
8/1 Lecture Agenda
● Announcements

● Part 6-1: Greedy Algorithms

● 10 minute break!

● Part 6-2: Spanning Trees



Announcements

• It's raining! In California! In August! Whaaaaat

• Pre-HW6 will be review and will (probably) include 
a small fun optional puzzle; it's coming out 
Wednesday

• HW6 will be completable entirely in Gradescope 
and will not involve much (if any) writing



8/1 Lecture Agenda
● Announcements

● Part 6-1: Greedy Algorithms

● 10 minute break!

● Part 6-2: Spanning Trees



Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Greed Is Good 



Greedy algorithms

• Make choices one-at-a-time.

• Never look back.

• Hope for the best.



Today

• Two examples of greedy algorithms that do not 
work:

• Knapsack again
• Indy's statue acquisition

• Three examples of greedy algorithms that do work:
• Activity Selection
• Job Scheduling
• Huffman Coding (if time)



Non-example 1

• Unbounded Knapsack.



• Unbounded Knapsack:
• Suppose I have infinite copies of all of the items.
• What’s the most valuable way to fill the knapsack?

• “Greedy” algorithm for unbounded knapsack:
• Tacos have the best Value/Weight ratio!
• Keep grabbing tacos!

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 39



Non-example 2

•  Indy wants to build some statues in his front yard 
in Hillsborough.

•  He has a line of n spots where statues can be built, 
and each spot is worth a certain value.

•  But the homeowners' association has decreed that 
he cannot build two statues in a row. Where should 
Indy put statues to maximize the total value?





Non-example 2

•  Indy wants to build some statues in his front yard 
in Hillsborough.

•  He has a line of n spots where statues can be built, 
and each spot is worth a certain value.

•  But the homeowners' association has decreed that 
he cannot build two statues in a row. Where should 
Indy put statues to maximize the total value?

5 9 3 5 8 10 8



Non-example 2

•  Greedy strategy: keep choosing and building the 
highest-valued statue that is still legal to build.



Non-example 2

•  Greedy strategy: keep choosing and building the 
highest-valued statue that is still legal to build.

5 9 3 5 8 10 8

5 9 3 5 8 10 8

5 9 3 5 8 10 8

total value: 24



Non-example 2

•  But we could have done better!

5 9 3 5 8 10 8

total value: 25



Non-example 2

•  What should we have done?



Non-example 2

•  What should we have done? DP would work…

5 9 3 5 8 10 8

answer is: solve(0)

solve(0) = max(solve(1),            // don't use this spot
                           L[0] + solve(2)) // do use this spot

etc.

base cases: solve(n) = solve(n+1) = 0



Example where greedy works
Activity selection

Frisbee Practice

Orchestra

CS161 study 
group

Sleep

CS110 
Class

Theory Lunch

Theory Seminar

Combinatorics 
Seminar

Alligator 
appreciation class

Math 51 Class

CS 161 Class

CS 166 Class

CS 161 
Section

CS 161 Office 
Hours

Swimming 
lessons

Programming 
team meeting

Social activity

time

You can only do one activity at a time, and you want to 
maximize the number of activities that you do.  

What to choose?



Activity selection

• Input:
• Activities a

1
, a

2
, …, a

n

• Start times s
1
, s

2
, …, s

n

• Finish times f
1
, f

2
, …, f

n

• Output:
• A way to maximize the number of activities you can do 

today. In what order should you 
greedily add activities?

a
i

time
s

i f
i



Shortest job first?



Earliest start time first?



Earliest ending time first?

• This will do it!



Greedy Algorithm

a
3

a
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a
4

a
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a
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a
7

a
6

time

• Pick activity you can add with the smallest finish time.

• Repeat.
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Greedy Algorithm

a
3

a
1

a
4       

a
2

a
5

a
7

a
6 

time

• Pick activity you can add with the smallest finish time.

• Repeat.



