8/3 Lecture Agenda

e Announcements
e Part 6-3: Max Flow
e 10 minute break!

e Part 6-4: Bipartite Matching

Announcements

e Pre-HW6 will be out tonight, due next Wednesday.

e HWG6 will be out Friday, due next Thursday.

o We are going to make it as automated as we can.
(Or, for some problems, like "find a
counterexample'', you will know when you have
it right)

e Templates / autograders for HW5 Problem 6
coming very soon (tests & solutions are written)

Announcements

e This lecture is the last one in scope for the final!
o Monday's has some interesting material but is

optional.

e Unit 6 will be covered in a more BFS than DFS way
on the final, since there is not as much time to
digest it via HW and repeated practice.

e We know it is important to have graded work back
before the final. I will — at long last — be out of my
"always busy with new content creation' loop soon
(the final is mostly written)

Divide and Conquer
Sorting & Randomization

WO R“-D 658 Graph Search

Dynamic Programming
Flow Problems Greed & Flow

Special Topics

A new thing to do with directed graphs

A concert at Shoreline

Iding 20 BUTEY amphitheatre]:ust gpt out, and everyone

O is trying to get on 101.
Shoreline Blvd. itself is
o e crawling.
Charleston Rd g
| Santiago Villa<
Histor)? &r:sp:ljﬁ: ﬁ

Micgosoft Siicon €

M/M/dg/@f‘

‘eld Rq

|19 auljdsoys N

A new thing to do with directed graphs

Iding 20

Charleston Rd

/q,
d/@’?é/d Rd

%PAI auI310US N

Shoreline Amphitheatre

Google

View Can

Santiago Villa §

Computer ¢)
History:Museum Y

Microsoft Silicon
Valley.Campus

|9 aulpsoys N

A concert at Shoreline
just got out, and everyone
is trying to get on 101.
Shoreline Blvd. itself is
crawling.

There are all these
parallel streets in this
part of the Google
campus. But they are
a sucker move!

A new thing to do with directed graphs

A concert at Shoreline

(ding 20 BN vphitheatre just got out, and everyone
is trying to get on 101.
Shoreline Blvd. itself is
o ol crawling.
Charleston R g .
e This one street (and
soweovi¢ — the movie theater)
Computer () just end up being the
TR Y choke points. Any
Microsoft Silicon . |
X Valey.Campus @ savings from the
g "shortcut" is illusory.

|9 auljssoys N

Aside: importing slides is hard

Theorem
Max-flow min-cut theorem

The value of a max flow fromstot

is equal to
cost of a min s- t.

I ended up screenshotting a
PDF. Apologies for artifacts

Intuition: in a max flow,
the min cut better fill up,
and this is the bottleneck.

Today

* Graphs are directed and edges have “capacities” (weights)

* We have a special “source” vertex s and “sink” vertex t.
* s has only outgoing edges™
* t has only incoming edges™

*at least for this class

An s-t cut
is a cut which separates s from t

* An edge crosses the cut if it goes from s’s side to t’s side

* The cost (or capacity) of a cut is the sum of the capacities

of the edges that cross the cut. This cut has cost
3 4+2+10=16

An s-t cut
is a cut which separates s from t

* An edge crosses the cut if it goes from s’s side to t’s side

* The cost (or capacity) of a cut is the sum of the capacities

of the edges that cross the cut. This cut has cost
3 4+2+10=16

This edge does not
count! It doesn't cross /
in the right direction. :

A minimum s-t cut

is a cut which separates s from t
with minimum cost.

This cut has cost
\ 4+3+4=11

Example where this comes up

R this says
“the bottleneck”

li‘;| o

4 These numbers

Schriver 2002

1955 map of rail
networks from the Soviet

Union to Eastern Europe.
* Declassified in 1999.
e 44 edges, 105 vertices

The US wanted to cut off
routes from suppliers in

Russia to Eastern Europe
as efficiently as possible.

In 1955, Ford and
Fulkerson gave an
algorithm which finds the
optimal s-t cut.

