Knapsack Problem

* We have n items with weights and values:

ltem:

%
Weight: 6 P
Value: 20 8 14

* And we have a knapsack:
* it can only carry so much weight:

ltem: h e b f/ %

Weight: 6 2 11

Capacity: 10 Value: 20 8 14 13 35

» * Unbounded Knapsack:
* Suppose | have infinite copies of all of the items.
« What’s the most valuable way to fill the knapsack?

i (Total weight: 10
/ / = = Total value: 42

*0/1 Knapsack:
* Suppose | have only one copy of each item.
* What’s the most valuable way to fill the knapsack?

b. (| Total weight: 9
- / Total value: 35

Some notation

Weight: W W W - Wn
Value: V Vv VvV V

Capacity: W

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure. -

*Step 2: Find a for the value of
the optimal solution.

*Step 3: Use dynamic programming to find the value
of the optimal solution.

*Step 4: If needed, keep track of some additional info

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

Optimal substructure

* Sub-problems:

* Unbounded Knapsack with a smaller knapsack.
e K[x] = value you can fit in a knapsack of capaci

=

/)

i/ 4@%@“@%*
e L Sh
15y

n” }

First solve the
problem for
small knapsacks

Then larger Then larger
knapsacks knapsacks

item i

Optimal substructure

e Suppose this is an optimal solution for capacity x:

<ay fnat e < h h

o
| 5o\
Kina ast
o S
one €O "~ Weightw,
Value v

Capacity x
* Then this is optimal for capacity x - w.: ValueV

L R

'[N
% o

Capacity x —w,
Value V - v

item i

Optimal substructure

e Suppose this is an optimal solution for capacity x:

<ay fnat e < h h

o
| 5o\
Kina ast 4
oo e G
one €O "~ Weightw,
Value v

Capacity x
* Then this is optimal for capacity x - w.: ValueV

R
. =

If | could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

Capacity x —w,
Value V - v

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure. %

*Step 2: Find a for the value of
the optimal solution.

*Step 3: Use dynamic programming to find the value
of the optimal solution.

*Step 4: If needed, keep track of some additional info

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

Recursive relationship

* Let K[x] be the optimal value for capacity x.

e

K[x] = max { + Tﬁ
The_z maximum is over Optimal way to The value of
all'i so that fill the smaller item i.
knapsack

K[x] = max { Kix-w]+v }

* (And K[x] = 0 if the maximum is empty).
e That is, if there are no i so that

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure.
*Step 2: Find a for the value of
the optimal solution. {

*Step 3: Use dynamic programming to find the value
of the optimal solution.

*Step 4: If needed, keep track of some additional info

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

10

Let’s write a bottom-up DP algorithm

e UnboundedKnapsack(W, n, weights, values):

e K[0]=0
e forx=1, ... W:

e K[x] =0

e« fori=1, ..., n:

o ifw; < x:
e K[x] = max{ K[x], K[x — w,-] + v, }

e return K[W]

Running time: O(nW)

Kix] = max {68

Why does this work?

=max { K[x—w] +v,} Because our recursive relationship makes'sense.

Can we do better?

* Writing down W takes log(W) bits.
* Writing down all n weights takes at most nlog(W) bits.

* Input size: nlog(W).

* Maybe we could have an algorithm that runs in time

O(nlog(W)) instead of O(nW)?
1000000 | 1000000

* Open problem!
 (But probably the answer is NO...otherwise P = NP)

12

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure.

*Step 2: Find a for the value of
the optimal solution.

*Step 3: Use dynamic programming to find the valu

e
of the optimal solution. (
*Step 4: If needed, keep track of some additional info

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

13

Let’s write a bottom-up DP algorithm

e UnboundedKnapsack(W, n, weights, values):

e K[O]=0
e forx=1, .. W:

e K[x]=0

e fori=1, ..., n:

o ifw; < x:
. K[x] = max{ K[x], K[x —w,| + v, }

e return K[W]

N
y i
5.’"?:':'..
fes + }
AT
v

K[x] =max. { §

= max, { K[).(?wi] +v.}

14

Let’s write a bottom-up DP algorithm

e UnboundedKnapsack(W, n, weights, values):
. K[0] =
e ITEMS[O] =
e forx=1, ..., W:
o K[x] =
e fori=1, .., n:
o ifw; < x:
o K[x] = max{ K[x], Kx —w + U }’
o If K[x] was updated:
o ITEMS[x] = ITEMS[x—w,] U {itemii }
e return ITEMS[W]
A Y

