8/1 Lecture Agenda

- Announcements
- Part 6-1: Greedy Algorithms
- 10 minute break!
- Part 6-2: Spanning Trees

Announcements

- It's raining! In California! In August! Whaaaaat
- Pre-HW6 will be review and will (probably) include a small fun optional puzzle; it's coming out Wednesday
- HW6 will be completable entirely in Gradescope and will not involve much (if any) writing

8/1 Lecture Agenda

- Announcements
- Part 6-1: Greedy Algorithms
- 10 minute break!
- Part 6-2: Spanning Trees

Greed Is Good

Divide and Conquer Sorting & Randomization Data Structures Graph Search Dynamic Programming **Greed & Flow**

Special Topics

- Make choices one-at-a-time.
- Never look back.
- Hope for the best.

Today

- Two examples of greedy algorithms that **do not** work:
 - Knapsack again
 - Indy's statue acquisition
- Three examples of greedy algorithms that **do work**:
 - Activity Selection
 - Job Scheduling
 - Huffman Coding (if time)

• Unbounded Knapsack.

- Unbounded Knapsack:
 - Suppose I have infinite copies of all of the items.
 - What's the most valuable way to fill the knapsack?

Total weight: 10 Total value: 42

"Greedy" algorithm for unbounded knapsack:

- Tacos have the best Value/Weight ratio!
- Keep grabbing tacos!

Total weight: 9 Total value: 39

- Indy wants to build some statues in his front yard in Hillsborough.
- He has a line of n spots where statues can be built, and each spot is worth a certain value.
- But the homeowners' association has decreed that he cannot build two statues in a row. Where should Indy put statues to maximize the total value?

- Indy wants to build some statues in his front yard in Hillsborough.
- He has a line of n spots where statues can be built, and each spot is worth a certain value.
- But the homeowners' association has decreed that he cannot build two statues in a row. Where should Indy put statues to maximize the total value?

5	9	3	5	8	10	8	
---	---	---	---	---	----	---	--

• Greedy strategy: keep choosing and building the highest-valued statue that is still legal to build.

• Greedy strategy: keep choosing and building the highest-valued statue that is still legal to build.

total value: 24

• But we could have done better!

5	<mark>9</mark>	3	5	<mark>8</mark>	10	<mark>8</mark>
---	----------------	---	---	----------------	----	----------------

total value: 25

• What should we have done?

• What should we have done? DP would work...

answer is: solve(0)

solve(0) = max(solve(1), // don't use this spot L[0] + solve(2)) // do use this spot

etc.

base cases: solve(n) = solve(n+1) = 0

Activity selection

- Input:
 - Activities a₁, a₂, ..., a_n
 - Start times s₁, s₂, ..., s_n
 - Finish times $\overline{f}_1, \overline{f}_2, \dots, \overline{f}_n$

- Output:
 - A way to maximize the **number** of activities you can do today.

In what order should you greedily add activities?

Shortest job first?

Earliest start time first?

Earliest ending time first?

• This will do it!

- Pick activity you can add with the smallest finish time.
- Repeat.

- Pick activity you can add with the smallest finish time.
- Repeat.

- Pick activity you can add with the smallest finish time.
- Repeat.

- Pick activity you can add with the smallest finish time.
- Repeat.

- Pick activity you can add with the smallest finish time.
- Repeat.

- Pick activity you can add with the smallest finish time.
- Repeat.

- Pick activity you can add with the smallest finish time.
- Repeat.

- Pick activity you can add with the smallest finish time.
- Repeat.

At least it's fast

- Running time:
 - O(n) if the activities are already sorted by finish time.
 - Otherwise O(nlog(n)) if you have to sort them first.

What makes it greedy?

• At each step in the algorithm, make a choice.

- Hey, I can increase my activity set by one,
- And leave lots of room for future choices,
- Let's do that and hope for the best!!!
- Hope that at the end of the day, this results in a globally optimal solution.

Three Questions

- 1. Does this greedy algorithm for activity selection work?
 - Yes. (We will see why in a moment...)
- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.
- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 7?
 - Proving that greedy algorithms work is often not so easy...

Back to Activity Selection

- Pick activity you can add with the smallest finish time.
- Repeat.

Why does it work?

• Whenever we make a choice, we don't rule out an optimal solution.

Assuming that statement...

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

We never rule out an optimal solution

 Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.

- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_{k} .
- If a_k is in T*, we're still on track.

- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_k .
- If a_k is **not** in T^* ...

