6/22 Lecture Agenda

Announcements

Part 1-2: Divide (and conquer) to multiply

• Part 1–3: MergeSort

The power outage that forced <u>Stanford University</u> to cancel classes for a day had no end in sight Wednesday afternoon, after Pacific Gas & Electric Co. said it could not access an area where repairs are needed to fix an equipment failure due to a nearby grass fire.

SF Chronicle

- The power is out! (But you knew that)
 - We'll do Friday's normally-live Problem Session
 (1:30-2:30) online (in addition to the 7:30-8:30 online version)
 - If power is still going to be out on Monday, we'll switch to 2020-2021 style Zoom until it's better
 - If this drags on, we may bump some deadlines a bit, accordingly
- HW1 coming tonight (perhaps without autograders for coding problem)

More announcements!

- The course site (cs161.stanford.edu) is mostly complete, yay!
- Office hours start Thursday
 - If any CAs need to cancel / reschedule / relocate because of power issues, we'll let you know
 - You can find our Nooks via the link in the upper right of the course site

6/22 Lecture Agenda

Announcements

Part 1-2: Divide (and conquer) to multiply

• Part 1–3: MergeSort

Divide and Conquer

Sorting & Randomization
Data Structures

Graph Search

Dynamic Programming

Greed & Flow

Special Topics

Multiplication

"What is this?" you shout. "The third grade?"

This **is** a perfectly good algorithm...

1	1	
1	1	
1	2	3

6 1 5

But this is CS161! Can we do better?

Integer Multiplication

1233925720752752384623764283568364918374523856298

4562323582342395285623467235019130750135350013753

How fast is the grade-school multiplication algorithm?

(How many one-digit operations?)

???

Integer Multiplication

1

1233925720752752384623764283568364918374523856298 4562323582342395285623467235019130750135350013753

How fast is the grade-school multiplication algorithm?

(How many one-digit operations?)

- At most n^2 multiplications
- At most n^2 additions (for carries)
- Finally, add n different numbers of at most 2n digits

so: $O(n^2)$.

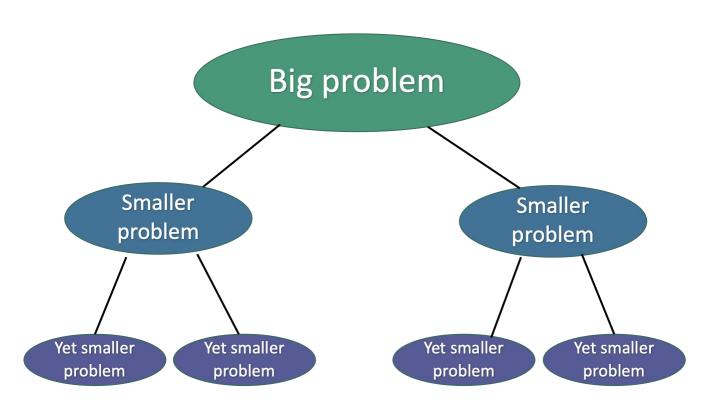
note: we reasonably treated single-digit math operations as O(1)

Can we do better?

- It's not obvious that we should expect to be able to!
- After all, don't we have to pair up each digit in the first number with each digit in the second number? And isn't that inherently $O(n^2)$?
- (Is $O(n^2)$ really so bad?
 - Think of trying to get a group of *n* people to all get along...
 - So, yes. Yes it is. At least for big enough *n*.)

Divide and conquer

Break problem up into smaller (easier) sub-problems



Divide and conquer for multiplication

Break up an integer:

$$1234 = 12 \times 100 + 34$$

$$1234 \times 5678$$

$$= (12 \times 100 + 34) (56 \times 100 + 78)$$

$$= (12 \times 56)10000 + (34 \times 56 + 12 \times 78)100 + (34 \times 78)$$

$$1$$

One 4-digit multiply

Four 2-digit multiplies

More generally

(Suppose n is even!)

Break up an n-digit integer:

$$[x_1x_2\cdots x_n] = [x_1x_2\cdots x_{n/2}] \times 10^{n/2} + [x_{n/2+1}x_{n/2+2}\cdots x_n]$$

$$x \times y = (a \times 10^{n/2} + b)(c \times 10^{n/2} + d)$$

$$= (a \times c)10^{n} + (a \times d + c \times b)10^{n/2} + (b \times d)$$

$$(1)$$

One n-digit multiply

Four (n/2)-digit multiplies

Divide and conquer algorithm

not very precisely...

x,y are n-digit numbers

(Assume n is a power of 2...)

