
8/3 Lecture Agenda
● Announcements

● Part 6-3: Max Flow

● 10 minute break!

● Part 6-4: Bipartite Matching



Announcements
● Pre-HW6 will be out tonight, due next Wednesday.

● HW6 will be out Friday, due next Thursday.
○ We are going to make it as automated as we can. 

(Or, for some problems, like "find a 
counterexample", you will know when you have 
it right)

● Templates / autograders for HW5 Problem 6 
coming very soon (tests & solutions are written)



Announcements
● This lecture is the last one in scope for the final!

○ Monday's has some interesting material but is 
optional.

● Unit 6 will be covered in a more BFS than DFS way 
on the final, since there is not as much time to 
digest it via HW and repeated practice.

● We know it is important to have graded work back 
before the final. I will – at long last – be out of my 
"always busy with new content creation" loop soon 
(the final is mostly written)



Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Flow Problems



A new thing to do with directed graphs
A concert at Shoreline 
just got out, and everyone 
is trying to get on 101. 
Shoreline Blvd. itself is 
crawling.



A new thing to do with directed graphs

There are all these 
parallel streets in this 
part of the Google 
campus. But they are 
a sucker move!

A concert at Shoreline 
just got out, and everyone 
is trying to get on 101. 
Shoreline Blvd. itself is 
crawling.



A new thing to do with directed graphs

This one street (and 
the movie theater) 
just end up being the 
choke points. Any 
savings from the 
"shortcut" is illusory.

A concert at Shoreline 
just got out, and everyone 
is trying to get on 101. 
Shoreline Blvd. itself is 
crawling.



Aside: importing slides is hard
I ended up screenshotting a 
PDF. Apologies for artifacts



Today
•Graphs are directed and edges have “capacities” (weights)

•We have a special “source” vertex s and “sink” vertex t.
• s has only outgoing edges*
• t has only incoming edges*
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An s-t cut 
is a cut which separates s from t

•An edge crosses the cut if it goes from s’s side to t’s side

• The cost (or capacity) of a cut is the sum of the capacities 
of the edges that cross the cut. This cut has cost

4 + 2 + 10 = 16
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An s-t cut 
is a cut which separates s from t

•An edge crosses the cut if it goes from s’s side to t’s side

• The cost (or capacity) of a cut is the sum of the capacities 
of the edges that cross the cut. This cut has cost

4 + 2 + 10 = 16

This edge does not 
count! It doesn't cross 
in the right direction.
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A minimum s-t cut 
is a cut which separates s from t
with minimum cost.

This cut has cost
4 + 3 + 4 = 11



Example where this comes up

Schriver 2002

• 1955 map of rail 
networks from the Soviet 
Union to Eastern Europe.
• Declassified in 1999.
• 44 edges, 105 vertices

• The US wanted to cut off 
routes from suppliers in 
Russia to Eastern Europe 
as efficiently as possible.

• In 1955, Ford and 
Fulkerson gave an 
algorithm which finds the 
optimal s-t cut.

this says 
“the bottleneck”

These numbers 
are capacities.



n





Notice the edges 
to the sink node 
are not fully 
saturated, 
though. 



Example where this comes up

Schriver 2002

• 1955 map of rail 
networks from the Soviet 
Union to Eastern Europe.
• Declassified in 1999.
• 44 edges, 105 vertices

• The Soviet Union wants 
to route supplies from 
suppliers in Russia to 
Eastern Europe as 
efficiently as possible.

These numbers 
are capacities.

These numbers 
are flows.













Proof outline

•  



One half of Min-Cut Max-Flow Thm

•  

Proof by picture:

s
t

ANY s-t CUT

x stuff 
comes 
out of s

All that stuff has to cross 
the cut at some point.

 



One half of Min-Cut Max-Flow Thm

•  

• That was proof-by-picture.
• Good exercise to come up with a proof-by-proof!

• You are not responsible for proof-by-proof for this class.