Flows
* In addition to a capacity, each edge has a

* (unmarked edges in the picture have flow 0)
* The flow on an edge must be less than its capacity.

* At each vertex, the incoming flows must equal the outgoing
flows.

4 unitsin, 3
1+1+2 = 4 units out.

1+1 = 2 unitsin,
2 units out.

Think of this as
meaning “send 2
units of stuff along
this edge.”

Because of conservation of

F | O WS flows at vertices,

e The value of a flow is: stuff you put in

stuff you take out.

* The amount of stuff coming out of s
* The amount of stuff flowing into t

* These are the same!

The value of
this flow is 4.

A maximum flow
is a flow of maximum value.

* This one is maximum; it has value 11.

Notice the edges
3 to the sink node
are not fully

saturated,
though.

Example where this comes up

e 1955 map of rail
networks from the Soviet

Union to Eastern Europe.
* Declassified in 1999.
* 44 edges, 105 vertices

e The Soviet Union wants
to route supplies from
suppliers in Russia to

Y/ . These numbers Eastern Europe as

efficiently as possible.

are capacities.
i -'.S These numbers
: .‘%re flows AH
{

H
e
o
\
£in —=

Schriver 2002

That’s the same as the
minimum cut in this graph!

A maximum flow
is a flow of maximum value.

 This one is maximum; it has value 11.

* Each edge is a (directed) rickety bridge.

* How many bridges need to fall down to disconnect
s fromt? Forthis graph, 2

* If only one person can be on a bridge at a time, and
you want to keep traffic moving (aka, no waiting at
vertices allowed), how many people can get to t at
atime? Also2!

How about now?

* Each edge is a (directed) rickety bridge.

 How many bridges need to fall down to disconnect
s from t? Forthis graph, 3

* If only one person can be on a bridge at a time, and
you want to keep traffic moving (aka, no waiting at
vertices allowed), how many people can get to t at
atime? Also3!

How about now?

e Each edge is a (directed) rickety bridge.

* How many bridges need to fall down to disconnect
s fromt? orthis graph, 3

* If only one person can be on a bridge at a time, and
you want to keep traffic moving (aka, no waiting at
vertices allowed), how many people can get to t at
atime? Also3s!

Theorem
Max-flow min-cut theorem

The value of a max flow froms to t rtuittion: fr reaxcHlow,
is equal to the min cut better fill up,

the cost of a min s-t cut and this is the bottleneck.

Proof outline

o Lemma 1: max flow < min cut.
* Proof-by-picture

* What we actually want: max flow = min cut.
* Proof-by-algorithm...the Ford-Fulkerson algorithm!
e (Also using Lemma 1)

One half of Min-Cut Max-Flow Thm

*lemma 1:

* For ANY s-t flow and ANY s-t cut, the value of the flow is
at most the cost of the cut.

* Hence max flow < min cut.

Proof by picture:

__________ All that stuff has to Cross So% = easpatthisait
the cut at some point. .

ANY s-t CUT
/

x stuff
comes
out of s

\

\

}

1

1

1

I
I
)

One half of Min-Cut Max-Flow Thm

* lemma 1:

* For ANY s-t flow and ANY s-t cut, the value of the flow is
at most the cost of the cut.

* Hence max flow < min cut.

* That was proof-by-picture.

* Good exercise to come up with a proof-by-proof!
* You are not responsible for proof-by-proof for this class.

Min-Cut Max-Flow Thm

* lemmal:

* For ANY s-t flow and ANY s-t cut, the value of the flow is
at most the cost of the cut.

e Hence max flow < min cut.

* The theorem is stronger:

* max flow = min cut
* This will be proof-by-algorithm!

Ford-Fulkerson algorithm

*Outline of algorithm:

 Start with zero flow
* We will maintain a “residual graph” G,

* A path from s to tin G_will give us a way to improve
our flow.

e We will continue until there are no s-t paths left.

Assume for today that we
don’t have edges like this,
although it’s not necessary.

(O

Tool: Residual networks
Say we have a flow

This forward edge has
weight “capacity — flow”.

