
8/3 Lecture Agenda
● Announcements

● Part 6-3: Max Flow

● 10 minute break!

● Part 6-4: Bipartite Matching

Announcements
● Pre-HW6 will be out tonight, due next Wednesday.

● HW6 will be out Friday, due next Thursday.
○ We are going to make it as automated as we can.

(Or, for some problems, like "find a
counterexample", you will know when you have
it right)

● Templates / autograders for HW5 Problem 6
coming very soon (tests & solutions are written)

Announcements
● This lecture is the last one in scope for the final!

○ Monday's has some interesting material but is
optional.

● Unit 6 will be covered in a more BFS than DFS way
on the final, since there is not as much time to
digest it via HW and repeated practice.

● We know it is important to have graded work back
before the final. I will – at long last – be out of my
"always busy with new content creation" loop soon
(the final is mostly written)

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Flow Problems

A new thing to do with directed graphs
A concert at Shoreline
just got out, and everyone
is trying to get on 101.
Shoreline Blvd. itself is
crawling.

A new thing to do with directed graphs

There are all these
parallel streets in this
part of the Google
campus. But they are
a sucker move!

A concert at Shoreline
just got out, and everyone
is trying to get on 101.
Shoreline Blvd. itself is
crawling.

A new thing to do with directed graphs

This one street (and
the movie theater)
just end up being the
choke points. Any
savings from the
"shortcut" is illusory.

A concert at Shoreline
just got out, and everyone
is trying to get on 101.
Shoreline Blvd. itself is
crawling.

Aside: importing slides is hard
I ended up screenshotting a
PDF. Apologies for artifacts

Today
•Graphs are directed and edges have “capacities” (weights)

•We have a special “source” vertex s and “sink” vertex t.
• s has only outgoing edges*
• t has only incoming edges*

ts

4

2

6

3

6

3

3

10

4

4

4
2

2

6

6

*at least for this class

ts

4

2

6

3

6

3

3

10

4

4

4
2

2

6

6

An s-t cut
is a cut which separates s from t

•An edge crosses the cut if it goes from s’s side to t’s side

• The cost (or capacity) of a cut is the sum of the capacities
of the edges that cross the cut. This cut has cost

4 + 2 + 10 = 16

ts

4

2

6

3

6

3

3

10

4

4

4
2

2

6

6

An s-t cut
is a cut which separates s from t

•An edge crosses the cut if it goes from s’s side to t’s side

• The cost (or capacity) of a cut is the sum of the capacities
of the edges that cross the cut. This cut has cost

4 + 2 + 10 = 16

This edge does not
count! It doesn't cross
in the right direction.

ts

4

2

6

3

6

3

3

10

4

4

4
2

2

6

6

A minimum s-t cut
is a cut which separates s from t
with minimum cost.

This cut has cost
4 + 3 + 4 = 11

Example where this comes up

Schriver 2002

• 1955 map of rail
networks from the Soviet
Union to Eastern Europe.
• Declassified in 1999.
• 44 edges, 105 vertices

• The US wanted to cut off
routes from suppliers in
Russia to Eastern Europe
as efficiently as possible.

• In 1955, Ford and
Fulkerson gave an
algorithm which finds the
optimal s-t cut.

this says
“the bottleneck”

These numbers
are capacities.

n

Notice the edges
to the sink node
are not fully
saturated,
though.

Example where this comes up

Schriver 2002

• 1955 map of rail
networks from the Soviet
Union to Eastern Europe.
• Declassified in 1999.
• 44 edges, 105 vertices

• The Soviet Union wants
to route supplies from
suppliers in Russia to
Eastern Europe as
efficiently as possible.

These numbers
are capacities.

These numbers
are flows.

Proof outline

•

One half of Min-Cut Max-Flow Thm

•

Proof by picture:

s
t

ANY s-t CUT

x stuff
comes
out of s

All that stuff has to cross
the cut at some point.

One half of Min-Cut Max-Flow Thm

•

• That was proof-by-picture.
• Good exercise to come up with a proof-by-proof!

• You are not responsible for proof-by-proof for this class.

Min-Cut Max-Flow Thm
•

Ford-Fulkerson algorithm

•Outline of algorithm:
• Start with zero flow
• We will maintain a “residual graph” G

f

• A path from s to t in G
f
 will give us a way to improve

our flow.
• We will continue until there are no s-t paths left.

Assume for today that we
don’t have edges like this,
although it’s not necessary.

Tool: Residual networks
Say we have a flow

s

a

b

t

4

8

6

3

2
2

2

3

1

1

s

a

b

t
7

5

1

0

Create a new residual
network from this flow:

1
1

3 2

21

This forward edge has
weight “capacity – flow”.