Min-Cut Max-Flow Thm
•  



Ford-Fulkerson algorithm

•Outline of algorithm:
• Start with zero flow
• We will maintain a “residual graph” G

f

• A path from s to t in G
f
 will give us a way to improve 

our flow.
• We will continue until there are no s-t paths left.

Assume for today that we 
don’t have edges like this, 
although it’s not necessary.



Tool: Residual networks
Say we have a flow
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This forward edge has 
weight “capacity – flow”.

This backward edge 
has weight “flow”.



Tool: Residual networks
Say we have a flow
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network from this flow:
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Forward edges are the 
amount that’s left.

Backwards edges are the 
amount that’s been used.



Residual networks tell us how to 
improve the flow.
•Definition: A path from s to t in the residual 

network is called an augmenting path.

•Claim: If there is an augmenting path, we can 
increase the flow along that path.
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claim: 

if there is an augmenting path, we can 
increase the flow along that path.

• Easy case: every edge on the path in G
f
 is a forward edge.

• Forward edges indicate how much stuff can still go through.

• Just increase the flow on all the edges! 
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•Harder case: there are backward edges in the path.
• Here’s a slightly different example of a flow:  
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I changed some of 
the weights and 
edge directions.

claim: 
if there is an augmenting path, we can 
increase the flow along that path.



•Harder case: there are backward edges in the path.
• Here’s a slightly different example of a flow:  
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I changed some of 
the weights and 
edge directions.

claim: 
if there is an augmenting path, we can 
increase the flow along that path.

Now we should NOT increase the flow at 
all the edges along the path!

• For example, that will mess up the 
conservation of stuff at this vertex.



• In this case we do something a bit different:
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We will add 
flow here

We will add 
flow here

We will remove flow here, 
since our augmenting path 
is going backwards along 
this edge.

claim: 
if there is an augmenting path, we can 
increase the flow along that path.
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• In this case we do something a bit different:

claim: 
if there is an augmenting path, we can 
increase the flow along that path.

Then we’ll update the residual graph:
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Before:

After:

flow value is 2

flow value is 3

2 in, 2 out

1 in, 1 out

Still a legit flow, but with a bigger value!

2 in, 2 out

1 in, 1 out



 

claim: 
if there is an augmenting path, we can 
increase the flow along that path.
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x=2
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This is f’

Check that this 
always makes a 

bigger (and legit) 
flow!



Ford-Fulkerson Algorithm
 

























Why does Ford-Fulkerson work?

 











Min-Cut Max-Flow Theorem

    

So everything is equal and min cut = max flow!



What have we learned?

•Max s-t flow is equal to min s-t cut!
• The USSR and the USA were trying to 

solve the same problem…
•The Ford-Fulkerson algorithm can 

find the min-cut/max-flow.  
• Repeatedly improve your flow along 

an augmenting path.

•How long does this take???



Why should we be concerned?
Suppose we just picked paths arbitrarily.
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Why should we be concerned?
Suppose we just picked paths arbitrarily.
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Why should we be concerned?
Suppose we just picked paths arbitrarily.
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The edge (b,a) disappeared 
from the residual graph!



Why should we be concerned?
Suppose we just picked paths arbitrarily.
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Why should we be concerned?
Suppose we just picked paths arbitrarily.
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1The edge (b,a) re-appeared 
in the residual graph!



Why should we be concerned?
Suppose we just picked paths arbitrarily.
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Why should we be concerned?
Suppose we just picked paths arbitrarily.
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from the residual graph!



Why should we be concerned?
Suppose we just picked paths arbitrarily.
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The edge (b,a) disappeared 
from the residual graph!

This will go on for C steps, 
adding flow along (b,a) and 

then subtracting it again.



How do we choose which paths to use?

• The analysis we did still works no matter how we 
choose the paths.
• That is, the  algorithm will be correct if it terminates.

• However, the algorithm may not be efficient!!!
• May take a long time to terminate
• (Or may actually never terminate?)

• We need to be careful with our path selection to make 
sure the algorithm terminates quickly.
• Using BFS leads to the Edmonds-Karp algorithm. 
• It turns out this will work in time O(nm2) – proof skipped.
• (That’s not the only way to do it!)



