
8/10: Final Review!

still true!



Divide and Conquer
Sorting & 
Randomization
Data Structures
Graph Search
Dynamic 
Programming
Greed & Flow

Special Topics

Final Review

not on 
exam!



The final is not in our usual room!

● 200-002 Lane History Corner 
(southeast corner of the Main 
Quad, right by the end of the Oval)

● Terry's mnemonic:
○ 200-002 is a palindrome
○ Nvidia Auditorium is not a 

palindrome

Thanks, Terry.



Small announcements
● I said I'd send the exam to SCPD at 4 PM, so I need the time 

after class today to make any last changes. So I won't be 
available in Huang Basement as usual today, sorry :(

● I will have my usual office hours on Thursday (combined 
online + in person in Durand 319)

● Congrats to those who solved the Pre-HW6 puzzle (Yumou 
was first, also Quentin, Shi Yi, Will so far)

● If you are not sure about your exam arrangements please 
reach out to me + Ziang (OAE) or me + Rishu otherwise
○ note: Rishu is on a plane right now so please include me



Format
● 180 minutes

● Less time pressure than the midterm, but still rigorous / many opportunities to 
show depth of understanding

○ Many 2 pt. T/F, 3 pt. computations… don't get so hung up on one that you 
don't work on a 15 pt. algorithm!

● Covers all six units, but:
○ lighter on Unit 6
○ some more weight on Units 4 and 5 (the stuff since the midterm), but fully 

cumulative (don't just review the stuff since the midterm)

● Emphasis on:
○ stuff we saw a lot vs. minor corners
○ concepts, short computations, examples rather than formal proofs / 

details of proofs from class



Some question types
● Short computations (e.g., work through a small 

example of an algorithm)

● True/false, but no justification needed

● Design (and maybe write code/pseudocode for) an 
algorithm
○ I know these take a while, especially when you have to 

code. So there won't be too many.

● Fill in details of a proof, or find a flaw in a proof



Some stuff that's not on the final
● Karatsuba's and Strassen's algorithms
● Modular arithmetic
● Distributed stuff like HW2 Problem 5
● Amortization
● 0/1 knapsack
● Edit distance
● Top-down vs. bottom-up per se

○ still good to understand the paradigms, but no Qs like "is this top-down or bottom-up?"

● Job scheduling, Huffman encoding
● Bipartite matching
● HW6-only stuff (Stable Marriage, Kruskal's)
● Random details from HWs

○ only a couple exceptions, like Floyd-Warshall

● Coming up with a whole proof from scratch
○ You would be provided scaffolding, and it would be a familiar proof type.



Algorithms you should be friends with

● What do I mean by this?

○ Be able to work through a small example

○ Understand the major details of the 
analysis of running time



Algorithms you should be friends with
● MergeSort
● k-Select
● RadixSort
● QuickSort

○ (know overall idea behind analysis, 
not so much the gross summations 
at the end) 

● Karger's
○ (more the operational details than 

the analysis details)

● Heapsort
● Binary search

● BFS
● Dijkstra's
● DFS / Topological sort
● Kosaraju's
● Bellman-Ford
● Floyd-Warshall (HW5)
● Unbounded knapsack
● Prim's
● Ford-Fulkerson



Data structures you should be friends with
● Arrays and linked lists

○ Not a focus of this course, I know. But remember, e.g., why we 
needed heaps and couldn't just do the same with an array or a 
linked list.

● Hash tables
● Bloom filters
● Min- (or max-) heaps

○ and understand their array-based binary tree implementation
○ Know what a Fibonacci heap is used for

● Red-black trees
○ less so the rules than the key ideas / guarantees of binary 

search trees in general



Lecture 8 Key Points
● Understand how BFS and DFS explore a tree in different ways.

● The notion of finishing time in DFS is very useful. It
○ establishes a topological order
○ powers Kosaraju's Algorithm
○ can be useful in its own right (e.g., influencers)

● Be comfortable with adjacency lists and adjacency matrices as 
representations of a directed graph.