This backward edge
has weight “flow”.

Call the flow f
Call the graph G

Create a new residual
network from this flow:

Call this graph G¢

Tool: Residual networks
Say we have a flow

Forward edges are the
amount that’s left.
Backwards edges are the
amount that’s been used.

Call the flow f
Call the graph G

Create a new residual
network from this flow:

Call this graph G¢

Residual networks tell us how to
improve the flow.

* Definition: A path from s to t in the residual
network is called an augmenting path.

* Claim: If there is an augmenting path, we can
increase the flow along that path.

Call the flow f
Call the graph G Call this graph G

claim:
if there is an augmenting path, we can

increase the flow along that path.

* Easy case: every edge on the path in G, is a forward edge.

Call the flow f
Call the graph G Call this graph G

* Forward edges indicate how much stuff can still go through.
* Just increase the flow on all the edges!

claim:
if there is an augmenting path, we can
increase the flow along that path.

* Harder case: there are backward edges in the path.
* Here’s a slightly different example of a flow:

2

Call the flow f
Call the graph G Call this graph G

| changed some of
the weights and
edge directions.

claim:
if there is an augmenting path, we can
increase the flow along that path.

* Harder case: there are backward edges in the path.
* Here’s a slightly different example of a flow:

Call the flow f

Call the graph G Call this graph G

Now we should NOT increase the flow at

all the edges along the path!
For example, that will mess up the
conservation of stuff at this vertex.

| changed some of
the weights and
edge directions.

claim:
if there is an augmenting path, we can

increase the flow along that path.

* In this case we do something a bit different:

We will add We will remove flow here,
flow here since our augmenting path
is going backwards along

this edge. /‘\
3 5
&L 3 /‘n
Call this graph G

Call the flow f
Call the graph G

We will add
flow here

claim:
if there is an augmenting path, we can

increase the flow along that path.

* In this case we do something a bit different:
Then we’ll update the residual graph:

Call the flow f
Call the graph G Call this graph G

21in, 2 out

Before: flow value is 2

Call the flow f /
Call the graph G 1in,1out Call this graph G¢

After: 21in, 2 out

flow value is 3

Call the flow f
Call the graph G 1in, 1 out Call this graph G

Still a legit flow, but with a bigger value!

claim: Check that this

if there is an augmenting path, we can awaysmakesa
bigger (and legit)

increase the flow along that path. flow!

* increaseFlow(path Pin G, flow f):
* X =min weight on any edge in P
 for (u,v) in P:
e if(uv)inE, f(u,v) « f(u,v) + x.
e if(vu)inE, f(v,u) « f(v,u)- x
* return f’

This is f’

flow fin G

X=2
3

pathPin G

Ford-Fulkerson Algorithm

* Ford-Fulkerson(G):
* f «all zero flow.
¢ Gf — G
* while t is reachable from s in G

* Find a path P fromstotin G // eg, use BFS
* f « increaseFlow(Pf)
* update Gy

* return f

Example of Ford-Fulkerson

Example of Ford-Fulkerson

Example of Ford-Fulkerson

Example of Ford-Fulkerson

Example of Ford-Fulkerson

Example of Ford-Fulkerson e uwiiremove fiow

from this edge.

Notice that we're
going back along one
of the backwards
edges we added.

Example of Ford-Fulkerson weuiiremove fio

from this edge.

Notice that we're
going back along one

of the backwards
edges we added.

Example of Ford-Fulkerson wewiiemowe fiow

from this edge AGAIN.

Example of Ford-Fulkerson wewiiremove o

from this edge AGAIN.

Example of Ford-Fulkerson

Noy, e
ha ave p,,

left to

thin
/4
do/

.~
.--
--

There’s no path

fromstot, and

here’s the cut to
prove it.

Why does Ford-Fulkerson work?

* Just because we can’t improve the flow anymore
using an augmenting path, does that mean there
isn’t a better flow?

* Lemma 2: If there is no augmenting path in G then
f is @ maximum flow.

No augmenting path = max flow.

