Knapsack Problem

• We have n items with weights and values:

<table>
<thead>
<tr>
<th>Item:</th>
<th>Weight:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Light bulb</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Watermelon</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Taco</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Fire truck</td>
<td>11</td>
<td>35</td>
</tr>
</tbody>
</table>

• And we have a knapsack:
 • it can only carry so much weight:
 | Capacity: 10 |
• Unbounded Knapsack:
 • Suppose I have **infinite copies** of all of the items.
 • What’s the **most valuable way to fill the knapsack**?

 Total weight: 10
 Total value: 42

• 0/1 Knapsack:
 • Suppose I have **only one copy** of each item.
 • What’s the **most valuable way to fill the knapsack**?

 Total weight: 9
 Total value: 35
Some notation

Item:
- Turtle
- Light bulb
- Watermelon
- Fire truck

Weight:
- W_1
- W_2
- W_3
- \ldots
- W_n

Value:
- V_1
- V_2
- V_3
- \ldots
- V_n

Capacity: W
Recipe for applying Dynamic Programming

• **Step 1**: Identify optimal substructure.

• **Step 2**: Find a recursive formulation for the value of the optimal solution.

• **Step 3**: Use dynamic programming to find the value of the optimal solution.

• **Step 4**: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5**: If needed, code this up like a reasonable person.
Optimal substructure

• Sub-problems:
 • Unbounded Knapsack with a smaller knapsack.
 • \(K[x] = \text{value you can fit in a knapsack of capacity } x \)

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks
Optimal substructure

- Suppose this is an optimal solution for capacity x:

- Then this is optimal for capacity $x - w_i$.

Say that the optimal solution contains at least one copy of item i.

Why?
Optimal substructure

• Suppose this is an optimal solution for capacity x:

<table>
<thead>
<tr>
<th>Weight w_i</th>
<th>Value v_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>V</td>
</tr>
</tbody>
</table>

 Then this is optimal for capacity $x - w_i$:

<table>
<thead>
<tr>
<th>Weight w_i</th>
<th>Value v_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>$V - v_i$</td>
</tr>
</tbody>
</table>

Say that the optimal solution contains at least one copy of item i.

If I could do better than the second solution, then adding a turtle to that improvement would improve the first solution.
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the value of the optimal solution.

• **Step 3:** Use dynamic programming to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
Recursive relationship

• Let $K[x]$ be the **optimal value** for capacity x.

$$K[x] = \max_i \{ K[x - w_i] + v_i \}$$

The maximum is over all i so that

Optimal way to fill the smaller knapsack

The value of item i.

• (And $K[x] = 0$ if the maximum is empty).
 • That is, if there are no i so that
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the value of the optimal solution.

• **Step 3:** Use dynamic programming to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
Let’s write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if \(w_i \leq x \):
 - \(K[x] = \max\{ K[x], K[x - w_i] + v_i \} \)
 - return K[W]

Running time: \(O(nW) \)

\[K[x] = \max_i \{ \text{bag} + \text{turtle} \} = \max_i \{ K[x - w_i] + v_i \} \]

Why does this work? Because our recursive relationship makes sense.
Can we do better?

• Writing down W takes $\log(W)$ bits.
• Writing down all n weights takes at most $n\log(W)$ bits.
• Input size: $n\log(W)$.
 • Maybe we could have an algorithm that runs in time $O(n\log(W))$ instead of $O(nW)$?
 • Or even $O(n^{1000000 \log^{1000000}(W)})$?

• Open problem!
 • (But probably the answer is no…otherwise P = NP)
Recipe for applying Dynamic Programming

• **Step 1:** Identify **optimal substructure**.

• **Step 2:** Find a **recursive formulation** for the value of the optimal solution.

• **Step 3:** Use **dynamic programming** to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can **find the actual solution**.