● Know what an SCC is and understand the idea of how 
Kosaraju's Algorithm finds them.



Lecture 8 Miniproblem
Given a directed unweighted graph G, write an algorithm to 
determine:

● the set of vertices in G that could potentially have the largest 
finishing time in a DFS of G.

● the set of vertices in G that could potentially have the smallest 
finishing time in a DFS of G.



Lecture 8 Miniproblem Solution
Consider the metagraph of SCCs. Because this graph is necessarily 
acyclic, any vertex that could have the largest finishing time in a DFS of 
G must be in a "source" SCC (i.e., one that has no incoming edges from 
other SCCs). That is, suppose there were some other SCC pointing into 
our vertex's SCC; then our vertex's SCC would have to be completely 
finished before any node in that other vertex could be finished.

If we run Kosaraju's Algorithm, we naturally recover the metagraph of 
SCCs, and then we can check each SCC to see if it is a source.

Similar reasoning holds for "sink" SCCs and smallest finishing times.



Lecture 9 Key Points
● This was the midterm review. It might not hurt to 

watch that again.

● Also consider reviewing the official solutions to the 
midterm.



Lecture 10 Key Points
● Remember that a negative cycle is a cycle with a total 

negative cost, not just with one or more negative edges.

● Understand the idea behind Bellman-Ford – repeatedly 
"relax" all edges – and how it avoids the problem 
Dijkstra's can have with a negative edge.

● The Mario example is not testable per se but illustrates 
the idea of optimal substructure well.
○ What's the best score we can have when we're this far 

along and in the air / not in the air?



Lecture 10 Miniproblem
Waverly suggests modifying Bellman-Ford as 
follows: instead of choosing an edge order at the 
start and then relaxing edges in that order each 
round, choose a vertex order at the start, and in 
each round, relax all the edges of each vertex (in 
arbitrary order).

Does this work?



Lecture 10 Miniproblem Solution
Waverly suggests modifying Bellman-Ford as 
follows: instead of choosing an edge order at the 
start and then relaxing edges in that order each 
round, choose a vertex order at the start, and in 
each round, relax all the edges of each vertex (in 
arbitrary order).

Does this work? Yes! B-F only cares
that every edge gets visited in every
round. The order of these visitations
might affect how long it takes B-F
to converge, but does not affect
correctness.



Lecture 11 Key Points
● Reviewing edit distance is good practice for DP problems 

in general, but it's not on the final.

● DP solutions are often easier to code in a top-down way 
(start at the original problem, make recursive calls, 
memoize), but a bottom-up method avoids the large call 
stack (and possible stack overflow) and is a better 
long-term choice.

● Understand how unbounded knapsack works – the key 
idea is how we use previous estimates to get current 
estimates.



Lecture 11 Miniproblem 1
In the Mario example, we were able to save space by only 
retaining the previous and current columns of the DP 
array in memory, instead of the whole array.

Can we do something similar with the array for the 
unbounded knapsack problem?



Lecture 11 Miniproblem 1 Solution
In the Mario example, we were able to save space by only 
retaining the previous and current columns of the DP 
array in memory, instead of the whole array.

Can we do something similar with the array for the 
unbounded knapsack problem? Kinda. If the heaviest 
item's weight is w*, we will always need to look w* items 
backward in the DP array in each round. So we can throw 
out any part of the table that is more than w* steps away. 
If w* is small, this could be a big savings. If w* is small, it 
probably doesn't help much.



Lecture 11 Miniproblem 2
In CS109, there is an infamous problem that boils down to 
determining the probability that the sum of 79 die rolls is 300 or 
less.

Let C(t, d) be the number of ways to get a total of exactly t when 
rolling d dice. For instance, C(5, 1) = 1, and C(5, 2) = 4, since in 
order to sum to 5, two dice can come up (1, 4), (2, 3), (3, 2), or (4, 
1).