* Suppose there is not a path from s to tin Gy.
* Consider the cut given by:

{things reachable from s}, {things not reachable from s}

Call the flow f
Call the graph G Call this graph G¢

No augmenting path = max flow.

* Suppose there is not a path from s to tin Gy.

* Consider the cut given by: ¢ lives here
{things reachable from s}, {things not reachable from s}

* The value of the flow f from s to t is equal to the cost of this cut.

 Similar to proof-by-picture we saw before:
* All of the stuff has to cross the cut.
* The edges in the cut are full because they don’t exist in G

Call the flow f

Call the graph G Call this graph G¢

No augmenting path = max flow.

* Suppose there is not a path from s to tin Gy.

* Consider the cut given by:
t lives heré
{things reachable from s}, {things not reachable from s}

* The value of the flow f from s to t is equal to the cost of this cut.

, _ Lemma 1
Value of f = cost of this cut > min cut > max flow

Call the flow f

Call the graph G \ Call this graph Gy

No augmenting path = max flow.

* Suppose there is not a path from s to tin Gy.

Consider the cut given by: ¢ lives here
{things reachable from s}, {things not reachable from s}

The value of the flow f from s to t is equal to the cost of this cut.

Lo ’

Value of f = cost of this cut > min cut > max flow
Therefore f is a max flow!

Thus, when Ford-Fulkerson stops, it’s found the maximum flow.

Call the flow f

Call the graph G Call this graph Gy

Min-Cut Max-Flow Theorem

max flow > Value of f = cost of this cut > min cut > max flow

So everything is equal and min cut = max flow!

What have we learned?

* Max s-t flow is equal to min s-t cut!

* The USSR and the USA were trying to
solve the same problem...

* The Ford-Fulkerson algorithm can
find the min-cut/max-flow.

* Repeatedly improve your flow along
an augmenting path.

* How long does this take???

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

The edge (b,a) disappeared
from the residual graph!

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

The edge (b,a) re-appeared
in the residual graph!

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

The edge (b,a) disappeared
from the residual graph!

Why should we be concerned?
Suppose we just picked paths arbitrarily.

Choose a really
big number C.

This will go on for C steps,
adding flow along (b,a) and
then subtracting it again.

The edge (b,a) disappeared
from the residual graph!

How do we choose which paths to use?

* The analysis we did still works no matter how we
choose the paths.

* Thatis, the algorithm will be correct if it terminates.

* However, the algorithm may not be efficient!!!
* May take a long time to terminate
e (Or may actually never terminate?)

* We need to be careful with our path selection to make
sure the algorithm terminates quickly.
* Using BFS leads to the Edmonds-Karp algorithm.
* It turns out this will work in time O(nm?) — proof skipped.
e (That’s not the only way to do it!)

One more useful observation

* If all the capacities are integers, then the flows in
any max flow are also all integers.

* When we update flows in Ford-Fulkerson, we’re only
ever adding or subtracting integers.

 Since we started with O (an integer), everything stays an
integer.

Network flow is complicated

Braess's paradox (you're not

From Wikipedia, the free encyclopedia res ponsible for this
content, but it's good

Braess's paradox is the observation that adding one or
to know about)

more roads to a road network can slow down overall traffic
flow through it. The paradox was discovered by German
mathematician Dietrich Braess in 1968.

t=T/100

t=T/100

Team sports strategy |edit]

It has been suggested that in basketball, a team can be seen as a network of possibilities for a route to scoring a basket, with a different efficiency
for each pathway, and a star player could reduce the overall efficiency of the team, analogous to a shortcut that is overused increasing the overall
times for a journey through a road network. A proposed solution for maximum efficiency in scoring is for a star player to shoot about the same
number of shots as teammates. However, this approach is not supported by hard statistical evidence, as noted in the original paper.[4]

In soccer Helenio Herrera is well known for his famous quote "with 10 [players] our team plays better than with 11".

Breaking news (thanks Ivan!)