• **Step 5:** If needed, **code this up like a reasonable person**.
Let’s write a bottom-up DP algorithm

- **UnboundedKnapsack**(W, n, weights, values):
 - K[0] = 0
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if \(w_i \leq x \):
 - \(K[x] = \max\{ K[x], K[x - w_i] + v_i \} \)
 - return K[W]

K[x] = max, { backpack + turtle }
= max, { K[x - w_i] + v_i }
Let’s write a bottom-up DP algorithm

- **UnboundedKnapsack**(W, n, **weights**, **values**):
 - $K[0] = 0$
 - $ITEMS[0] = \emptyset$
 - for $x = 1, \ldots, W$:
 - $K[x] = 0$
 - for $i = 1, \ldots, n$:
 - if $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$
 - If $K[x]$ was updated:
 - $ITEMS[x] = ITEMS[x - w_i] \cup \{ \text{item } i \}$
 - return $ITEMS[W]$

\[
K[x] = \max_i \{ \text{bag} + \text{turtle} \} \\
= \max_i \{ K[x - w_i] + v_i \}
\]
Example

$$K[x] = \max\{ K[x], \ K[x - w_i] + v_i \}$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item:
- Turtle: 1
- Light bulb: 2
- Watermelon: 3

Weight:
- Turtle: 1
- Light bulb: 2
- Watermelon: 3

Value:
- Turtle: 1
- Light bulb: 4
- Watermelon: 6

Capacity: 4
Example

$$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ITEMS[1] = ITEMS[0] +

Item:
- Turtle: 1
- Lightbulb: 2
- Watermelon: 3

Weight:
- Turtle: 1
- Lightbulb: 2
- Watermelon: 3

Value:
- Turtle: 1
- Lightbulb: 4
- Watermelon: 6

Capacity: 4
Example

\[K[x] = \max \{ K[x], \ K[x - w_i] + v_i \} \]

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEMS[0]</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS[1]</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEMS[2]</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item:
- Turtle: 1
- Lightbulb: 2
- Watermelon: 3

Weight:
- Turtle: 1
- Lightbulb: 2
- Watermelon: 3

Value:
- Turtle: 1
- Lightbulb: 4
- Watermelon: 6

Capacity: 4
Example

\[K[x] = \max \{ K[x], K[x - w_i] + v_i \} \]

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ITEMS[2] = ITEMS[0] +

Item:

- Turtle
- Lightbulb
- Watermelon

Weight:

- 1
- 2
- 3

Value:

- 1
- 4
- 6

Capacity: 4
Example

$$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ITEMS</td>
<td>Turtles</td>
<td>Light Bulb</td>
<td>Light Bulb</td>
<td>Turtles</td>
<td></td>
</tr>
</tbody>
</table>

Item:
- Turtles
- Light Bulb
- Watermelon

Weight:
- 1
- 2
- 3

Value:
- 1
- 4
- 6

Capacity: 4
Example

\[K[x] = \max\{ K[x], K[x - w_i] + v_i \} \]

<table>
<thead>
<tr>
<th>K</th>
<th>ITEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Item:
- Turtle
- Light bulb
- Watermelon

Weight:
- 1
- 2
- 3

Value:
- 1
- 4
- 6

Capacity: 4

\[\text{ITEMS}[3] = \text{ITEMS}[0] + \text{watermelon} \]
Example

\[K[x] = \max \{ K[x], K[x - w_i] + v_i \} \]

<table>
<thead>
<tr>
<th>K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

ITEMS

- Tortoise
- Light bulb
- Watermelon
- Tortoise

Item:
- Tortoise: 1
- Light bulb: 2
- Watermelon: 3

Weight:
- 1
- 2
- 3

Value:
- 1
- 4
- 6

Capacity: 4
Example

\[K[x] = \max\{ K[x], K[x - w_i] + v_i \} \]

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Light bulb</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Watermelon</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Capacity: 4

<table>
<thead>
<tr>
<th>K</th>
<th>0</th>
<th>1</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEMS</td>
<td>Turtle</td>
<td>Light bulb</td>
<td>Watermelon</td>
<td>Light bulb</td>
<td>Light bulb</td>
</tr>
</tbody>
</table>
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.
• **Step 2:** Find a recursive formulation for the value of the optimal solution.
• **Step 3:** Use dynamic programming to find the value of the optimal solution.
• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
• **Step 5:** If needed, code this up like a reasonable person.