Write a recurrence for C(t, d). Specifically:
● Don't forget to include any base case(s) you need.
● The non-base-case part of the recurrence should involve a 

sum of multiple terms.



Lecture 11 Miniproblem 2 Solution
Here's one way to frame it:
● Base cases: 

○ C(0, 0) = 1: there is trivially one way to make a total of zero 
with zero dice.

○ C(anything else, 0) = 0.
○ C(anything, anything negative) = 0.
○ C(anything negative, anything) = 0.

● Recurrence:
○ C(t, d) = C(t-1, d-1) + C(t-2, d-1) + C(t-3, d-1) + C(t-4, d-1) 

+ C(t-5, d-1) + C(t-6, d-1)



Example:

C(4, 2) = C(3, 1) + C(2, 1) + C(1, 1) + C(0, 1) + C(-1, 1) + C(-2, 1)
= C(3,1) + C(2, 1) + C(1, 1) + C(0, 1) + 0 + 0

C(3, 1) = C(2, 0) + C(1, 0) + C(0, 0) + C(-1, 0) + C(-2, 0) + C(-3, 0) = 0 
+ 0 + 1 + 0 + 0 + 0

etc.

(There are versions of this that cut down on the recursive calls a 
bit, e.g., having C(1, 1) through C(6, 1) as base cases equaling 1.)





Lecture 11 Miniproblem 3
This is actually the one I didn't fully get through at the 
end of Lecture 10…

We have an undirected, unweighted graph. A lizard is at a 
starting vertex s. There are n eggs, each at a different 
vertex vi. The lizard needs to collect at least k different 
eggs and return to the start, in as few moves as possible.



Lecture 11 Miniproblem 3 Solution
We want to do a "single source shortest paths" BFS on a 
new implicit graph in which each vertex is a tuple of the 
form:
(vertex ID in the original graph, binary string showing 
which eggs have been collected)

Then we find the minimum number of steps needed to 
reach each of the states (start vertex, 110), (start vertex, 
101), (start vertex, 011), and take the minimum of those.



Lecture 12 Key Points
● Understand the common method for showing greedy 

algorithms are correct: we have never ruled out an 
optimal solution.
○ but be wary – it is easy to mess up the key part of 

the proof. e.g. HW6 Question 1 part 4 (walking on a 
graph)

● Be familiar with the activity selection problem.



Lecture 12 Miniproblem 1
Show that the following does not work for the activity 
selection problem:

● Sort the intervals by start time.
● Repeat the following:

○ Select the first activity.
○ Remove all overlapping activities.



Lecture 12 Miniproblem 1 Solution

We should select the orange and green activities, for a 
total score of 2. But the red one has the earliest start 
time, so we choose it and rule out the other two, getting 
only a score of 1.



Lecture 12 Miniproblem 2
Is the following greedy algorithm correct?

Top-Down Topological Sort:

Input: A directed acyclic graph G.
● Repeat the following:

○ For each vertex in G, see how many other 
vertices it can reach.

○ Remove the (or a) vertex in G that can reach the 
most other vertices. Make it the next element in 
the growing topological order.



Lecture 12 Miniproblem 2 Solution
This is very slow, but correct. Informally: Suppose that 
the graph still two vertices x and y for which a correct 
topological ordering must have x before y. Then this 
means there must be a path from x to y. So whatever 
vertices y can reach, x can also reach those vertices, plus 
(at least) y itself. So y cannot be chosen.



Lecture 13 Key Points
● Be able to work through a small example of 

Ford-Fulkerson.
○ Understand what the residual graph is for, and 

how to use it.
○ How do we get a final answer? And how do we find 

a minimum s-t cut if we want one?

● Bipartite matching is not covered, but you should still 
know what a bipartite graph is (from earlier in the 
course)



Lecture 13 Miniproblem
Let's just make up some random graph on the board and 
find its max flow and a min cut!