At least it’s fast

• Running time: 
• O(n) if the activities are already sorted by finish time.
• Otherwise O(nlog(n)) if you have to sort them first.



What makes it greedy?

• At each step in the algorithm, make a choice.
• Hey, I can increase my activity set by one, 
• And leave lots of room for future choices,
• Let’s do that and hope for the best!!!

•Hope that at the end of the day, this results in a 
globally optimal solution.



Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal 

substructure.

3. The “greedy” approach is often the first you’d think 
of…
• Why are we getting to it now, in Week 7?

• Proving that greedy algorithms work is often not so easy…

(We will see why in a moment…)



Back to Activity Selection

a
3

a
1

a
4

a
2

a
5

a
7

a
6

time

• Pick activity you can add with the smallest finish time.

• Repeat.



Why does it work?

• Whenever we make a choice, we don’t rule out an 
optimal solution.

a
3

a
1

a
4

a
2

a
7

a
6

time

a
5

a
3 a

7

There’s some optimal solution that 
contains our next choice

Our next 
choice would 
be this one:



Assuming that statement…

•We never rule out an optimal solution

• At the end of the algorithm, we’ve got some solution.

• So it must be optimal.



We never rule out an optimal solution

• Suppose we’ve already chosen a
i
, and there is still 

an optimal solution T* that extends our choices.

a
i

a
2

a
7

a
6

time

a
j

a
k

a
3



We never rule out an optimal solution

• Suppose we’ve already chosen a
i
, and there is still 

an optimal solution T* that extends our choices.

• Now consider the next choice we make, say it’s a
k
.

• If a
k
 is in T*, we’re still on track.
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a
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Greedy algorithm would 
choose this one.



We never rule out an optimal solution

• Suppose we’ve already chosen a
i
, and there is still 

an optimal solution T* that extends our choices.

• Now consider the next choice we make, say it’s a
k
.

• If a
k
 is not in T*…
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7
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6

time
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a
k

a
3

Greedy algorithm would 
choose this one.



We never rule out an optimal solution

• If a
k
 is not in T*…

• Let a
j
 be the activity in T* (after a

i
 ends) with the 

smallest end time.

• Now consider schedule T you get by swapping a
j
 for a

k

a
i

a
2

a
7

a
6

time

a
j

a
k

a
3

ctd.

SWAP!



We never rule out an optimal solution

• This schedule T is still allowed.
• Since a

k 
has the smallest ending time, it ends before a

j
.  

• Thus, a
k
 doesn’t conflict with anything chosen after a

j
.

• And, T is still optimal.
• It has the same number of activities as T*.

a
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a
3

ctd.

SWAP!



We never rule out an optimal solution

• We’ve just shown:
• If there was an optimal solution that extends the choices 

we made so far…
• …then there is an optimal schedule that also contains our 

next greedy choice a
k
.

a
i

a
2

a
7

a
6

time

a
j

a
k

a
3

ctd.



So the algorithm is correct

• We never rule out an optimal solution

• At the end of the algorithm, we’ve got some solution.

• So it must be optimal.



So the algorithm is correct

• Inductive Hypothesis:
• After adding the t’th thing, there is an optimal solution that 

extends the current solution.

• Base case:
• After adding zero activities, there is an optimal solution 

extending that.

• Inductive step:
• We just did that!

• Conclusion:
• After adding the last activity, there is an optimal solution that 

extends the current solution.
• The current solution is the only solution that extends the 

current solution.
• So the current solution is optimal.



Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal 

substructure.

3. The “greedy” approach is often the first you’d think 
of…
• Why are we getting to it now, in Week 7?

• Proving that greedy algorithms work is often not so easy…



One Common strategy
for greedy algorithms

• Make a series of choices.

• Show that, at each step, our choice won’t rule out 
an optimal solution at the end of the day.

• After we’ve made all our choices, we haven’t ruled 
out an optimal solution, so we must have found 
one.



