Knapsack Problem

We have n items with weights and values:

 Item:
 <th

- And we have a knapsack:
 - it can only carry so much weight:

Capacity: 10

Capacity: 10

Item: Weight: 20

13

11 35

14

Unbounded Knapsack:

- Suppose I have infinite copies of all of the items.
- What's the most valuable way to fill the knapsack?

Value:

Total weight: 10 Total value: 42

- 0/1 Knapsack:
 - Suppose I have only one copy of each item.
 - What's the most valuable way to fill the knapsack?

Total weight: 9 Total value: 35

Some notation

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure

Sub-problems:

• Unbounded Knapsack with a smaller knapsack.

K[x] = value you can fit in a knapsack of capacity x

First solve the problem for small knapsacks

Then larger knapsacks

Then larger knapsacks

Optimal substructure

Suppose this is an optimal solution for capacity x:

Capacity x Value V

• Then this is optimal for capacity x - w_i:

Capacity x – w_i Value V - v_i

Optimal substructure

Suppose this is an optimal solution for capacity x:

Say that the optimal solution contains at least one copy of item i.

Then this is optimal for capacity x - w_i:

If I could do better than the second solution, then adding a turtle to that improvement would improve the first solution.

Capacity x

Value V

Capacity x – w_i Value V - v_i

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive relationship

Let K[x] be the optimal value for capacity x.

$$K[x] = max_i \left\{ \begin{array}{c} + \\ \\ \\ \end{array} \right.$$
 The maximum is over all i so that
$$\begin{array}{c} \text{Optimal way to} \\ \text{fill the smaller} \\ \text{knapsack} \end{array} \right.$$

$$K[x] = \max_{i} \{ K[x - w_{i}] + v_{i} \}$$

- (And K[x] = 0 if the maximum is empty).
 - That is, if there are no i so that

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - for x = 1, ..., W:
 - K[x] = 0
 - **for** i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x w_i] + v_i \}$
 - return K[W]

Running time: O(nW)

 $K[x] = \max_{i} \{ \left\{ \left\{ \left[x - w_{i} \right] + \left[v_{i} \right] \right\} \right\}$

Why does this work?

Can we do better?

- Writing down W takes log(W) bits.
- Writing down all n weights takes at most nlog(W) bits.
- Input size: nlog(W).
 - Maybe we could have an algorithm that runs in time O(nlog(W)) instead of O(nW)?
 - Or even O(n¹⁰⁰⁰⁰⁰⁰ log¹⁰⁰⁰⁰⁰⁰(W))?
- Open problem!
 - (But probably the answer is **no**...otherwise P = NP)

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0• for x = 1, ..., W: • K[x] = 0• for i = 1, ..., n: • if $w_i \le x$: • $K[x] = \max\{ K[x], K[x - w_i] + v_i \}$ • return K[W]

 $K[x] = \max_{i} \{ \left[\left[\mathbf{x} - \mathbf{w}_{i} \right] + \mathbf{v}_{i} \right] \}$

Let's write a bottom-up DP algorithm

- UnboundedKnapsack(W, n, weights, values):
 - K[0] = 0
 - ITEMS[0] = Ø
 - for x = 1, ..., W:
 - K[x] = 0
 - for i = 1, ..., n:
 - if $w_i \leq x$:
 - $K[x] = \max\{ K[x], K[x w_i] + v_i \}$
 - If K[x] was updated:
 - ITEMS[x] = ITEMS[x w_i] \cup { item i }
 - return ITEMS[W]

$$K[x] = \max_{i} \{ \left[\left[x - w_{i} \right] + v_{i} \right] \}$$

$$= \max_{i} \{ K[x - w_{i}] + v_{i} \}$$

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

Item:
Weight:

1
2
3

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

$$ITEMS[1] = ITEMS[0] +$$

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

	0	1	2	3	4
K	0	1	2		
ITEMS					

ITEMS[2] = ITEMS[1] +

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

$$ITEMS[2] = ITEMS[0] +$$

Value: 1

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

ITEMS[3] = ITEMS[2] +

Value:

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

Value: 1

$K[x] = \max\{ K[x], K[x - w_i] + v_i \}$

Value:

$$ITEMS[4] = ITEMS[2] +$$

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

(Pass)

What have we learned?

- We can solve unbounded knapsack in time O(nW).
 - If there are n items and our knapsack has capacity W.
- We again went through the steps to create DP solution:
 - We kept a one-dimensional table, creating smaller problems by making the knapsack smaller.

Weight:

6

2

4

3

11

Value:

20

8

14

13

35

Unbounded Knapsack:

- Suppose I have infinite copies of all of the items.
- What's the most valuable way to fill the knapsack?

Total weight: 10 Total value: 42

• 0/1 Knapsack:

- Suppose I have only one copy of each item.
- What's the most valuable way to fill the knapsack?

Total weight: 9
Total value: 35

Recipe for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Optimal substructure: try 1

- Sub-problems:
 - Unbounded Knapsack with a smaller knapsack.

Then larger knapsacks

Then larger knapsacks

This won't quite work...

- We are only allowed one copy of each item.
- The sub-problem needs to "know" what items we've used and what we haven't.

Optimal substructure: try 2

Sub-problems:

• 0/1 Knapsack with fewer items.

First solve the problem with few items

We'll still increase the size of the knapsacks.

(We'll keep a two-dimensional table).

Our sub-problems:

Indexed by x and j

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

Relationship between sub-problems

• Want to write K[x,j] in terms of smaller sub-problems.

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

- Case 1: Optimal solution for j items does not use item j.
- Case 2: Optimal solution for j items does use item j.

Capacity x

K[x,j] = optimal solution for a knapsack of size x using only the first j items.