One more useful observation

• If all the capacities are integers, then the flows in 
any max flow are also all integers.
• When we update flows in Ford-Fulkerson, we’re only 

ever adding or subtracting integers.
• Since we started with 0 (an integer), everything stays an 

integer.



Network flow is complicated

67

(you're not 
responsible for this 
content, but it's good 
to know about)



Breaking news (thanks Ivan!)

Almost 
linear time!



But wait, there’s more!

•Min-cut and max-flow are not just useful for the 
USA and the USSR in 1955.

•The Ford-Fulkerson algorithm is the basis for many 
other graph algorithms.

• For the rest of today, we’ll see a few:
• Maximum bipartite matching
• Integer assignment problems

Some of the following material shamelessly stolen from Jeff Erickson’s excellent lecture notes: 
http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/17-maxflowapps.pdf
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● Part 6-4: Bipartite Matching



8/3 Lecture Agenda
● Announcements

● Part 6-3: Max Flow

● 10 minute break!

● Part 6-4: Bipartite Matching



Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Bipartite Matching 



Maximum matching in bipartite graphs

Stanford Students Stanford Swag

• Different students only 
want certain items of 
Stanford swag (depending 
on fit, style, etc).

• How can we make as 
many students as possible 
happy?

A

B

C

D

E



Maximum matching in bipartite graphs

Stanford Students Stanford Swag

• Different students only 
want certain items of 
Stanford swag (depending 
on fit, style, etc).

• How can we make as 
many students as possible 
happy?

A

B

C

D

E



Solution via max flow

Stanford Students Stanford Swag

ts

All edges have 
capacity 1.



Solution via max flow

Stanford Students Stanford Swag

ts

All edges have 
capacity 1.
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Solution via max flow
why does this work?

All edges have 
capacity 1.

2. Stuff in = stuff out
means that the number 
of items assigned to 
each student 0 or 1.  
(And vice versa).

1. Because the 
capacities are all 
integers, so are the 
flows – so they are 
either 0 or 1.

3. Thus, the edges with flow on 
them form a matching.  (And, any 
matching gives a flow).

4. The value of the 
flow is the size of the 
matching.

Value of this 
flow is 4.

5. We conclude that 
the max flow 
corresponds to a 
max matching.



A slightly more complicated example: 
assignment problems
•One set X

• Example: Stanford students

•Another set Y
• Example: tubs of ice cream

•Each x in X can participate in c(x) matches.
• Student x can only eat 4 scoops of ice cream.

•Each y in Y can only participate in c(y) matches.
• Tub of ice cream y only has 10 scoops in it.

•Each pair (x,y) can only be matched c(x,y) times.
• Student x only wants 3 scoops of flavor y
• Student x’ doesn’t want any scoops of flavor y’

•Goal: assign as many matches as possible.



Example

Stanford Students Tubs of ice cream
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This person wants 1 
scoop of ice cream, 

either 1 chocolate or 1 
vanilla.

This person wants two 
scoops of the sorbet.

How can we serve as much ice cream as possible?



Solution via max flow

Stanford Students Tubs of ice cream
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Solution via max flow

Stanford Students Tubs of ice cream
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Give this person 
scoop of this ice cream.
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Solution via max flow

This student can 
have flow at most 
10 going in, and so 
at most 10 going 
out, so at most 10 
scoops assigned.

As before, flows correspond to assignments, and 
max flows correspond to max assignments.

W
e dish out 17 

scoops of ice cream
.

No more than 3 
scoops of sorbet 
can be assigned.

No more than 10 scoops of 

Cherry Garcia can be 

assigned to this student.



This technique can even solve problems 
that aren't obviously flow/assignment 

problems…



84

WARNING



Can my team still top the standings?



Teams can "clinch" playoffs entry



Can my team still top the standings?

This initially seems like a pretty easy greedy 
problem!