This backward edge
has weight “flow”.

Tool: Residual networks
Say we have a flow

s

a

b

t

4

8

6

3

2
2

2

3

1

1

Create a new residual
network from this flow:

s

a

b

t
7

5

1
1

1

3
2

21

Forward edges are the
amount that’s left.

Backwards edges are the
amount that’s been used.

Residual networks tell us how to
improve the flow.
•Definition: A path from s to t in the residual

network is called an augmenting path.

•Claim: If there is an augmenting path, we can
increase the flow along that path.

s t
7

5

1
1

1

3
2

21

s t

6

3

2
2

2

3

1

1

4

8

claim:

if there is an augmenting path, we can
increase the flow along that path.

• Easy case: every edge on the path in G
f
 is a forward edge.

• Forward edges indicate how much stuff can still go through.

• Just increase the flow on all the edges!

s t
7

5

1
1

1

3
2

21

s t

6

3

2
2

2

3

1

1

4

3

4
2

8

•Harder case: there are backward edges in the path.
• Here’s a slightly different example of a flow:

s t
2

5

3
1

3

1
2

1

s t

6

3

2
2

0

1

1

1

4

3

I changed some of
the weights and
edge directions.

claim:
if there is an augmenting path, we can
increase the flow along that path.

•Harder case: there are backward edges in the path.
• Here’s a slightly different example of a flow:

s t
2

5

3
1

3

1
2

1

s t

6

3

2
2

0

1

1

1

4

3

I changed some of
the weights and
edge directions.

claim:
if there is an augmenting path, we can
increase the flow along that path.

Now we should NOT increase the flow at
all the edges along the path!

• For example, that will mess up the
conservation of stuff at this vertex.

• In this case we do something a bit different:

s t
2

5

3
1

3

1
2

1

s t

6

3

2
2

0

1

1

1

4

3

We will add
flow here

We will add
flow here

We will remove flow here,
since our augmenting path
is going backwards along
this edge.

claim:
if there is an augmenting path, we can
increase the flow along that path.

1

2
0

s t
2

6

2

2

2
2

1

s t

6

3

2
2

0

1

1

1

4

3
1

2
0

1

• In this case we do something a bit different:

claim:
if there is an augmenting path, we can
increase the flow along that path.

Then we’ll update the residual graph:

s t
2

6

2

2

2
2

1

s t

6

3

2
2

0

1

1

1

4

3
1

2
0

1

s t
2

5

3
1

3

1
2

1

s t

6

3

2
2

0

1

1

1

4

3

Before:

After:

flow value is 2

flow value is 3

2 in, 2 out

1 in, 1 out

Still a legit flow, but with a bigger value!

2 in, 2 out

1 in, 1 out

claim:
if there is an augmenting path, we can
increase the flow along that path.

s t

3 4 3 2

s t

5

2 1 3 0

5 2
5

flow f in G

x=2

4 3 1 2

This is f’

Check that this
always makes a

bigger (and legit)
flow!

Ford-Fulkerson Algorithm

Why does Ford-Fulkerson work?

Min-Cut Max-Flow Theorem

So everything is equal and min cut = max flow!

What have we learned?

•Max s-t flow is equal to min s-t cut!
• The USSR and the USA were trying to

solve the same problem…
•The Ford-Fulkerson algorithm can

find the min-cut/max-flow.
• Repeatedly improve your flow along

an augmenting path.

•How long does this take???

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

0

0

0

0

0

C

C

s

a

b

t
1

C

C
C

C

Choose a really
big number C.

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

0

0

0

0

0

C

C

s

a

b

t
1

C

C
C

C

Choose a really
big number C.

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

1

0

0

1

1

C

C

s

a

b

t

C

C-1
C

C-1

Choose a really
big number C.

1
1

1

The edge (b,a) disappeared
from the residual graph!

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

1

0

0

1

1

C

C

s

a

b

t

C

C-1
C

C-1

Choose a really
big number C.

1
1

1

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

1

1

1

1

0

C

C

s

a

b

t

C-1

C-1C-1

C-1

Choose a really
big number C.

1

1

1

1

1The edge (b,a) re-appeared
in the residual graph!

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

1

1

1

1

0

C

C

s

a

b

t

C-1

C-1C-1

C-1

Choose a really
big number C.

1

1

1

1

1

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

2

1

1

2

1

C

C

s

a

b

t

C-1

C-2C-1

C-2

Choose a really
big number C.