= max { K[x—w,] +v. } 15

K[x] = max, {

Example ~ KW¥1=max{Kixl, Klx —w] +y]

0 1 2 3 4

0

ITEMS

- B @

Weight: 1 2 3
1

Value:

Example ~ KW¥1=max{Kixl, Klx —w] +y]

0 1 2 3 4

0 1

ITEMS

.
ltem: h = b

Weight: 1 2 3
1

Value:

ITEMS[1] = ITEMS[O] + Wil

Example ~ KW¥1=max{Kixl, Klx —w] +y]

0 1 2 3 4

0 1 2

ITEMS

o .
.

- B @

Weight: 1 2 3
1

Value:

ITEMS[2] = ITEMS[1] + Wil

Example ~ KW¥1=max{Kixl, Klx —w] +y]

0 1 2 3 4

0 1 4

ITEMS

L e
ltem: h = b

Weight: 1 2 3
1

Value:

ITEMS[2] = ITEMSIO] + ®

Example ~ KW¥1=max{Kixl, Klx —w] +y]

0 1 2 3 4

0 1 4 5

ITEMS

L IR

- B @

Weight: 1 2 3
1

Value:

ITEMS[3] = ITEMS[2] + Vi

Example K[x] = max{ K[x], K[x —w] +v,}

0 1 2 3 4

0 1 4 6

ITEMS

L YA

—_

Weight: . - 3
1

Value:

TEMS(3] = ITEMS[0] + @

ITEMS

Example
0 1 2 3 4
0 1 4 6 7

wl . (e |e
.

ITEMS[4] = ITEMS[3] + -

ltem:

Weight:

Value:

K[x] = max{ K[x], K|x —w;| +v; }

ITEMS

K[x] = max{ K[x], K|x —w;| +v; }

Example
0 1 2 3 4
0 1 4 6 8
Wl |e|
. ltem:
Weight:
Value:

ITEMS[4] = ITEMS[2] +

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure.

*Step 2: Find a for the value of
the optimal solution.

*Step 3: Use dynamic programming to find the value
of the optimal solution.

*Step 4: If needed, keep track of some additional info
so that the algorithm from Step 3 can find the actual

solution. I
*Step 5: If needed, code this up like a reasonable
person.

(Pass)

24

What have we learned?

* We can solve unbounded knapsack in time O(nW).
* |f there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a one-dimensional table, creating smaller
problems by making the knapsack smaller.

25

ltem: h & b i/ %

Weight: 6 2 11
Value: 20 8 14 13 35

Capacity: 10

* Unbounded Knapsack:
* Suppose | have infinite copies of all of the items.
« What’s the most valuable way to fill the knapsack?

i (Total weight: 10
/ / = = Total value: 42

» *0/1 Knapsack:

* Suppose | have only one copy of each item.
* What’s the most valuable way to fill the knapsack?

b‘ i | Total weight: 9
= / Total value: 35

26

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure. -

*Step 2: Find a for the value of
the optimal solution.

*Step 3: Use dynamic programming to find the value
of the optimal solution.

*Step 4: If needed, keep track of some additional info

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

27

Optimal substructure: try 1

* Sub-problems:
* Unbounded Knapsack with a smaller knapsack.

First solve the
problem for
small knapsacks

Then larger Then larger
knapsacks knapsacks

28

This won’t quite work...

* We are only allowed one copy of each item.

* The sub-problem needs to “know” what items
we’ve used and what we haven’t.

| can’t use
any turtles...

29

Optimal substructure: try 2

* Sub-problems:
* 0/1 Knapsack with fewer items.

First solve the
problem with
few items

Then more
items

Then yet
more
items

Our sub-problems:

* Indexed by x and |

First j items Capacity x

K[x,j] = optimal solution for a knapsack of
size x using only the first j items.

31

Relationship between sub-problems

* Want to write K[x,j] in terms of smaller sub-problems.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 32

Two cases h ten

*Case 1: Optimal solution for j items does not use item j.
* Case 2: Optimal solution for j items does use item j.