One Common strategy (formally)
for greedy algorithms

• Inductive Hypothesis:
• After greedy choice t, you haven’t ruled out success.

• Base case:
• Success is possible before you make any choices.

• Inductive step:
• If you haven’t ruled out success after choice t, then you 

won’t rule out success after choice t+1.

• Conclusion:
• If you reach the end of the algorithm and haven’t ruled 

out success then you must have succeeded.

“Success” here means 
“finding an optimal solution.”



One Common strategy
for showing we don’t rule out success

• Suppose that you’re on track to make an optimal 
solution T*.

• Eg, after you’ve picked activity i, you’re still on track.

• Suppose that T* disagrees with your next greedy 
choice.

• Eg, it doesn’t involve activity k.

• Manipulate T*  in order to make a solution T that’s 
not worse but that agrees with your greedy choice.

• Eg, swap whatever activity T* did pick next with activity k.



Note on “Common Strategy”

• This common strategy is not the only way to prove 
that greedy algorithms are correct!

• In particular, Algorithms Illuminated has several 
different types of proofs.

• I’m emphasizing it in lecture because it often 
works, and it gives you a framework to get started.



Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When the problem exhibits especially nice optimal 

substructure.

3. The “greedy” approach is often the first you’d think 
of…
• Why are we getting to it now, in Week 7?

• Proving that greedy algorithms work is often not so easy…



Optimal sub-structure 
in greedy algorithms

• Our greedy activity selection algorithm exploited a natural 
sub-problem structure:

A[i] = number of activities you can do after the end of activity i

• How does this substructure relate to that of 
divide-and-conquer or DP?

a
i

a
2

a
7

a
6

time

a
j

a
k a

3

A[i] = solution to 
this sub-problem



Sub-problem graph view

• Divide-and-conquer:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem



Sub-problem graph view

• Dynamic Programming:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-problem



Sub-problem graph view

• Greedy algorithms:

Big problem

sub-sub-
problem

sub-problem



Sub-problem graph view

• Greedy algorithms:

Big problem

sub-sub-
problem

sub-problem

• Not only is there optimal sub-structure:
• optimal solutions to a problem are made up 

from optimal solutions of sub-problems

• but each problem depends on only one 
sub-problem.



Three Questions

1. Does this greedy algorithm for activity selection work?
• Yes.

2. In general, when are greedy algorithms a good idea?
• When they exhibit especially nice optimal substructure.

3. The “greedy” approach is often the first you’d think 
of…
• Why are we getting to it now, in Week 7?

• Proving that greedy algorithms work is often not so easy.



Let’s see a few more examples



Another example:
Scheduling

CS161 HW

Personal Hygiene

Math HW

Econ HW

Practice musical instrument

Read Algorithms Illuminated

Have a social life

Sleep

Administrative stuff for student club

Do laundry

Meditate



Scheduling
•  

CS161 HW

Sleep

10 hours

8 hours

Cost: 2 units per 
hour until it’s done.

Cost: 3 units per 
hour until it’s done.



Optimal substructure

• This problem breaks up nicely into sub-problems:

Job A Job B Job C Job D

Suppose this is the optimal schedule:

Then this must be the optimal 
schedule on just jobs B,C,D.

Why?



Optimal substructure

• This problem breaks up nicely into sub-problems:

Job A Job B Job C Job D

Suppose this is the optimal schedule:

Then this must be the optimal 
schedule on just jobs B,C,D.

If not, then rearranging B,C,D 
could make a better schedule 

than (A,B,C,D)!



Optimal substructure

• Seems amenable to a greedy algorithm:

Job A Job B Job C Job D

Take the best job first Then solve this problem

Job BJob C Job D

Take the best job first Then solve this problem

Job BJob D

Take the best job first

(That one’s easy ☺ )

Then solve this problem



What does “best” 
mean?

•  

Job A

Job B

x hours

y hours

Cost: z units per 
hour until it’s done.

Cost: w units per hour 
until it’s done.