• Case 1: Optimal solution for j items does not use item j.

What lower-indexed problem should we solve to solve this problem?

• Case 1: Optimal solution for j items does not use item j.

Then this is an optimal solution for j-1 items:

item j

• Case 2: Optimal solution for j items uses item j.

What lower-indexed problem should we solve to solve this problem?

Two cases

Case 2: Optimal solution for j items uses item j.

Then this is an optimal solution for j-1 items and a

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Recursive relationship

- Let K[x,j] be the optimal value for:
 - capacity x,
 - with j items.

$$K[x,j] = max\{ K[x, j-1], K[x - w_{j, j-1}] + v_{j} \}$$
Case 1
Case 2

• (And K[x,0] = 0 and K[0,j] = 0).

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

Bottom-up DP algorithm

```
Zero-One-Knapsack(W, n, w, v):
    • K[x,0] = 0 for all x = 0,...,W
   • K[0,i] = 0 for all i = 0,...,n
   • for x = 1,...,W:
       • for j = 1,...,n:
                                Case 1
           • K[x,i] = K[x,i-1]
           • if w<sub>i</sub> x:
                                                  Case 2
               • K[x,j] = max\{ K[x,j], K[x-w_i, j-1] + v_i \}
   return K[W,n]
```


• Zero-One-Knapsack(W, n, w, v): • $\kappa[x,0] = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1,...,W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w., j-1] + v.return K[W,n]

relevant current previous entry entry

Item:

Weight: Value:

6

• Zero-One-Knapsack(W, n, w, v): • $\kappa[x,0] = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w., j-1] + v.return K[W,n]

Item:

Weight: Value:

Capacitsy: 3

• Zero-One-Knapsack(W, n, w, v): • $\kappa[x,0] = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1,...,W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1]+vreturn K[W,n]

Item:
current relevant entry previous entry
Item:
Weight:
1
2
3
6
Capacity: 3

• Zero-One-Knapsack(W, n, w, v): • $\kappa[x,0] = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1,...,W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1]+vreturn K[W,n]

Item:

current relevant
entry previous entry

Value:

1 2 3

Capacity: 3

- Zero-One-Knapsack(W, n, w, v): • $\kappa[x,0] = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1,...,W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + v.return K[W,n]
 - return IN[VV,II]

relevant previous entry

Weight:

Value:

4

6

	x=0	x=1	x=2	x=3
j=0	0	0	0	0
j=1	0	1	0	
j=2	0	1		
j=3	0	1		

• Zero-One-Knapsack(W, n, w, v): • $\kappa[x,0] = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: $\cdot \kappa[x,j] = K[x, j-1]$ • if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + v.return K[W,n]

Item:

Weight: Value:

6

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1,...,W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + vreturn K[W,n]

current relevant entry previous entry

Item:

Weight: Value:

1

1

2

4

3

6

Cap

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1,...,W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + vreturn K[W,n]

Item:

Weight: Value: 1

1

2

2

6

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1,...,W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + vreturn K[W,n]

Item:

current relevant
entry previous entry

Value:

1 2 3

Capacity: 3

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + vreturn K[W,n]

relevant current previous entry entry

Item:

Weight: Value:

6

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + vreturn K[W,n]

Item:

Value:

6

Capacity: 3

previous entry

Weight:

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + v.return K[W,n]

current relevant weight: 1 2 3 Early: 3 entry previous entry Value: 1 4 6 Capacity: 3

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]=0}$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + v.return K[W,n]

Weight: Value:

3

6

Capacity: 3

- Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + v. return K[W,n]

relevant previous entry

Weight: Value:

6


```
• Zero-One-Knapsack(W, n, w, v):
    • \kappa_{[x,0]=0} for all x = 0,...,W
    • \kappa_{[0,i]=0} for all i = 0,...,n
    • for x = 1, ..., W:
         • for j = 1,...,n:
              • K[x,j] = K[x, j-1]
              • if W<sub>i</sub> X:

    K[x,j] = max{

                     K[x,j],
                       K[x-w, j-1] + v.
    return K[W,n]
```


Item:

Weight: Value:

Capacitay: 3

• Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]} = 0$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j],K[x-w, j-1] + v.return K[W,n]

Item:

current relevant
entry previous entry

Value:

1 2 3

Capacity: 3

- Zero-One-Knapsack(W, n, w, v): • $\kappa_{[x,0]=0}$ for all x = 0,...,W• $\kappa_{[0,i]=0}$ for all i = 0,...,n• for x = 1, ..., W: • for j = 1,...,n: • K[x,j] = K[x, j-1]• if W_i X: K[x,j] = max{ K[x,j]K[x – w., j-1] + v. return K[W,n] So the optimal solution is to
 - So the optimal solution is to put one watermelon in your knapsack!

relevant previous entry

Weight: Value:

3

6

Recipe for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the value of the optimal solution.
- Step 3: Use dynamic programming to find the value of the optimal solution.
- Step 4: If needed, keep track of some additional in so that the algorithm from Step 3 can find the actual solution.
- Step 5: If needed, code this up like a reasonable person.

What have we learned?

- We can solve 0/1 knapsack in time O(nW).
 - If there are n items and our knapsack has capacity W.
- We again went through the steps to create DP solution:
 - We kept a two-dimensional table, creating smaller problems by restricting the set of allowable items.

Question

• How did we know which substructure to use in which variant of knapsack?

Answer in retros

Answer in retrospect:

This one made sense for unbounded knapsack because it doesn't have any memory of what items have been used.

VS.

In 0/1 knapsack, we can only use each item once, so it makes sense to leave out one item at a time.