- If a_k is **not** in T*...
- Let a_i be the activity in T* (after a_i ends) with the smallest end time.
- Now consider schedule T you get by swapping a_i for a_k

- This schedule T is still allowed.
 - Since a_k has the smallest ending time, it ends before a_i.
 - Thus, a_k doesn't conflict with anything chosen after a_i.
- And, T is still optimal.
 - It has the same number of activities as T*.

- We've just shown:
 - If there was an optimal solution that extends the choices we made so far...
 - ...then there is an optimal schedule that also contains our next greedy choice a_k.

So the algorithm is correct

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

So the algorithm is correct

- Inductive Hypothesis:
 - After adding the t'th thing, there is an optimal solution that extends the current solution.
- Base case:
 - After adding zero activities, there is an optimal solution extending that.
- Inductive step:
 - We just did that!
- Conclusion:
 - After adding the last activity, there is an optimal solution that extends the current solution.
 - The current solution is the only solution that extends the current solution.
 - So the current solution is optimal.

Three Questions

- Does this greedy algorithm for activity selection work?
 Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.
- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 7?
 - Proving that greedy algorithms work is often not so easy...

One Common strategy for greedy algorithms

- Make a series of choices.
- Show that, at each step, our choice **won't rule out an optimal solution** at the end of the day.
- After we've made all our choices, we haven't ruled out an optimal solution, so we must have found one.

One Common strategy (formally) for greedy algorithms

• Inductive Hypothesis:

"Success" here means "finding an optimal solution."

- After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

One Common strategy

for showing we don't rule out success

- Suppose that you're on track to make an optimal solution T*.
 - Eg, after you've picked activity i, you're still on track.
- Suppose that T* *disagrees* with your next greedy choice.
 - Eg, it *doesn't* involve activity k.
- Manipulate T* in order to make a solution T that's not worse but that *agrees* with your greedy choice.
 - Eg, swap whatever activity T* did pick next with activity k.

Note on "Common Strategy"

- This common strategy is not the only way to prove that greedy algorithms are correct!
 - In particular, Algorithms Illuminated has several different types of proofs.
- I'm emphasizing it in lecture because it often works, and it gives you a framework to get started.

Three Questions

- Does this greedy algorithm for activity selection work?
 Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.

- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 7?
 - Proving that greedy algorithms work is often not so easy...

Optimal sub-structure in greedy algorithms

- Our greedy activity selection algorithm exploited a natural sub-problem structure:
 A[i] = number of activities you can do after the end of activity i
- How does this substructure relate to that of divide-and-conquer or DP? A[i] = solution tothis sub-problem a_i a_k a_3 a_7 a_7 a_6 a_7 a_6 time

• Divide-and-conquer:

• Dynamic Programming:

• Greedy algorithms:

• Greedy algorithms:

- Not only is there **optimal sub-structure**:
 - optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

Three Questions

- Does this greedy algorithm for activity selection work?
 Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When they exhibit especially nice optimal substructure.
- The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 7?
 - Proving that greedy algorithms work is often not so easy.

Let's see a few more examples

Another example: Scheduling

Scheduling

- n tasks
- Task i takes t_i hours
- For every hour that passes until task i is done, pay c_i

- CS161 HW, then Sleep: costs 10 · 2 + (10 + 8) · 3 = 74 units
- Sleep, then CS161 HW: costs 8 · 3 + (10 + 8) · 2 = 60 units

Optimal substructure

• This problem breaks up nicely into sub-problems:

Optimal substructure

• This problem breaks up nicely into sub-problems:

Optimal substructure

• Seems amenable to a greedy algorithm:

What does "best" mean?

Note: here we are defining x,y,z, and w. (We use c_i and t_i for these in the general problem, but we are changing notation for just this thought experiment to save on subscripts.)

AB is better than BA when: $xz + (x + y)w \le yw + (x + y)z$ $xz + xw + yw \le yw + xz + yz$ $wx \le yz$ $\frac{w}{v} \le \frac{z}{x}$

• Of these two jobs, which should we do first?

Idea for greedy algorithm

• Choose the job with the biggest $\frac{\text{cost of delay}}{\text{time it takes}}$ ratio.

Lemma This greedy choice doesn't rule out success

• Suppose you have already chosen some jobs, and haven't yet ruled out success:

- Then if you choose the next job to be the one left that maximizes the ratio **cost/time**, you still won't rule out success.
- Proof sketch:
 - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.

How can we manipulate the optimal solution above to make an optimal solution where B is the next job we choose after E?