2

2

1

1

1
The edge (b,a) disappeared
from the residual graph!

Why should we be concerned?
Suppose we just picked paths arbitrarily.

s

a

b

t
1

C

C

2

1

1

2

1

C

C

s

a

b

t

C-1

C-2C-1

C-2

Choose a really
big number C.

2

2

1

1

1
The edge (b,a) disappeared
from the residual graph!

This will go on for C steps,
adding flow along (b,a) and

then subtracting it again.

How do we choose which paths to use?

• The analysis we did still works no matter how we
choose the paths.
• That is, the algorithm will be correct if it terminates.

• However, the algorithm may not be efficient!!!
• May take a long time to terminate
• (Or may actually never terminate?)

• We need to be careful with our path selection to make
sure the algorithm terminates quickly.
• Using BFS leads to the Edmonds-Karp algorithm.
• It turns out this will work in time O(nm2) – proof skipped.
• (That’s not the only way to do it!)

One more useful observation

• If all the capacities are integers, then the flows in
any max flow are also all integers.
• When we update flows in Ford-Fulkerson, we’re only

ever adding or subtracting integers.
• Since we started with 0 (an integer), everything stays an

integer.

Network flow is complicated

67

(you're not
responsible for this
content, but it's good
to know about)

Breaking news (thanks Ivan!)

Almost
linear time!

But wait, there’s more!

•Min-cut and max-flow are not just useful for the
USA and the USSR in 1955.

•The Ford-Fulkerson algorithm is the basis for many
other graph algorithms.

• For the rest of today, we’ll see a few:
• Maximum bipartite matching
• Integer assignment problems

Some of the following material shamelessly stolen from Jeff Erickson’s excellent lecture notes:
http://jeffe.cs.illinois.edu/teaching/algorithms/2009/notes/17-maxflowapps.pdf

8/3 Lecture Agenda
● Announcements

● Part 6-3: Max Flow

● 10 minute break!

● Part 6-4: Bipartite Matching

8/3 Lecture Agenda
● Announcements

● Part 6-3: Max Flow

● 10 minute break!

● Part 6-4: Bipartite Matching

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Bipartite Matching

Maximum matching in bipartite graphs

Stanford Students Stanford Swag

• Different students only
want certain items of
Stanford swag (depending
on fit, style, etc).

• How can we make as
many students as possible
happy?

A

B

C

D

E

Maximum matching in bipartite graphs

Stanford Students Stanford Swag

• Different students only
want certain items of
Stanford swag (depending
on fit, style, etc).

• How can we make as
many students as possible
happy?

A

B

C

D

E

Solution via max flow

Stanford Students Stanford Swag

ts

All edges have
capacity 1.

Solution via max flow

Stanford Students Stanford Swag

ts

All edges have
capacity 1.

1

1

1

1

1

1

1

1

1

1

1

1

ts

1

1

1

1

1

1

1

1

1

1

1

1

Solution via max flow
why does this work?

All edges have
capacity 1.

2. Stuff in = stuff out
means that the number
of items assigned to
each student 0 or 1.
(And vice versa).

1. Because the
capacities are all
integers, so are the
flows – so they are
either 0 or 1.

3. Thus, the edges with flow on
them form a matching. (And, any
matching gives a flow).

4. The value of the
flow is the size of the
matching.

Value of this
flow is 4.

5. We conclude that
the max flow
corresponds to a
max matching.

A slightly more complicated example:
assignment problems
•One set X

• Example: Stanford students

•Another set Y
• Example: tubs of ice cream

•Each x in X can participate in c(x) matches.
• Student x can only eat 4 scoops of ice cream.

•Each y in Y can only participate in c(y) matches.
• Tub of ice cream y only has 10 scoops in it.

•Each pair (x,y) can only be matched c(x,y) times.
• Student x only wants 3 scoops of flavor y
• Student x’ doesn’t want any scoops of flavor y’

•Goal: assign as many matches as possible.

Example

Stanford Students Tubs of ice cream

6

6

10

3

3

4
3

1

33

1

1

1

10

10

5

2
2

This person wants 1
scoop of ice cream,

either 1 chocolate or 1
vanilla.

This person wants two
scoops of the sorbet.

How can we serve as much ice cream as possible?

Solution via max flow

Stanford Students Tubs of ice cream

ts

3

1

3

1

1

10

5

2

6

3

10

3

6

4

3

1

10

2

Solution via max flow

Stanford Students Tubs of ice cream

ts

3

1

3

1

1

10

5

2

6

3

10

3

6

4

3

1

10

2

7

6

6

1

3

2

2

1

1

1

3

3

1
4

4 3

3

Give this person
scoop of this ice cream.