 

 

Note: here we are defining x,y,z, and w.  (We use c
i 
and t

i
 for these in the 

general problem, but we are changing notation for just this thought 
experiment to save on subscripts.)



Idea for greedy algorithm

 



Lemma
This greedy choice doesn’t rule out success

• Suppose you have already chosen some jobs, and haven’t yet 
ruled out success: 

• Then if you choose the next job to be the one left that maximizes 
the ratio cost/time, you still won’t rule out success.

• Proof sketch:
• Say Job B maximizes this ratio, but it’s not the next job in the opt. soln.

Job A Job BJob C Job DJob E

Already 
chosen E

There’s some way to order 
A, B,C, D that’s optimal…

Say greedy chooses job B

How can we manipulate the optimal solution 
above to make an optimal solution where B is 

the next job we choose after E?



Lemma
This greedy choice doesn’t rule out success

• Suppose you have already chosen some jobs, and haven’t yet 
ruled out success:

• Then if you choose the next job to be the one left that maximizes 
the ratio cost/time, you still won’t rule out success.

• Proof sketch:
• Say Job B maximizes this ratio, but it’s not the next job in the opt. soln.

• Switch A and B!  Nothing else will change, and we just showed that the 
cost of the solution won’t increase.

• Repeat until B is first.

• Now this is an optimal schedule where B is first.

Job AJob BJob C Job D

Job AJob B Job C Job D

Job E

Job E

Job A Job BJob C Job DJob E

Already 
chosen E

There’s some way to order 
A, B,C, D that’s optimal…

Say greedy chooses job B



Back to our framework for proving 
correctness of greedy algorithms

• Inductive Hypothesis:
• After greedy choice t, you haven’t ruled out success.

• Base case:
• Success is possible before you make any choices.

• Inductive step:
• If you haven’t ruled out success after choice t, then 

you won’t rule out success after choice t+1.

• Conclusion:
• If you reach the end of the algorithm and haven’t 

ruled out success then you must have succeeded.

Fill in the details!

Just did the 
inductive step!



Greedy Scheduling Solution

•  

Running time: O(nlog(n))



What have we learned?

• A greedy algorithm works for scheduling

• This followed the same outline as the previous example:
• Identify optimal substructure:

• Find a way to make choices that won’t rule out an optimal 
solution.

• largest cost/time ratios first.

Job A Job B Job C Job D



One more example
Huffman coding

• everyday english sentence
• 01100101 01110110 01100101 01110010 01111001 01100100 01100001 

01111001 00100000 01100101 01101110 01100111 01101100 01101001 
01110011 01101000 00100000 01110011 01100101 01101110 01110100 
01100101 01101110 01100011 01100101

• qwertyui_opasdfg+hjklzxcv
• 01110001 01110111 01100101 01110010 01110100 01111001 01110101 

01101001 01011111 01101111 01110000 01100001 01110011 01100100 
01100110 01100111 00101011 01101000 01101010 01101011 01101100 
01111010 01111000 01100011 01110110



One more example
Huffman coding

• everyday english sentence
• 01100101 01110110 01100101 01110010 01111001 01100100 01100001 

01111001 00100000 01100101 01101110 01100111 01101100 01101001 
01110011 01101000 00100000 01110011 01100101 01101110 01110100 
01100101 01101110 01100011 01100101

• qwertyui_opasdfg+hjklzxcv
• 01110001 01110111 01100101 01110010 01110100 01111001 01110101 

01101001 01011111 01101111 01110000 01100001 01110011 01100100 
01100110 01100111 00101011 01101000 01101010 01101011 01101100 
01111010 01111000 01100011 01110110

ASCII is pretty wasteful for 
English sentences.  If e shows 
up so often, we should have a 

more parsimonious way of 
representing it!



Suppose we have some 
distribution on characters



Suppose we have some 
distribution on characters

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

For simplicity, let’s 
go with this 

made-up example

How to encode them as 
efficiently as possible?