(Pass)
What have we learned?

• We can solve unbounded knapsack in time $O(nW)$.
 • If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP solution:
 • We kept a one-dimensional table, creating smaller problems by making the knapsack smaller.
• **Unbounded Knapsack:**
 • Suppose I have *infinite copies* of all of the items.
 • What’s the *most valuable way to fill the knapsack*?

 | Item: | Capacity: 10 | |
|---|---|---|
 | Weight: | Value: |
 | 6 | 20 | 6 |
 | 2 | 8 | 8 |
 | 4 | 14 | 14 |
 | 3 | 13 | 13 |
 | 11 | 35 | 35 |

 Total weight: 10
 Total value: 42

• **0/1 Knapsack:**
 • Suppose I have *only one copy* of each item.
 • What’s the *most valuable way to fill the knapsack*?

 | Item: | Capacity: 10 |
 |------|-------------|
 | Weight: | Value: |
 | 11 | 35 |
 | 13 | 35 |
 | 35 | 35 |

 Total weight: 9
 Total value: 35
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the value of the optimal solution.

• **Step 3:** Use dynamic programming to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
Optimal substructure: try 1

• Sub-problems:
 • Unbounded Knapsack with a smaller knapsack.

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks
This won’t quite work...

• We are only allowed **one copy of each item**.
• The sub-problem needs to “know” what items we’ve used and what we haven’t.

I can’t use any turtles…
Optimal substructure: try 2

- Sub-problems:
 - 0/1 Knapsack with fewer items.

First solve the problem with few items

Then more items

Then yet more items

We’ll still increase the size of the knapsacks.

(We’ll keep a two-dimensional table).
Our sub-problems:

- Indexed by \(x \) and \(j \)

\[K[x,j] = \text{optimal solution for a knapsack of size } x \text{ using only the first } j \text{ items.} \]
Relationship between sub-problems

• Want to write $K[x,j]$ in terms of smaller sub-problems.

$K[x,j]$ = optimal solution for a knapsack of size x using only the first j items.
Two cases

- **Case 1**: Optimal solution for j items does not use item j.
- **Case 2**: Optimal solution for j items does use item j.

$K[x,j] =$ optimal solution for a knapsack of size x using only the first j items.
Two cases

Case 1: Optimal solution for \(j \) items does not use item \(j \).

First \(j \) items

What lower-indexed problem should we solve to solve this problem?

Capacity \(x \)
Value \(V \)
Use only the first \(j \) items
Two cases

• **Case 1**: Optimal solution for \(j \) items does not use item \(j \).

Then this is an optimal solution for \(j-1 \) items:

• Use only the first \(j \) items.

• Use only the first \(j-1 \) items.
Two cases

- **Case 2**: Optimal solution for j items uses item j.

First j items

What lower-indexed problem should we solve to solve this problem?

Capacity x
Value V
Use only the first j items
Two cases

• **Case 2**: Optimal solution for *j* items uses item *j*.

• Then this is an optimal solution for *j*-1 items and a smaller knapsack:
 - Weight w_j
 - Value v_j
 - Capacity $x - w_j$
 - Value $V - v_j$

First *j* items

First *j*-1 items
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.
• **Step 2:** Find a recursive formulation for the value of the optimal solution.
• **Step 3:** Use dynamic programming to find the value of the optimal solution.
• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
• **Step 5:** If needed, code this up like a reasonable person.
Recursive relationship

• Let $K[x,j]$ be the optimal value for:
 • capacity x,
 • with j items.

$$K[x,j] = \max \{ K[x, j-1], K[x - w_j, j-1] + v_j \}$$

Case 1

Case 2

• (And $K[x,0] = 0$ and $K[0,j] = 0$).
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the value of the optimal solution.