Multiply(x, y):

Base case: I've memorized my 1-digit multiplication tables...

- If n=1:
 - Return xy
- Write $x = a \cdot 10^{\frac{n}{2}} + b$
- Write $y = c \cdot 10^{\frac{n}{2}} + d$

a, b, c, d are n/2-digit numbers

- Recursively compute ac, ad, bc, bd:
 - ac = Multiply(a, c), etc..
- Add them up to get *xy*:
 - $xy = ac 10^n + (ad + bc) 10^{n/2} + bd$

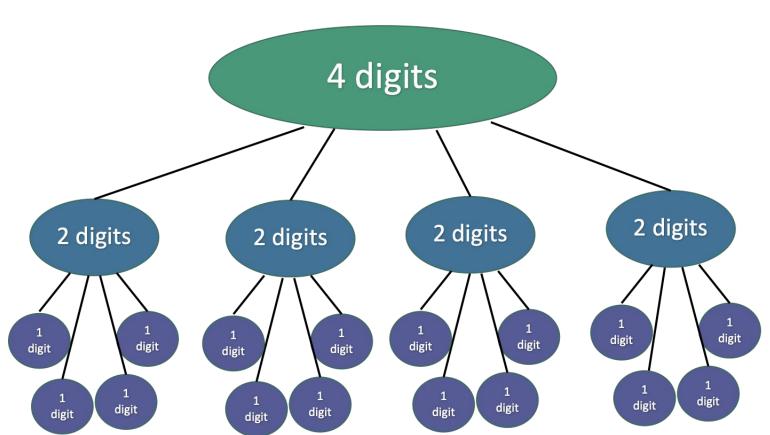
 We saw that this 4-digit multiplication problem broke up into four 2-digit multiplication problems

1234 × 5678

 If you recurse on those 2-digit multiplication problems, how many 1-digit multiplications do you end up with total?

Recursion Tree

16 one-digit multiplies!

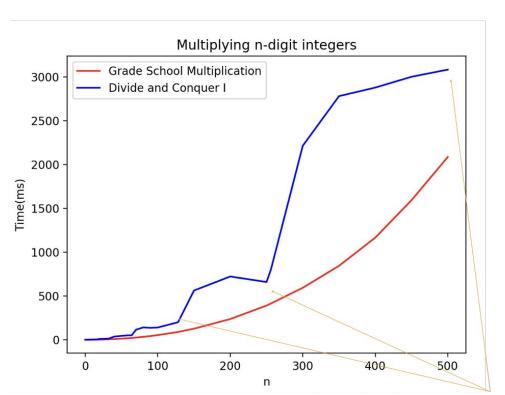


What is the running time?

Better or worse than the grade school algorithm?

- How do we answer this question?
 - 1. Try it.
 - 2. Try to understand it analytically.

1. Try it.



Conjectures about running time?

Doesn't look too good but hard to tell...

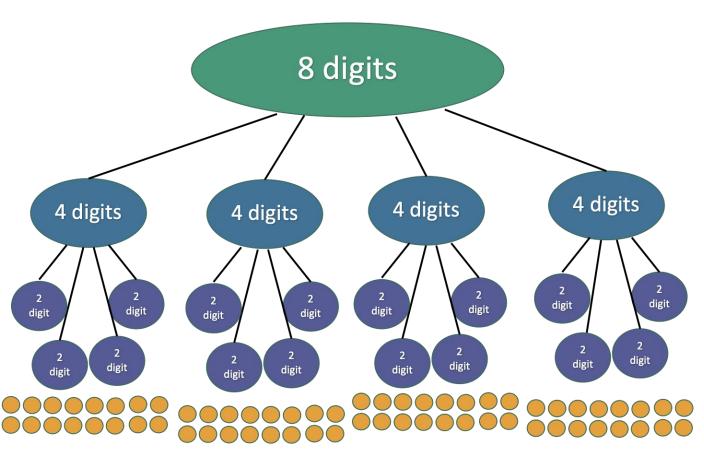
Maybe one implementation is slicker than the other?

Maybe if we were to run it to n=10000, things would look different.

Something funny is happening at powers of 2...

Recursion Tree

64 one-digit multiplies!