Try 0
(like ASCII)

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

000 011001 010 100 101

• Every letter is assigned a binary string 
of three bits.

Wasteful!  
• 110 and 111 are never used.  
• We should have a shorter way of 

representing A.



Try 1

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

0 100 01 10 11

• Every letter is assigned a binary string 
of one or two bits.  

• The more frequent letters get the 
shorter strings.

• Problem: 
• Does 000 mean AAA or BA or AB?



Try 2: prefix-free coding

A B C D E F

Pe
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Letter

45

13
12

16

9

5

01 00101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (e.g. in CLRS).



Try 2: prefix-free coding

A B C D E F
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5

101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 F

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (including in CLRS).

01 00



Try 2: prefix-free coding

A B C D E F

Pe
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Letter

45

13
12

16

9

5

101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 FB

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (including in CLRS).

01 00



Try 2: prefix-free coding

A B C D E F

Pe
rc

en
ta

ge

Letter

45

13
12

16

9

5

101 110 111 100

• Every letter is assigned a binary string.
• More frequent letters get shorter strings.
• No encoded string is a prefix of any other.

10010101 FBA

Question: What is the most efficient 
way to do prefix-free coding? 

That is, how can we use as few bits 
as possible in expectation?

Confusingly, “prefix-free codes” are also sometimes 
called “prefix codes” (including in CLRS).

(This is not it).

01 00



A prefix-free code is a tree

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111
As long as all the letters 
show up as leaves, this 

code is prefix-free.

B:13 below means that ‘B’ 
makes up 13% of the 

characters that ever appear.



How good is a tree?

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111

• Imagine choosing a letter at random from the language.
• Not uniform, but according to our histogram!

• The cost of a tree is the expected length of the encoding of a random letter.

 

 

P(x) is the 
probability 
of letter x

The depth in the 
tree is the length 
of the encoding

x)



Question

 

P(x) is the 
probability 
of letter x

The depth in the 
tree is the length 
of the encoding



Greedy algorithm

• Greedily build sub-trees from the bottom up.

• Greedy goal: less frequent letters should be further 
down the tree.



Solution
greedily build subtrees, starting with the infrequent 
letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1



Solution
greedily build subtrees, starting with the infrequent 
letters

D: 16 A: 45 B:13 F:5C:12 E:9

14
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25

0 1
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Solution
greedily build subtrees, starting with the infrequent 
letters
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Solution
greedily build subtrees, starting with the infrequent 
letters

D: 16 

A: 45

B:13

F:5

C:12

E:9

14

0 1

25

0 1

30

10

55
10

100

10

0

100 101 110

1110 1111

 



What exactly was the algorithm?

•  D: 16 

F:5 E:9

14

0 1

Y

Z

X
D: 16    A: 45 B:13 C:12

89



This is called Huffman Coding:

•  D: 16 

F:5 E:9

14

0 1

Y

Z

X
D: 16    A: 45 B:13 C:12

90



Does it work?
• Yes.

• We will sketch a proof here.

• Same strategy:
• Show that at each step, the choices we are making 

won’t rule out an optimal solution.
• Lemma:

• Suppose that x and y are the two least-frequent letters.  Then 
there is an optimal tree where x and y are siblings.

D: 16    A: 45 B:13 F:5C:12 E:9

14

0 1



Lemma 
proof idea

• Say that an optimal tree looks like this:

• What happens to the cost if we swap x for a?
• the cost can’t increase; a was more frequent than x, and we 

just made a’s encoding shorter and x’s longer.

• Repeat this logic until we get an optimal tree with x and 
y as siblings.

• The cost never increased so this tree is still optimal.

If x and y are the two least-frequent letters, there 
is an optimal tree where x and y are siblings.

x

  

a y

Lowest-level sibling 
nodes: at least one of 
them is neither x nor y



Lemma 
proof idea

• Say that an optimal tree looks like this:

• What happens to the cost if we swap x for a?
• the cost can’t increase; a was more frequent than x, and we 

just made a’s encoding shorter and x’s longer.