First j items Capacity x

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 33

Two cases ‘ tem}

*Case 1: Optimal solution for j items does not use itemj.

Capacity x
Value V
Use only the first j items

First j items

What lower-indexed
problem should we solve
to solve this problem?

34

Two cases tem

*Case 1: Optimal solution for j items does not use itemj.

Capacity x
Value V
Use only the first j items

First j items

* Then this is an optimal solution for j-1 items:

Caéity X
s Value V
First -1 items Use only the first j- Titems.

Two cases h item)

* Case 2: Optimal solution for j items uses item j.

“w »

Value v, Capacity x
Value V
First j items Use only the first j items

What lower-indexed
problem should we solve
to solve this problem?

36

Two cases tem J

* Case 2: Optimal solution for j items uses item j.

Capacity x
Value V
First j items Use only the first j items

* Then this is an optimal solution for j-1 items and a
sack:

Capacity x — W,
Value V — v,
Use only the first j-1sitems.

First j-1 items

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure. %

*Step 2: Find a for the value of
the optimal solution.

*Step 3: Use dynamic programming to find the value
of the optimal solution.

*Step 4: If needed, keep track of some additional info

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

38

Recursive relationship

* Let K[x,j] be the optimal value for:

* capacity x,
e with j items.

K[x,j] = max{ K[x, j-11,

Case 1

* (And K[x,0] = 0 and K[O,j] = 0).

39

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure.
*Step 2: Find a for the value of

the optimal solution. ,

*Step 3: Use dynamic programming to find the value
of the optimal solution.

*Step 4: If needed, keep track of some additional info

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

40

Bottom-up DP algorithm

e Zero-One-Knapsack(W, n, w, v):
*K[x,0]=0forallx=0,....W
*K[O,i]=0foralli=0,...,n
eforx=1,... W:

eforj=1,...,n:
* KIx,j] = K[x, j-1]
oif W, X:
* K[x,j] = max{ K[x,]], }
*return K[\W,n]

Case 1

Running time O(pW)

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

_ _ _ _ -forj=1,...,n1
x=0 x=1 x=2 x=3 . K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
b ji=1 0 K[le]l
KIx—w., j-1] + v, }
h =2 0 * return K[W,n]
L
0

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forJ = 1,,n'
e K[x,j] = K[X, j-l]
=0 0 0 0 0 . if W. X.

. f([x,j] = max{

b ji=1 0 0 K[le]l

K[x—w., j-1] + v, }

§ h =2 0 * return K[W,n]

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

crj=1,...,N:
x=0 x=1 x=2 x=3 for J yreail
e K[x,j] = K[X, j-l]
o @[OO °© CiEW. X
j=0 j
: K[x[j]= r]nax{
0 1 K X,j ,
=1
b J h K[x—wj,j-l]+vj }
. O * return K[W’n]
. =
. 0
b ’ h =3
ltem: = b
current relevant Weight: 2 3 8

1
R et
entry previous entry Value: 1 A ’ Capacity: 3

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 KIx,jl,

K[x—w., j-1] + v, }

1
S
o h =2 0 i * return K[W,n]

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 KIx,jl,

K[x—w., j-1] + v, }

* return K [W, n]

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 0 KIx,jl,

K[x—w., j-1] + v, }

* return K [W, n]

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 1 KIx,jl,

b K[x—wj,j-l] +vj }

* return K [W, n]

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. wxo-oforall x=0,... W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 KIx,jl,

* return K [W, n]

1
h K[x—w., j-1] + v, }
1 J J
b

- = S

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

cor] =1,...,N:
=0 x=1 x=2 x=3 for | rei
” e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
. K[x[j]= r]nax{
a 0 1 1 K X/j)
b =1 h b K[x—wj,j-1]+vj}
0 1 4 - return K[W,N]
| s '
L &
. 0 1
w . W b

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 KIx,jl,

* return K [W, n]

ﬁ
K[x—w., j-1] + v, }
4 J J
¢
il
&

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 0 KIx,jl,

* return K [W, n]

ﬁ
K[x—w., j-1] + v, }
4 J J
=
4
&

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. kxo-ofor all x = o,...W
. xoi-oforalli=0,...,n

Example o X=1,.. W

Y0 =1 =2 =3 . forj = 1,,n'
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
e K[x,j] = max{
0 1 KIx,jl,

