table is the cost (in number of operations) of solving
from that state.

a p p l e 🍎 done

p 4 3 3 3 3 4

e 5 4 3 3 2 3

a 4 4 3 2 2 2

r 5 4 3 2 1 1

🍐 done 5 4 3 2 1 0

The intermediate results
A value in the table is the cost (in number of operations) of solving
from that state.

a p p l e 🍎 done

p 4 3 3 3 3 4

e 5 4 3 3 2 3

a 4 4 3 2 2 2

r 5 4 3 2 1 1

🍐 done 5 4 3 2 1 0

pple

pele

peae

pear

apple

7/27 Lecture Agenda
● Announcements (including midterm discussion)

● Part 5-3: Edit Distance

● 10 minute break!

● Part 5-4: Knapsack

7/27 Lecture Agenda
● Announcements (including midterm discussion)

● Part 5-3: Edit Distance

● 10 minute break!

● Part 5-4: Knapsack

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic
Programming
Greed & Flow

Special Topics

Pack That Knapsack