-If,;'-Quantq naGcgazine Physics Mathematics Biology = Computer Science Topics Archive

Researchers Achieve ‘Absurdly Fast’
Algorithm for Network Flow

That’s where the inner workings of Spielman and Teng’s algorithm
come in. Their algorithm provides a novel way to use a “low-stretch
spanning tree” — a sort of internal backbone that captures many of
the network’s most salient features. Given such a tree, there’s always
at least one good cycle you can build by adding a single link from
outside the tree. So having a low-stretch spanning tree drastically

reduces the number of cycles you need to consider.

Even then, for the algorithm to run quickly, the team couldn’t afford to
build a brand new spanning tree at every step. Instead, they had to
ensure that each new cycle caused only minor ripple effects in the
spanning trees, so they could reuse most of their previous
computations. Achieving this level of control was “the core difficulty,”
said Yang Liu, a graduate student at Stanford University who is one of

the paper’s authors.

Computer scientists can now solve a decades-old problem in practically

the time it takes to write it down.

Almost
linear time!

But wait, there’s more!

* Min-cut and max-flow are not just useful for the
USA and the USSR in 1955.

* The Ford-Fulkerson algorithm is the basis for many
other graph algorithms.

* For the rest of today, we’ll see a few:
* Maximum bipartite matching
* Integer assignment problems

Some of the following material shamelessly stolen from Jeff Erickson’s excellent lecture notes:
http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/17-maxflowapps.pdf

8/3 Lecture Agenda

e Announcements
e Part 6-3: Max Flow
e 10 minute break!

e Part 6-4: Bipartite Matching

8/3 Lecture Agenda

e Announcements
e Part 6-3: Max Flow
e 10 minute break!

e Part 6-4: Bipartite Matching

Divide and Conquer
Sorting & Randomization

WO R‘LD @ﬁ Graph Search

Dynamic Programming
Bipartite Matching Greed & Flow

Special Topics

Maximum matching in bipartite graphs

Different students only
want certain items of
Stanford swag (depending
on fit, style, etc).

How can we make as
many students as possible

happy?

i 2
g
¥
i

STANFORD

Stanford Students Stanford Swag

Maximum matching in bipartite graphs

* Different students only A %
want certain items of
Stanford swag (depending
on fit, style, etc).

e How can we make as

many students as possible %

FEAR THE
TREE

happy? C

Stanford Students Stanford Swag

All edges have

Solution via max flow capacity 1.

—

FEAR THE
THEE

Y

0 >HO A+ >

STANFORD

X

Stanford Students Stanford Swag

All edges have

Solution via max flow capacity 1.

Stanford Students Stanford Swag

Solution via max flow All edges have
why does this work? capacity 1.

4. The value of the
flow is the size of the
matching.

1. Because the

capacities are all % >
integers, so are the

flows — so they are
either O or 1.

ffegf}“f Value of this
flow is 4.
érﬂ,irunn‘
2. Stuff in = stuff out T : 5. We conclude that
means that the number 3. Thus, the edges with flow on the max flow
of items assigned to them form a matching. (And, any corresponds to a
each student O or 1. matching gives a flow). max matching.

(And vice versa).

A slightly more complicated example:
assignment problems

*One set X
* Example: Stanford students

* Another set Y
e Example: tubs of ice cream

e Each x in X can participate in c(x) matches.
 Student x can only eat 4 scoops of ice cream.

e Each y in Y can only participate in c(y) matches.
* Tub of ice cream y only has 10 scoops in it.

 Each pair (x,y) can only be matched c(x,y) times.
 Student x only wants 3 scoops of flavory
e Student x’ doesn’t want any scoops of flavor y’

* Goal: assign as many matches as possible.

How can we serve as much ice cream as possible?

?‘:\L;E::nme

This person wants 1
scoop of ice cream,
either 1 chocolate or 1
vanilla.

This person wants two
scoops of the sorbet.

Stanford Students Tubs of ice cream

Example

Solution via max flow

Stanford Students

Give this person

SOIUtiOn Via maX fIOW scoop of this ice cream.

1 =—

Stanford Students Tubs of ice cream

No more than 3
scoops of sorbet

SOIUtiOn Via max fIOW can be assigned.