• Repeat this logic until we get an optimal tree with x and 
y as siblings.

• The cost never increased so this tree is still optimal.

a

  

x y

Lowest-level sibling 
nodes: at least one of 
them is neither x nor y

If x and y are the two least-frequent letters, there 
is an optimal tree where x and y are siblings.



Huffman Coding Works (idea)
• Show that at each step, the choices we are making 

won’t rule out an optimal solution.

• Lemma:
• Suppose that x and y are the two least-frequent letters.  

Then there is an optimal tree where x and y are siblings.

• That’s enough to show that we don’t rule out 
optimality on the first step.

D: 16 A: 45 B:13 F:5C:12 E:9

0 1

14



Huffman Coding Works (idea)
• Show that at each step, the choices we are making 

won’t rule out an optimal solution.

• Lemma:
• Suppose that x and y are the two least-frequent letters.  

Then there is an optimal tree where x and y are siblings.

• That’s enough to show that we don’t rule out 
optimality on the first step.

• To show that continue to not rule out optimality 
once we start grouping stuff…

D: 16 A: 45 B:13 F:5C:12 E:9

0 1

25

0
1

1

0
14

30



Huffman Coding Works (idea)
• To show that continue to not rule out optimality 

once we start grouping stuff…
• The basic idea is that we can treat the “groups” as 

leaves in a new alphabet.
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Huffman Coding Works (idea)
• To show that continue to not rule out optimality 

once we start grouping stuff…
• The basic idea is that we can treat the “groups” as 

leaves in a new alphabet.

• Then we can use the lemma from before.

D: 16 A: 45 B:13 F:5C:12 E:9
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• See Ch. 14.4 of Algorithms Illuminated!
• Note that the proofs in AI don’t explicitly follow the 

“never rule out success” recipe.  That’s fine, there are 
lots of correct ways to prove things!

For a full proof



What have we learned?

• ASCII isn’t an optimal way to encode English, since 
the distribution on letters isn’t uniform.

• Huffman Coding is an optimal way!

• To come up with an optimal scheme for any 
language efficiently, we can use a greedy algorithm.

• To come up with a greedy algorithm:
• Identify optimal substructure
• Find a way to make choices that won’t rule out an 

optimal solution.
• Create subtrees out of the smallest two current subtrees.



Recap

• Greedy algorithms!

• Often easy to write down
• But may be hard to come up with and hard to justify

• The natural greedy algorithm may not always be 
correct.

• A problem is a good candidate for a greedy 
algorithm if:

• it has optimal substructure
• that optimal substructure is REALLY NICE

• solutions depend on just one other sub-problem.
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Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Spanning Trees 



Suppose we have an undirected graph.

How can we delete (the fewest) edges to 
form a tree?



Is it safe to just keep finding cycles and 
deleting edges from them?

Didn't we get burned by this on HW4?



● Recall: a tree is just a connected graph with 
n-1 edges.

● Here we have 6 vertices and 9 edges. So we 
can just remove four, in a way that does not 
disconnect the graph.
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● Here we have 6 vertices and 9 edges. So we 
can just find an arbitrary cycle and remove an 
arbitrary edge, and do this 4 times.
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■ e.g., a circular subway line loses one 

connection

Why did that work?



● How did we know we wouldn't disconnect the 
graph?
○ Cutting an edge in a cycle can't disconnect a graph 

because we can still use the remainder of the cycle 
to reach every edge.
■ e.g., a circular subway line loses one 

connection

● How is this different from the example from 
HW4 (minimum edge removals to make a 
graph bipartite?)

Why did that work?



● How did we know we wouldn't disconnect the 
graph?
○ Cutting an edge in a cycle can't disconnect a graph 

because we can still use the remainder of the cycle 
to reach every edge.
■ e.g., a circular subway line loses one 

connection

● How is this different from the example from 
HW4 (minimum edge removals to make a 
graph bipartite?)
○ A tree is bipartite, but not every bipartite graph is 

a tree.