Lemma This greedy choice doesn't rule out success

• Suppose you have already chosen some jobs, and haven't yet ruled out success:

- Then if you choose the next job to be the one left that maximizes the ratio **cost/time**, you still won't rule out success.
- Proof sketch:
 - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.
 - Switch A and B! Nothing else will change, and we just showed that the cost of the solution won't increase.

• Now this is an optimal schedule where B is first.

Back to our framework for proving correctness of greedy algorithms

- Inductive Hypothesis:
 - After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.
- Fill in the details!

Just did the

inductive step!

Greedy Scheduling Solution

• scheduleJobs(JOBS):

Sort JOBS in decreasing order by the ratio:

• $r_i = \frac{c_i}{t_i} = \frac{\text{cost of delaying job i}}{\text{time job i takes to complete}}$

- Return JOBS

Running time: O(nlog(n))

What have we learned?

- A greedy algorithm works for scheduling
- This followed the same outline as the previous example:
 Identify optimal substructure:

- Find a way to make choices that **won't rule out an optimal solution.**
 - largest cost/time ratios first.

One more example Huffman coding

- everyday english sentence
- •qwertyui_opasdfg+hjklzxcv

One more example Huffman coding

ASCII is pretty wasteful for English sentences. If **e** shows up so often, we should have a more parsimonious way of representing it!

- everyday english sentence
- •qwertyui_opasdfg+hjklzxcv

Suppose we have some distribution on characters

Suppose we have some distribution on characters

For simplicity, let's go with this made-up example

Try 0 (like ASCII)

000

Percentage 45 representing A. 16 13 12 9 Α В С Ε D

001

010

011

Every letter is assigned a **binary string** of three bits.

Wasteful!

- 110 and 111 are never used.
- We should have a shorter way of

100

5

F

101

Letter

Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (e.g. in CLRS).

- More frequent letters get shorter strings.
- No encoded string is a **prefix** of any other.

Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (including in CLRS).

Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (including in CLRS).

Confusingly, "prefix-free codes" are also sometimes called "prefix codes" (including in CLRS).

A prefix-free code is a tree

show up as leaves, this code is **prefix-free**.

How good is a tree?

- Imagine choosing a letter at random from the language.
 - Not uniform, but according to our histogram!
- The **cost of a tree** is the expected length of the encoding of a random letter.

Expected cost of encoding a letter with this tree:

2(0.45 + 0.16) + 3(0.05 + 0.13 + 0.12 + 0.09) = 2.39

Question

• Given a distribution *P* on letters, find the lowest-cost tree, where

$$cost(tree) = \sum_{leaves x} P(x) \cdot depth(x)$$

$$P(x) = P(x) = P(x) \cdot depth(x)$$

$$P(x) = P(x) = P(x) + e^{p(x)} +$$

Greedy algorithm

- Greedily build sub-trees from the bottom up.
- Greedy goal: less frequent letters should be further down the tree.

greedily build subtrees, starting with the infrequent letters

1110 1111

What exactly was the algorithm?

- Create a node like D: 16 for each letter/frequency
 The key is the frequency (16 in this case)
- Let **CURRENT** be the list of all these nodes.
- while len(CURRENT) > 1:
 - X and Y ← the nodes in CURRENT with the smallest keys.

D: 16

Create a new node Z with Z.key = X.key + Y.key

C:12

• Set Z.left = X, Z.right = Y

B:13

- Add Z to CURRENT and remove X and Y
- return CURRENT[0]

A: 45

This is called Huffman Coding:

- Create a node like
 The key is the frequency (16 in this case)
- Let **CURRENT** be the list of all these nodes.
- while len(CURRENT) > 1:
 - X and Y ← the nodes in CURRENT with the smallest keys.

D: 16

Create a new node Z with Z.key = X.key + Y.key

C:12

• Set Z.left = X, Z.right = Y

B:13

- Add Z to CURRENT and remove X and Y
- return CURRENT[0]

A: 45

Does it work?

- Yes.
- We will *sketch* a proof here.

B:13

- Same strategy:
 - Show that at each step, the choices we are making won't rule out an optimal solution.

C:12

• Lemma:

A: 45

• Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.

14 0 1 D: 16 E:9 F:5

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

• Say that an optimal tree looks like this:

Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
 - The cost never increased so this tree is still optimal.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

• Say that an optimal tree looks like this:

Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
 - The cost never increased so this tree is still optimal.

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.
- To show that continue to not rule out optimality once we start grouping stuff... 30¹

- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.

- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.
- Then we can use the lemma from before.

For a full proof

- See Ch. 14.4 of Algorithms Illuminated!
 - Note that the proofs in AI don't explicitly follow the "never rule out success" recipe. That's fine, there are lots of correct ways to prove things!