• **Step 3:** Use dynamic programming to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
Bottom-up DP algorithm

- Zero-One-Knapsack\((W, n, w, v)\):
 - \(K[x,0] = 0\) for all \(x = 0,\ldots,W\)
 - \(K[0,i] = 0\) for all \(i = 0,\ldots,n\)
 - for \(x = 1,\ldots,W\):
 - for \(j = 1,\ldots,n\):
 - Case 1
 - \(K[x,j] = K[x, j-1]\)
 - Case 2
 - if \(w_j \leq x\):
 - \(K[x,j] = \max\{ K[x,j], K[x - w_j, j-1] + v_j \}\)
 - return \(K[W,n]\)

Running time \(O(nW)\)
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0, \ldots, W$
- $K[0,i] = 0$ for all $i = 0, \ldots, n$
- for $x = 1, \ldots, W$:
 - for $j = 1, \ldots, n$:
 - $K[x,j] = K[x, j-1]$
 - if $W_j x$:
 - $K[x,j] = \max\{K[x,j], K[x - w_j, j-1] + v_j\}$
- return $K[W,n]$

Item:

- Turtle: 1
- Light bulb: 2
- Watermelon: 3

Weight:

- Turtle: 1
- Light bulb: 2
- Watermelon: 3

Value:

- Turtle: 1
- Light bulb: 4
- Watermelon: 6

Capacity: 3
Zero-One-Knapsack(W, n, w, v):

• $K[x,0] = 0$ for all $x = 0,\ldots,W$
• $K[0,i] = 0$ for all $i = 0,\ldots,n$
• for $x = 1,\ldots,W$:
 • for $j = 1,\ldots,n$:
 • $K[x,j] = K[x, j-1]$
 • if $W_j \geq x$:
 • $K[x,j] = \max\{K[x,j], K[x-w_j, j-1] + v_j\}$
 • return $K[W,n]$

Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item:
- Turtle: 1
- Light bulb: 2
- Watermelon: 3

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Item:**
 - Turtles: 1
 - Lights: 2
 - Watermelon: 3

- **Weight:**
 - Turtles: 1
 - Lights: 2
 - Watermelon: 3

- **Value:**
 - Turtles: 1
 - Lights: 4
 - Watermelon: 6

- **Capacity:** 3

- **Zero-One-Knapsack** (W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0,\ldots,W$
 - $K[0,i] = 0$ for all $i = 0,\ldots,n$
 - for $x = 1,\ldots,W$:
 - for $j = 1,\ldots,n$:
 - $K[x,j] = K[x, j-1]$
 - if $W_j \leq x$:
 - $K[x,j] = \max\{K[x,j], K[x-w_j, j-1] + v_j\}$
 - return $K[W,n]$
Example

Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0,...,W$
- $K[0,i] = 0$ for all $i = 0,...,n$
- for $x = 1,...,W$:
 - for $j = 1,...,n$:
 - $K[x,j] = K[x, j-1]$
 - if $\sum_{j=1}^{n} w_j x$:
 - $K[x,j] = \max\{K[x,j], K[x - \sum_{j=1}^{n} w_j, j-1] + v_j\}$
- return $K[W,n]$
• Zero-One-Knapsack(W, n, w, v):
 • $K[x,0] = 0$ for all $x = 0,\ldots,W$
 • $K[0,i] = 0$ for all $i = 0,\ldots,n$
 • for $x = 1,\ldots,W$:
 • for $j = 1,\ldots,n$:
 • $K[x,j] = K[x, j-1]$
 • if $w_j \leq x$:
 • $K[x,j] = \max\{K[x,j], K[x-w_j, j-1] + v_j\}$
 • return $K[W,n]$

Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Item:**
 - **Weight:**
 - 1
 - 2
 - 3
 - **Value:**
 - 1
 - 4
 - 6
 - **Capacity:** 3
Example

Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0,\ldots,W$
- $K[0,i] = 0$ for all $i = 0,\ldots,n$
- for $x = 1,\ldots,W$:
 - for $j = 1,\ldots,n$:
 - $K[x,j] = K[x, j-1]$ if $w_j \leq x$
 - $K[x,j] = \max\{K[x,j], K[x-w_j, j-1] + v_j\}$
 - return $K[W,n]$

<table>
<thead>
<tr>
<th>Item:</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Light</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Watermelon</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zero-One-Knapsack(W, n, w, v):
- \[K[x,0] = 0 \text{ for all } x = 0, \ldots, W \]
- \[K[0,i] = 0 \text{ for all } i = 0, \ldots, n \]
- for \[x = 1, \ldots, W: \]
 - for \[j = 1, \ldots, n: \]
 - \[K[x,j] = K[x, j-1] \]
 - if \[w_j \leq x: \]
 - \[K[x,j] = \max\{ K[x,j], K[x-w_j, j-1] + v_j \} \]
 - return \[K[W,n] \]
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Zero-One-Knapsack(W, n, w, v):
 - K[x,0] = 0 for all x = 0,…,W
 - K[0,i] = 0 for all i = 0,…,n
 - for x = 1,…,W:
 - for j = 1,…,n:
 - K[x,j] = K[x, j-1]
 - if $w_j \leq x$:
 - K[x,j] = max{K[x,j], K[x – w_j, j-1] + v_j}
 - return K[W,n]

Item:
- Weight: 1
- Value: 1
- Capacity: 3
Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0,\ldots,W$
- $K[0,i] = 0$ for all $i = 0,\ldots,n$
- for $x = 1,\ldots,W$:
 - for $j = 1,\ldots,n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{K[x,j], K[x - w_j, j-1] + v_j\}$

- return $K[W,n]$

Example

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Light</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Watermelon</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

- **Capacity**: 3

Table

<table>
<thead>
<tr>
<th>$j=0$</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x=0$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$x=1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$x=2$</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>$x=3$</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

Zero-One-Knapsack(W, n, w, v):

- \(K[0, 0] = 0 \) for all \(x = 0, \ldots, W \)
- \(K[0, i] = 0 \) for all \(i = 0, \ldots, n \)
- for \(x = 1, \ldots, W \):
 - for \(j = 1, \ldots, n \):
 - \(K[x, j] = K[x, j-1] \)
 - if \(w_j \leq x \):
 - \(K[x, j] = \max\{ K[x, j], K[x - w_j, j-1] + v_j \} \)
- return \(K[W, n] \)
Example

<table>
<thead>
<tr>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Zero-One-Knapsack** (W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \ldots, W$
 - $K[0,i] = 0$ for all $i = 0, \ldots, n$
 - for $x = 1, \ldots, W$:
 - for $j = 1, \ldots, n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{K[x,j], K[x - w_j, j-1] + v_j\}$
 - return $K[W,n]$

<table>
<thead>
<tr>
<th>Item:</th>
<th>Weight:</th>
<th>Value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Light bulb</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Watermelon</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- **Zero-One-Knapsack** (W, n, w, v):
 - $K[x,0] = 0$ for all $x = 0, \ldots, W$
 - $K[0,i] = 0$ for all $i = 0, \ldots, n$
 - for $x = 1, \ldots, W$:
 - for $j = 1, \ldots, n$:
 - $K[x,j] = K[x, j-1]$ if $w_j \leq x$
 - $K[x,j] = \max\{K[x,j], K[x – w_j, j-1] + v_j\}$
 - return $K[W,n]$

Item:
- **Weight:** 1 2 3
- **Value:** 1 4 6

Capacity: 3
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Item:
- Turtle: 1
- Light: 2
- Watermelon: 3