For the rest of the season, assume that:

● my team wins every game

● any team that is ahead of my team loses 
every game (at least until they are not 
ahead)

(We're assuming that the team with the most total wins is the overall 
winner of the sport, which is not how it usually works.)



Can my team still top the standings?

This initially seems like a pretty easy greedy 
problem!

For the rest of the season, assume that:

● my team wins every game

● any team that is ahead of my team loses 
every game (at least until they are not 
ahead)

(We're assuming that the team with the most total wins is the overall 
winner of the sport, which is not how it usually works.)

What's wrong with this?



Can my team still make it?

This initially seems like a pretty easy greedy 
problem!

For the rest of the season, assume that:

● my team wins every game

● any team that is ahead of my team loses 
every game (at least until they are not 
ahead)

These teams might be 
playing each other! They 
can't both lose…



OK, fine
● when two teams that are 

ahead of my team play, the 
team that is farthest ahead of 
my team loses



OK, fine
● when two teams that are 

ahead of my team play, the 
team that is farthest ahead of 
my team loses

What if they're tied and we 
make the wrong choice breaking 
the tie? and it bites us later?

Shouldn't it depend on the 
schedule of future games?



We've got ourselves a flow problem!

wait, how on earth would we use flow here?



This part is still true
For the rest of the season, assume that:

● our team wins every game

Why? Consider any solution in which our team loses 
a future game, but still wins overall. But then we 
could have our team win that game instead. It only 
moves us up in the standings and some other team 
down, so we still win overall.



More greedy stuff
● Every other team either has fewer wins than 

us (a "nonthreat"), or doesn't (a "threat")

● Why call them nonthreats? They can never 
pass us if we keep winning.
○ this assumes all teams have the same number of 

remaining games…

● In future games:
○ Threat-Nonthreat: Make nonthreat win.
○ Nonthreat-Nonthreat: Doesn't matter.
○ Threat-Threat: Here we have to be 

careful…



Threat-threat games
● For each threat team: suppose for now that 

they win all their threat-threat games, and 
that gets them a total of WT wins.

● We already know our best-case number of 
wins WU.

● We need to make sure that threat team loses 
at least (WT - WU + 1) threat-threat games, 
or they will be ahead of (or tied with) us at 
the end…



Toward a flow solution…
● For each pair of threat teams, we care about 

how many games they have remaining.

● Each such game can give one of those teams 
one loss.



T1 vs T2
(3 more 
games)

T1 vs T3
(2 more 
games)

T2 vs T3
(5 more 
games)



T1 vs T2
(3 more 
games)

T1 vs T3
(2 more 
games)

T2 vs T3
(5 more 
games)

source

3

2

5

Our graph will 
push losses 
around.



T1 vs T2
(3 more 
games)

T1 vs T3
(2 more 
games)

T2 vs T3
(5 more 
games)

source
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Our graph will 
push losses 
around.



T1 vs T2
(3 more 
games)

T1 vs T3
(2 more 
games)

T2 vs T3
(5 more 
games)

source

3

2

5

Our graph will 
push losses 
around.

why these numbers? we can't give out 
more losses (from games of one type) 
than there are games of that type.



T1 vs T2
(3 more 
games)

T1 vs T3
(2 more 
games)

T2 vs T3
(5 more 
games)

source
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Other side of the 
bipartition: 
teams!

team 1 
(needs 2 
losses)

team 2 
(needs 3 
losses)

team 3 
(needs 5 
losses)
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T1 vs T2
(3 more 
games)

T1 vs T3
(2 more 
games)

T2 vs T3
(5 more 
games)
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3

2

5

why these numbers? we get 
no credit for additional 
losses beyond what we need
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(needs 3 
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(needs 5 
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why these numbers? teams 
can't lose more games of a 
certain type than there are…
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Then solve!
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T1 vs T2
(3 more 
games)

T1 vs T3
(2 more 
games)

T2 vs T3
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If we can fully saturate the 
sink, we win. Otherwise we 
don't.
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T1 vs T2
(3 more 
games)
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Warning: this side of the graph 
actually has O(teams2) nodes!

But who cares? This is awesome
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