Why did that work?



What if the edges are weighted?

How can we find the tree with the lowest total 
weight? i.e. the Minimum Spanning Tree

3

1

2

4

5

2 4

7

4





How to find MSTs? This is 
Waverly's 
dream! It turns 
out that almost 
any natural 
greedy idea 
works.



It's time for…
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…Prim's Algorithm!
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It's time for…

…Prim's Algorithm!

I volunteer as 
tribute!



It's time for…

…Jarník's Algorithm!

I volunteer as 
tribute!



Prim's Algorithm
3
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4

5

2 4

7

Choose an arbitrary starting vertex.

4
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Prim's Algorithm
3
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Find the lowest-cost edge that would connect 
our current set of vertices to another vertex.

4

Break ties 
arbitrarily.



Prim's Algorithm
3

1

2

4

5

2 4

7

Find the lowest-cost edge that would connect 
our current set of vertices to another vertex.

4
this edge 
doesn't 
take us 
anywhere 
new; 
ignore it.
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Prim's Algorithm
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7

Find the lowest-cost edge that would connect 
our current set of vertices to another vertex.

4

All done!



Wait a minute…
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Does finding an MST also 
give us all pairs shortest 
paths?
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Wait a minute…
3

1

2

4

5

2 4

7

Does finding an MST give 
us all pairs shortest 
paths? Not necessarily.

4



Why does it work?

Same idea as the other greedy proofs: suppose we 
had some other solution. Then we could turn it 
into our solution, making it no worse. 
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Why does it work?

Same idea as the other greedy proofs: suppose we 
had some other solution. Then we could turn it 
into our solution, making it no worse. 

3

1

2

4

5

2 4

7

4
Say they 
chose this 
instead…

and ended 
up with 
this tree.

We will formalize 
this on the HW!



OK, but

how do we implement it?



How did we know what was "next" here?
3

1

2

4

5

2 4

7

4



Prim's Algorithm

B

D

E

C

A

F
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Now each vertex will know which of the MST 
vertices it is closest to.
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Prim's Algorithm
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C

A

F
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When we add a new vertex to our MST, we 
update all of its neighbors.
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Prim's Algorithm
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We need a way to find the minimum 
estimates. How about a heap?
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When we add a new vertex to our MST, we 
update all of its neighbors.
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2, A
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When we add a new vertex to our MST, we 
update all of its neighbors.
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Prim's Algorithm

B

D

E

C

A

F
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4 4, D

7, D
2, A

When we add a new vertex to our MST, we 
update all of its neighbors.



Prim's Algorithm

B

D

E

C

A

F

3
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2 4

7

4 4, D

5, B
2, A

When we add a new vertex to our MST, we 
update all of its neighbors.

This was 7! So we 
decreased the key in 
our heap…
Guess we need a 
Fibonacci heap :(



● Uses a Fibonacci heap to run in O(n log n + m) 
time.
○ Here, the heap is keeping track of which 

vertex that we haven't used yet is closest 
to some vertex we have used.

● Extremely reminiscent of Dijkstra's!

● Was actually rediscovered by Dijkstra. 
(supposedly called Prim-Dijkstra 
sometimes… especially tough for Jarník!)

Prim's Algorithm implementation



the animation on the Wikipedia page!

(note: in this example, there is an implicit edge 
between every two points, with a weight equal to 
their distance apart.)

A fun demo



● Kruskal's: start with nothing, keep adding 
the cheapest edge that doesn't create a cycle
○ we'll see this on HW6!

● Reverse deletion: reverse of Kruskal's (also, 
confusingly, discovered by Kruskal)

● Boruvka's: add a bunch of edges at once

● Mixes, parallelizations, etc. of those three

● Hot topic: Approximate spanners

Other MST algorithms