What have we learned?

- ASCII isn't an optimal way to encode English, since the distribution on letters isn't uniform.
- Huffman Coding is an optimal way!
- To come up with an optimal scheme for any language efficiently, we can use a greedy algorithm.
- To come up with a greedy algorithm:
 - Identify optimal substructure
 - Find a way to make choices that won't rule out an optimal solution.
 - Create subtrees out of the smallest two current subtrees.

Recap

- Greedy algorithms!
- Often easy to write down
 - But may be hard to come up with and hard to justify
- The natural greedy algorithm may not always be correct.
- A problem is a good candidate for a greedy algorithm if:
 - it has optimal substructure
 - that optimal substructure is **REALLY NICE**
 - solutions depend on just one other sub-problem.

8/1 Lecture Agenda

- Announcements
- Part 6-1: Greedy Algorithms
- 10 minute break!
- Part 6-2: Spanning Trees

8/1 Lecture Agenda

- Announcements
- Part 6-1: Greedy Algorithms
- 10 minute break!
- Part 6-2: Spanning Trees

Spanning Trees

Divide and Conquer Sorting & Randomization Data Structures Graph Search Dynamic Programming **Greed & Flow**

Special Topics

Suppose we have an undirected graph.

How can we delete (the fewest) edges to form a tree?

Is it safe to just keep finding cycles and deleting edges from them?

Didn't we get burned by this on HW4?

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just remove four, in a way that does not disconnect the graph.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

- Recall: a tree is just a connected graph with n-1 edges.
- Here we have 6 vertices and 9 edges. So we can just find an arbitrary cycle and remove an arbitrary edge, and do this 4 times.

• How did we know we wouldn't disconnect the graph?

- How did we know we wouldn't disconnect the graph?
 - Cutting an edge in a cycle can't disconnect a graph because we can still use the remainder of the cycle to reach every edge.
 - e.g., a circular subway line loses one connection

- How did we know we wouldn't disconnect the graph?
 - Cutting an edge in a cycle can't disconnect a graph because we can still use the remainder of the cycle to reach every edge.
 - e.g., a circular subway line loses one connection
- How is this different from the example from HW4 (minimum edge removals to make a graph bipartite?)

- How did we know we wouldn't disconnect the graph?
 - Cutting an edge in a cycle can't disconnect a graph because we can still use the remainder of the cycle to reach every edge.
 - e.g., a circular subway line loses one connection
- How is this different from the example from HW4 (minimum edge removals to make a graph bipartite?)
 - A tree is bipartite, but not every bipartite graph is a tree.

What if the edges are weighted?

How can we find the tree with the lowest total weight? i.e. the Minimum Spanning Tree

Why MSTs?

- Network design
 - Connecting cities with roads/electricity/telephone/...
- cluster analysis
 - eg, genetic distance
- image processing
 - eg, image segmentation
- Useful primitive
 - for other graph <u>algs</u>

Figure 2: Fully parsimonious minimal spanning tree of 933 SNPs for 282 isolates of Y. *pestis* colored by location. Morelli et al. Nature genetics 2010

How to find MSTs?

This is Waverly's dream! It turns out that almost any natural greedy idea works.

...Prim's Algorithm!

...Prim's Algorithm!

I volunteer as tribute!

...Jarník's Algorithm!

Choose an arbitrary starting vertex.

Wait a minute...

Does finding an MST also give us all pairs shortest paths?

Wait a minute...

Does finding an MST give us all pairs shortest paths? Not necessarily.

OK, but

how do we implement it?

How did we know what was "next" here?

Now each vertex will know which of the MST vertices it is closest to.

We need a way to find the minimum estimates. How about a heap?

Prim's Algorithm implementation

- Uses a Fibonacci heap to run in O(*n* log *n* + *m*) time.
 - Here, the heap is keeping track of which vertex that we haven't used yet is closest to some vertex we have used.
- **Extremely** reminiscent of Dijkstra's!
- Was actually rediscovered by Dijkstra. (supposedly called Prim-Dijkstra sometimes... especially tough for Jarník!)

A fun demo

the animation on the Wikipedia page!

(note: in this example, there is an implicit edge between *every* two points, with a weight equal to their distance apart.)

Other MST algorithms

- Kruskal's: start with nothing, keep adding the cheapest edge that doesn't create a cycle
 we'll see this on HW6!
- Reverse deletion: reverse of Kruskal's (also, confusingly, discovered by Kruskal)
- Boruvka's: add a bunch of edges at once
- Mixes, parallelizations, etc. of those three
- Hot topic: *Approximate* spanners