Lecture 13 Miniproblem Solution
The specific example that I threw together on the board is not really worth 
repeating, but something unexpected did happen, so I'll detail that.

2

4

1 2

2
1

2
1



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

4

1 2

2
1

2
1

residual graph



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

4

1 2

2
1

2
1

residual graph

(arbitrary) 
augmenting 
path, 
bottleneck is 
size 2



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

2

1
2

2
1

2
1

residual graph

reverse 2 units 
of capacity 
along each of 
those edges

add 2 units of 
flow along each 
of those edges

2
2

2

2



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

2

1
2

2
1

2
1

residual graph

2
2

2

2

(another 
arbitrary) 
augmenting 
path, 
bottleneck is 
size 1



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

1

1
2

2
1

2
1

residual graph

3
2

2

3

1



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

1

1
2

2
1

2
1

residual graph

3
2

2

3

1



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

1

1
1

2
1

2
1

residual graph

3

2
2

3

1

1

1 1



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

1

1
1

2
1

2
1

residual graph

3

2
2

3

1

1

1 1

no more 
augmenting 
paths!



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

1

1
1

2
1

2
1

residual graph

3

2
2

3

1

1

1 1
We see the max flow is 4 
– we can find this as the 
amount of flow (not 
capacity!) coming out of 
the source or going into 
the sink.



Lecture 13 Miniproblem Solution

2

4

1 2

2
1

2
1

2

1

1
1

2
1

2
1

residual graph

3

2
2

3

1

1

1 1

In lecture I think I said something like "see how far the flow can go before getting 
stuck, and look at the backwards edges and there's your min cut", but this isn't 
actually true here.

This cut is proof that there are no more augmenting paths, but it's not a min cut.



Lecture 13 Miniproblem Solution

2

1

1
1

2
1

2
1

residual graph

3

1

In lecture I think I said something like "see how far the flow can go before getting 
stuck, and look at the backwards edges and there's your min cut", but this isn't 
actually true here.

This cut is proof that there are no more augmenting paths, but it's not a min cut.

This seems to be a common mistake.

The issue is with the edge I've bolded. It was always 
"backwards", but here we're treating it as if it got 
reversed. 



Lecture 13 Miniproblem Solution
A bit more detail about this kind of situation:
https://stackoverflow.com/questions/4482986/how-can-i-find-the-minimum-cut-on-a-graph-using
-a-maximum-flow-algorithm

You will not be asked to identify an s-t min cut (in the context of Ford-Fulkerson) on the final.

https://stackoverflow.com/questions/4482986/how-can-i-find-the-minimum-cut-on-a-graph-using-a-maximum-flow-algorithm
https://stackoverflow.com/questions/4482986/how-can-i-find-the-minimum-cut-on-a-graph-using-a-maximum-flow-algorithm


Misc. review problems from earlier in the 
course if time

● Show that n+161 is O(n2).

● Find the probability that Karger's succeeds on the above graph.

● Design a data structure (for integers) that meets the usual 
running time guarantees for self-balancing BSTs, but can also 
find its smallest odd element and smallest even element in 
O(1) time.



Show that n+161 is O(n2).



Find the probability that Karger's succeeds on:



Design a data structure (for integers) that meets the usual running 
time guarantees for self-balancing BSTs, but can also find its 
smallest odd element and smallest even element in O(1) time.

We can use a red-black tree accompanied by two additional red-black trees, one 
holding only the even elements, and one holding only the odd elements. We also 
maintain variables holding the smallest elements in the even tree and odd tree.

When we insert into or delete from the structure, we insert into / delete from 
the "main" red-black tree, but we also insert into / delete from either the 
"even" tree or the "odd" tree according to whether the new value is even or odd. 
Then we update the variable holding that tree's smallest element; this update 
takes O(log n) time, and we are handling it in the insertion process so that we 
can meet the O(1) guarantee for returning the smallest odd/even element.

When we are asked for a smallest odd/even element, we return the value of the 
odd/even tree's variable.