* return K [W, n]

1

b h K[x—w., j-1] + v, }
4 J J
&
4

&

-, ="

ltem:

current relevant Weight: 1
entry previous entry Value: 1 4 6

Example

x=0 x=1 x=2 x=3
=0 0 0 0 0
0 1 1 1
) W -l
0 1 4 1
@h =2 h ¢ h
. 0 1 4
~ %h J=3 ‘b (&

relevant
previous entry

current
entry

ltem:

Weight:
Value:

* Zero-One-Knapsack(W, n, w, v):

. wxo-oforall x=0,... W
. koi-oforalli=0,...,n
o for X = 1,...,W:
. forj = 1,...,n:
o K[x,j] = K[X, j-l]
- if W. Xi
J
e K[x,j] = max{
KIx,jl,

K[x—w., j-1] + v, }

* return K [W, n]

N N

Capacity: 3

* Zero-One-Knapsack(W, n, w, v):

. wxo-oforall x=0,... W
. xoi-oforalli=0,...,n

Example o X=1,.. W

-rj=1,...,N:
=0 x=1 x=2 x=3 forJ ’ 77l
: - KIX, j-1]
RO I R B CHW, X
j=0 j
- K[x[j]= r]nax{
BN KIx,J]
=1
h | h h h K[x—wj,j-l]+vj }
: 0 . g > * ret K[W n]
g h j=2 h 4 hg return ;
. 0 1 4
- =) IP
ltem: = b
current relevant Weight: 2 3

1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. wxo-oforall x=0,... W
. xoi-oforalli=0,...,n

Example o X=1,.. W

crj=1,...,N:
=0 x=1 xX=2 x=3 forJ ’ ’ :
: - KD, 11
RO I R B CHW, X
j=0 j
- K[x[j]= r]nax{
BN KIx.J]
=1
h | h h h K[x—w., j-1] + v, }
: 0 . g > * ret K[W n]
g h j=2 h 4 hg return ;
| 0 1 4 5
~ = h J=3 h (& hg«
ltem: = b
current relevant Weight: 2 3

1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. wxo-oforall x=0,... W
. xoi-oforalli=0,...,n

Example o X=1,.. W

corj=1,...,N:
=0 x=1 x=2 x=3 forJ ’ 77l
: - sw- KIx, j-1]
RO I R B CHW, X
j=0 j
- K[x[j]= r]nax{
BN KIx,J]
=1
h | h h h K[x—w., j-1] + v, }
: 0 . g > * ret K[W n]
g h j=2 h 4 hg return ;
| 0 1 4 6
- = Wl |
ltem: = b
current relevant Weight: 2 3

1
entry previous entry Value: 1 4 6

* Zero-One-Knapsack(W, n, w, v):

. wxo-oforall x=0,... W
. xoi-oforalli=0,...,n

Example o X=1,.. W

x=0 x=1 X=2 Xx=3 * forJ = 1)' . 'Ins
e K[x,j] = K[X, j-l]
j=0 0 0 0 0 . if Wj X.
+ Kk = Maxq
O 1k [|1 KIx,jl,
W -1 N
| w1 ev)
1’i i—9 0 1 4 "QS * return K[W,n]
= 1= h & & So the optimal solution is to
0 1 4 6 put one watermelon in your
i= knapsack!
- = w .| @e
ltem: =
current relevant Weight: 2

1
entry previous entry Value: 1 4

Recipe for applying Dynamic Programming

*Step 1: Identify optimal substructure.

*Step 2: Find a for the value of
the optimal solution.

*Step 3: Use dynamic programming to find the value

of the optimal solution. (
*Step 4: If needed, keep track of some additional in

so that the algorithm from Step 3 can find the actual
solution.

*Step 5: If needed, code this up like a reasonable
person.

59

What have we learned?

* We can solve 0/1 knapsack in time O(nW).
* |f there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a two-dimensional table, creating smaller
problems by restricting the set of allowable items.

60

Question

e How did we know which substructure to use in
which variant of knapsack?

Answer in retrospect:

This one made sense for
unbounded knapsack
because it doesn’t have
any memory of what
items have been used.

VS.

In 0/1 knapsack, we can
only use each item
once, so it makes sense
to leave out one item at
a time.

Operational Answer: try some stuff, see what works! 61