1

ts

3

1

3

1

1

10

5

2

6

3

10

3

6

4

3

1

10

2

7

6

6

1

3

2

2

1

1
1

3

3

1
4

4 3

3

Solution via max flow

This student can
have flow at most
10 going in, and so
at most 10 going
out, so at most 10
scoops assigned.

As before, flows correspond to assignments, and
max flows correspond to max assignments.

W
e dish out 17

scoops of ice cream
.

No more than 3
scoops of sorbet
can be assigned.

No more than 10 scoops of

Cherry Garcia can be

assigned to this student.

This technique can even solve problems
that aren't obviously flow/assignment

problems…

84

WARNING

Can my team still top the standings?

Teams can "clinch" playoffs entry

Can my team still top the standings?

This initially seems like a pretty easy greedy
problem!

For the rest of the season, assume that:

● my team wins every game

● any team that is ahead of my team loses
every game (at least until they are not
ahead)

(We're assuming that the team with the most total wins is the overall
winner of the sport, which is not how it usually works.)

Can my team still top the standings?

This initially seems like a pretty easy greedy
problem!

For the rest of the season, assume that:

● my team wins every game

● any team that is ahead of my team loses
every game (at least until they are not
ahead)

(We're assuming that the team with the most total wins is the overall
winner of the sport, which is not how it usually works.)

What's wrong with this?

Can my team still make it?

This initially seems like a pretty easy greedy
problem!

For the rest of the season, assume that:

● my team wins every game

● any team that is ahead of my team loses
every game (at least until they are not
ahead)

These teams might be
playing each other! They
can't both lose…

OK, fine
● when two teams that are

ahead of my team play, the
team that is farthest ahead of
my team loses

OK, fine
● when two teams that are

ahead of my team play, the
team that is farthest ahead of
my team loses

What if they're tied and we
make the wrong choice breaking
the tie? and it bites us later?

Shouldn't it depend on the
schedule of future games?

We've got ourselves a flow problem!

wait, how on earth would we use flow here?

This part is still true
For the rest of the season, assume that:

● our team wins every game

Why? Consider any solution in which our team loses
a future game, but still wins overall. But then we
could have our team win that game instead. It only
moves us up in the standings and some other team
down, so we still win overall.

More greedy stuff
● Every other team either has fewer wins than

us (a "nonthreat"), or doesn't (a "threat")

● Why call them nonthreats? They can never
pass us if we keep winning.
○ this assumes all teams have the same number of

remaining games…

● In future games:
○ Threat-Nonthreat: Make nonthreat win.
○ Nonthreat-Nonthreat: Doesn't matter.
○ Threat-Threat: Here we have to be

careful…

Threat-threat games
● For each threat team: suppose for now that

they win all their threat-threat games, and
that gets them a total of WT wins.

● We already know our best-case number of
wins WU.

● We need to make sure that threat team loses
at least (WT - WU + 1) threat-threat games,
or they will be ahead of (or tied with) us at
the end…

Toward a flow solution…
● For each pair of threat teams, we care about

how many games they have remaining.

● Each such game can give one of those teams
one loss.

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

Our graph will
push losses
around.

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

Our graph will
push losses
around.

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

Our graph will
push losses
around.

why these numbers? we can't give out
more losses (from games of one type)
than there are games of that type.

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

Other side of the
bipartition:
teams!

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

sink

2

3

5

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

why these numbers? we get
no credit for additional
losses beyond what we need

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

sink

2

3

5

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

sink

2

3

5

3

3

2

2

5

5

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

team 1
(needs 2
losses)

team 2
(needs 2
losses)

team 3
(needs 5
losses)

sink

2

3

5

3

3

2

2

5

5

why these numbers? teams
can't lose more games of a
certain type than there are…

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

sink

2

3

5

3

3

2

2

5

5

Then solve!

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

sink

2

3

5

3

3

2

2

5

5

Then solve!

1

4

1

1

23

2

5

2

3

5
1

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

sink

2

3

5

3

3

2

2

5

5

1

4

1

1

23

2

5

2

3

5

If we can fully saturate the
sink, we win. Otherwise we
don't.

1

T1 vs T2
(3 more
games)

T1 vs T3
(2 more
games)

T2 vs T3
(5 more
games)

source

3

2

5

team 1
(needs 2
losses)

team 2
(needs 3
losses)

team 3
(needs 5
losses)

sink

2

3

5

3

3

2

2

5

5

1

4

1

1

23

2

5

2

3

5

Warning: this side of the graph
actually has O(teams2) nodes!

But who cares? This is awesome

1