This student can
have flow at most
10 going in, and so
at most 10 going

\BINGIERRZS,

out, so at most 10 this ¢, 7€ g
scoops assigned.

As before, flows correspond to assignments, and
max flows correspond to max assignments.

This technique can even solve problems
that aren't obviously flow/assignment
problems...

WARNING

SPORTS

Can my team still top the standings?

NL West

Team

9t Dodgers
Padres

@ Giants
Diamondbacks

@ Rockies

Teams can "clinch” playoffs entry

Pacific

‘@

4 g

y-Calgary

X-Edmonton

X-Los Angeles

Vegas

Vancouver

82

82

82

82

82

50

49

44

43

40

21

27

27

31

30

11

s i |

12

1 L F

104

99

94

92

677

.634

. 604

D13

. 561

Can my team still top the standings?

(We're assuming that the team with the most total wins is the overall
winner of the sport, which is not how it usually works.)

This initially seems like a pretty easy greedy
problem!

For the rest of the season, assume that:
e My team wins every game

e any team that is ahead of my team loses

every game (at least until they are not
ahead)

Can my team still top the standings?

(We're assuming that the team with the most total wins is the overall
winner of the sport, which is not how it usually works.)

This initially seems like a pretty easy greedy
problem!

For the rest of the season, assume that:
e My team wins every game

e any team that is ahead of my team loses

every game (at least until they are not
ahead)

What's wrong with this?

Can my team still make it?

This initially seems like a pretty easy greedy
problem!

For the rest of the season, assume that:
e My team wins every game

e any team that is ahead of my team loses

every game (at least until they are not

ahead) ,
These teams might be

playing each other! They
can't both lose...

0K, fine

e when two teams that are
ahead of my team play, the

team that is farthest ahead of
my team loses

0K, fine

e when two teams that are
ahead of my team play, the

team that is farthest ahead of
my team loses

What if they're tied and we

make the wrong choice breaking
the tie? and it bites us later?

Shouldn't it depend on the
schedule of future games?

We've got ourselves a flow problem!

wait, how on earth would we use flow here?

This part is still true

For the rest of the season, assume that:

e OUr team wins every game

Why? Consider any solution in which our team loses
a future game, but still wins overall. But then we
could have our team win that game instead. It only

moves us up in the standings and some other team
down, so we still win overall.

More greedy stuff

Every other team either has fewer wins than
us (a "nonthreat"), or doesn't (a "threat")

Why call them nonthreats? They can never

pass us if we keep winning.
o this assumes all teams have the same number of
remaining games...

In future games:

o Threat-Nonthreat: Make nonthreat win.

o Nonthreat-Nonthreat: Doesn't matter.

o Threat-Threat: Here we have to be
careful...

Threat-threat games

e For each threat team: suppose for now that
they win all their threat-threat games, and
that gets them a total of W, wins.

e We already know our best-case number of
wins W,.

e We need to make sure that threat team loses
at least (W, - W, + 1) threat-threat games,
or they W111 be [flead of (or tied with) us at
the end...

Toward a flow solution...

e For each pair of threat teams, we care about
how many games they have remaining.

e Each such game can give one of those teams
one loss.

Our graph will
push losses
around.

Our graph will
push losses
around.

YOU GET A LOSS! YOU GET A LOSS!

EVERYBODY GETS A LOSS!

Our graph will
push losses
around.

why these numbers? we can't give out
more losses (from games of one type)
than there are games of that type.

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

Other side of the
bipartition:
teams!

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

why these numbers? we get
no credit for additional
losses beyond what we need

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

team 1
(needs 2
losses)

team 2

(needs 2
losses)

team 3
(needs 5
losses)

why these numbers? teams
can't lose more games of a
certain type than there are...

Then solve!

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

Then solve!

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

If we can fully saturate the
sink, we win. Otherwise we
don't.

Warning: this side of the graph
actually has O(teams?) nodes!

But who cares? This is awesome

team 1
(needs 2
losses)

team 2

(needs 3
losses)

team 3
(needs 5
losses)

