
Knapsack Problem

•We have n items with weights and values:

•And we have a knapsack: 
• it can only carry so much weight:

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

1



•Unbounded Knapsack:
• Suppose I have infinite copies of all of the items.

• What’s the most valuable way to fill the knapsack?

•0/1 Knapsack:
• Suppose I have only one copy of each item.

• What’s the most valuable way to fill the knapsack? 

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35
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Some notation

Capacity: W

Weight:

Value:

w
1

v
1

Item:

w
2

w
3

w
n

v
2 v

3
v

n

…
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.
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Optimal substructure

• Sub-problems: 
• Unbounded Knapsack with a smaller knapsack.
• K[x] = value you can fit in a knapsack of capacity x

First solve the 
problem for 
small knapsacks

Then larger 
knapsacks

Then larger 
knapsacks 5



Optimal substructure
• Suppose this is an optimal solution for capacity x:

•Then this is optimal for capacity x - w
i
:

Capacity x
Value V

Weight w
i

Value v
i

Capacity x – w
i

Value V - v
i

Say that the 

optimal solution 

contains at least 

one copy of item i.

item i

Why?
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Optimal substructure
• Suppose this is an optimal solution for capacity x:

•Then this is optimal for capacity x - w
i
:

Capacity x
Value V

Weight w
i

Value v
i

Capacity x – w
i

Value V - v
i

If I could do better than the second solution, 
then adding a turtle to that improvement 
would improve the first solution.

Say that the 

optimal solution 

contains at least 

one copy of item i.

item i
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.
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• Let K[x] be the optimal value for capacity x.

K[x] = max
i
 {             +        

 
}

K[x] = max
i
 { K[x – w

i
] + v

i 
}

• (And K[x] = 0 if the maximum is empty).
• That is, if there are no i so that 

Recursive relationship

The maximum is over 
all i so that 

Optimal way to 
fill the smaller 
knapsack

The value of 
item i.
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.
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Can we do better?

•Writing down W takes log(W) bits.

•Writing down all n weights takes at most nlog(W) bits.

• Input size: nlog(W).
• Maybe we could have an algorithm that runs in time 

O(nlog(W)) instead of O(nW)?  

• Or even O( n1000000 log1000000(W) )?

•Open problem!
• (But probably the answer is no…otherwise P = NP)
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.
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Example

0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4
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Example

0 1

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[1] = ITEMS[0] + 
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Example

0 1 2

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[2] = ITEMS[1] + 
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Example

0 1 4

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[2] = ITEMS[0] + 
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Example

0 1 4 5

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[3] = ITEMS[2] + 
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Example

0 1 4 6

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[3] = ITEMS[0] + 
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Example

0 1 4 6 7

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[4] = ITEMS[3] + 
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Example

0 1 4 6 8

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
EM

S

0 1 2 3 4

ITEMS[4] = ITEMS[2] + 

23



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.

(Pass)
24



What have we learned?

•We can solve unbounded knapsack in time O(nW).
• If there are n items and our knapsack has capacity W.

•We again went through the steps to create DP 
solution:
• We kept a one-dimensional table, creating smaller 

problems by making the knapsack smaller.
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•Unbounded Knapsack:
• Suppose I have infinite copies of all of the items.

• What’s the most valuable way to fill the knapsack?

•0/1 Knapsack:
• Suppose I have only one copy of each item.

• What’s the most valuable way to fill the knapsack? 

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35
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Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.
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Optimal substructure: try 1

• Sub-problems: 
• Unbounded Knapsack with a smaller knapsack.

First solve the 
problem for 
small knapsacks

Then larger 
knapsacks

Then larger 
knapsacks 28



This won’t quite work…

•We are only allowed one copy of each item.

•The sub-problem needs to “know” what items 
we’ve used and what we haven’t.

I can’t use 
any turtles…
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Optimal substructure: try 2
• Sub-problems:

• 0/1 Knapsack with fewer items.

First solve the 
problem with 
few items

Then yet 
more 
items

Then more 
items

We’ll still increase the size of the knapsacks.