Weight:
- Turtle: 1
- Light: 2
- Watermelon: 3

Value:
- Turtle: 1
- Light: 4
- Watermelon: 6

Capacity: 3

Zero-One-Knapsack(W, n, w, v):
- \(K[x,0] = 0 \) for all \(x = 0, \ldots, W \)
- \(K[0,i] = 0 \) for all \(i = 0, \ldots, n \)
- for \(x = 1, \ldots, W \):
 - for \(j = 1, \ldots, n \):
 - \(K[x,j] = K[x, j-1] \)
 - if \(W_j \times X \):
 - \(K[x,j] = \max \{ K[x,j], K[x - w_j, j-1] + v_j \} \)
- return \(K[W,n] \)
Example

<table>
<thead>
<tr>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Item:
- Weight: 1 2 3
- Value: 1 4 6

Capacity: 3

Zero-One-Knapsack(W, n, w, v):
- \(K[x,0] = 0 \) for all \(x = 0, \ldots, W \)
- \(K[0,i] = 0 \) for all \(i = 0, \ldots, n \)
- for \(x = 1, \ldots, W \):
 - for \(j = 1, \ldots, n \):
 - \(K[x,j] = K[x, j-1] \)
 - if \(w_j \leq x \):
 - \(K[x,j] = \max\{ K[x,j], K[x-w_j, j-1] + v_j \} \)
- return \(K[W,n] \)
Example

<table>
<thead>
<tr>
<th></th>
<th>x=0</th>
<th>x=1</th>
<th>x=2</th>
<th>x=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>j=0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j=1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>j=2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>j=3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Zero-One-Knapsack(W, n, w, v):

- $K[x,0] = 0$ for all $x = 0, \ldots, W$
- $K[0,i] = 0$ for all $i = 0, \ldots, n$
- for $x = 1, \ldots, W$:
 - for $j = 1, \ldots, n$:
 - $K[x,j] = K[x, j-1]$
 - if $w_j \leq x$:
 - $K[x,j] = \max\{K[x,j], K[x - w_j, j-1] + v_j\}$
- return $K[W,n]$

<table>
<thead>
<tr>
<th>Item:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight:</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Value:</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Capacity: 3
• Zero-One-Knapsack(W, n, w, v):
 • $K[x,0] = 0$ for all $x = 0, \ldots, W$
 • $K[0,i] = 0$ for all $i = 0, \ldots, n$
 • for $x = 1, \ldots, W$:
 • for $j = 1, \ldots, n$:
 • $K[x,j] = K[x, j-1]$ if $w_j \leq x$
 • $K[x,j] = \max\{K[x,j],\ K[x - w_j, j-1] + v_j\}$
 • return $K[W,n]$
Weight: 1 2 3 4
Value: 6 5 4 2
Item: Watermelon Lightbulb

Capacity: 3

Example

Zero-One-Knapsack(W, n, w, v):

\[K[x,0] = 0 \]
for all \(x = 0, \ldots, W \)

\[K[0,i] = 0 \]
for all \(i = 0, \ldots, n \)

\[K[x,j] = K[x, j-1] \]
\[\text{if } w_j \leq x \]
\[\max \{ K[x, j-1] + v_j \} \]
\[\text{return } K[W,n] \]

So the optimal solution is to put one watermelon in your knapsack!
Recipe for applying Dynamic Programming

• **Step 1:** Identify optimal substructure.

• **Step 2:** Find a recursive formulation for the value of the optimal solution.

• **Step 3:** Use dynamic programming to find the value of the optimal solution.

• **Step 4:** If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.

• **Step 5:** If needed, code this up like a reasonable person.
What have we learned?

• We can solve 0/1 knapsack in time $O(nW)$.
 • If there are n items and our knapsack has capacity W.

• We again went through the steps to create DP solution:
 • We kept a two-dimensional table, creating smaller problems by restricting the set of allowable items.
Question

• How did we know which substructure to use in which variant of knapsack?

Answer in retrospect:

This one made sense for unbounded knapsack because it doesn’t have any memory of what items have been used.

VS.

In 0/1 knapsack, we can only use each item once, so it makes sense to leave out one item at a time.

Operational Answer: try some stuff, see what works!