(We’ll keep a two-dimensional table).
30



Our sub-problems:

• Indexed by x and j

Capacity xFirst j items

K[x,j] = optimal solution for a knapsack of 
size x using only the first j items. 31



Relationship between sub-problems

•Want to write K[x,j] in terms of smaller sub-problems.

First j items Capacity x

K[x,j] = optimal solution for a knapsack of 
size x using only the first j items. 32



Two cases

•Case 1:  Optimal solution for j items does not use item j.

•Case 2:  Optimal solution for j items does use item j.

item j

First j items Capacity x

K[x,j] = optimal solution for a knapsack of 
size x using only the first j items. 33



Two cases
•Case 1:  Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

item j

First j items

What lower-indexed 
problem should we solve 

to solve this problem?

34



Two cases
•Case 1:  Optimal solution for j items does not use item j.

•Then this is an optimal solution for j-1 items:

Capacity x
Value V
Use only the first j items

Capacity x 
Value V
Use only the first j-1 items.

item j

First j items

First j-1 items 35



Two cases
•Case 2:  Optimal solution for j items uses item j.

Capacity x
Value V
Use only the first j items

Weight w
j

Value v
j

item j

First j items

What lower-indexed 
problem should we solve 

to solve this problem?

36



Two cases
•Case 2:  Optimal solution for j items uses item j.

•Then this is an optimal solution for j-1 items and a 
smaller knapsack:

Capacity x
Value V
Use only the first j items

Weight w
j

Value v
j

Capacity x – w
j

Value V – v
j

Use only the first j-1 items.

item j

First j items

First j-1 items 37



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.
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Recursive relationship

• Let K[x,j] be the optimal value for: 
• capacity x, 
• with j items.

K[x,j] = max{ K[x, j-1] , K[x – w
j, 

j-1] + v
j 
}

• (And K[x,0] = 0 and K[0,j] = 0).

Case 1 Case 2

39



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.

40



Bottom-up DP algorithm

• Zero-One-Knapsack(W, n, w, v):
•K[x,0] = 0 for all x = 0,…,W
•K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
•K[x,j] = K[x, j-1]
• if w

j
  x:

•K[x,j] = max{ K[x,j], K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

Case 1

Case 2

Running time O(nW)41



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 42



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 43



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 44



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 45



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 46



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 0

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 47



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 48



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 49



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 50



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 51



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 0

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 52



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 53



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 1

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 54



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 55



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 5

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 56



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]

current 
entry

relevant 
previous entry 57



0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

• Zero-One-Knapsack(W, n, w, v):

• K[x,0] = 0 for all x = 0,…,W
• K[0,i] = 0 for all i = 0,…,n
• for x = 1,…,W:

• for j = 1,…,n:
• K[x,j] = K[x, j-1]
• if w

j
  x:

• K[x,j] = max{ 
K[x,j],   

           K[x – w
j
, j-1] + v

j
 }

• return K[W,n]
So the optimal solution is to 
put one watermelon in your 
knapsack!

current 
entry

relevant 
previous entry 58



Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

• Step 2: Find a recursive formulation for the value of 
the optimal solution.

• Step 3: Use dynamic programming to find the value 
of the optimal solution.

• Step 4: If needed, keep track of some additional info 
so that the algorithm from Step 3 can find the actual 
solution.

• Step 5: If needed, code this up like a reasonable 
person.
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What have we learned?

•We can solve 0/1 knapsack in time O(nW).
• If there are n items and our knapsack has capacity W.

•We again went through the steps to create DP 
solution:
• We kept a two-dimensional table, creating smaller 

problems by restricting the set of allowable items.
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Question
•How did we know which substructure to use in 

which variant of knapsack?

vs.

This one made sense for 
unbounded knapsack 

because it doesn’t have 
any memory of what 

items have been used.

In 0/1 knapsack, we can 
only use each item 

once, so it makes sense 
to leave out one item at 

a time.

Operational Answer: try some stuff, see what works!

Answer in retrospect:
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