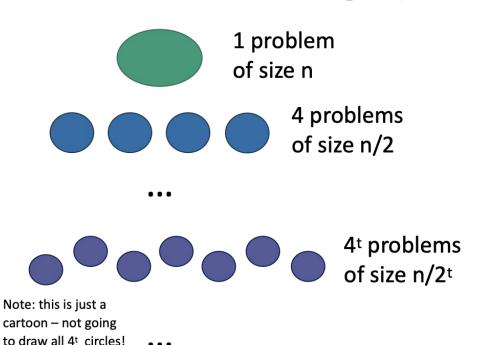


2. Try to understand the running time analytically

Claim:

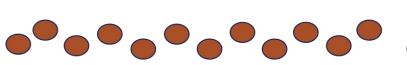
The running time of this algorithm is AT LEAST n² operations.

There are n² 1-digit problems



- If you cut n in half log2(n) times,
 you get down to 1.
- So at level
 t = log2(n)
 we get...

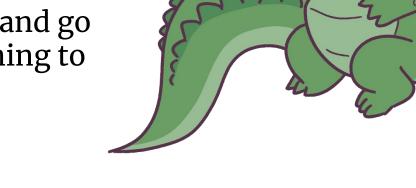
$$4^{\log_2 n} = n^{\log_2 4} = n^2$$
 problems of size 1.



 $\displaystyle rac{n^2}{n}$ problems of size 1

Well SHUCKS

- We tried out an awesome new strategy and it didn't do asymptotically better!
 - It didn't even seem to run faster than grade school multiplication!
- Guess we can pack up and go home. Thanks for coming to CS161!



Or...

Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

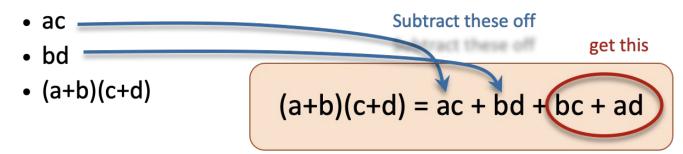
$$xy = (a \cdot 10^{n/2} + b)(c \cdot 10^{n/2} + d)$$

$$= ac \cdot 10^n + (ad + bc)10^{n/2} + bd$$
Need these three things

• If only we could recurse on three things instead of four...

Karatsuba integer multiplication

Recursively compute these THREE things:



Assemble the product:

$$xy = (a \cdot 10^{n/2} + b)(c \cdot 10^{n/2} + d)$$
$$= ac \cdot 10^{n} + (ad + bc)10^{n/2} + bd$$

How would this work?

x,y are n-digit numbers

(Still not super precise; still assume n is a power of 2.)

Multiply(x, y):

- If n=1:
 - Return xy

- a, b, c, d are n/2-digit numbers
- Write $x = a \cdot 10^{\frac{n}{2}} + b$ and $y = c \cdot 10^{\frac{n}{2}} + d$
- ac = Multiply(a, c)
- bd = Multiply(b, d)
- z = **Multiply**(a+b, c+d)
- $xy = ac 10^n + (z ac bd) 10^{n/2} + bd$
- Return xy

What's the running time?

3 problems of size n/2

3^t problems of size n/2^t

- If you cut n in half log2(n) times, you get down to 1.
- So at level
 t = log2(n)
 we get...

$$3^{\log_2 n} = n^{\log_2 3} \approx n^{1.6}$$
 problems of size 1.

Note: this is just a cartoon – not going to draw all 3t circles!

work at the higher levels!

n1.6

problems

turns out to be okay.

of size 1

Can we do better?

- Toom-Cook (1963): instead of breaking into three n/2-sized problems, break into five n/3-sized problems.
 - Runs in time $O(n^{1.465})$

Optional: Try to figure out how to break up an n-sized problem into five n/3-sized problems! (Hint: start with nine n/3-sized problems).

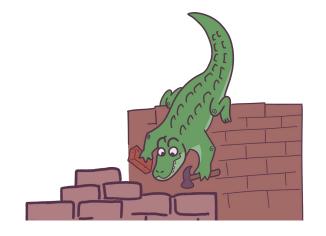
Optional: Given that you can break an n-sized problem into five n/3-sized problems, where does the 1.465 come from?

- Schönhage–Strassen (1971):
 - Runs in time $O(n\log(n)\log\log(n))$
- Furer (2007)
 - Runs in time $n\log(n) \cdot 2^{O(\log^*(n))}$
- Harvey and van der Hoeven (2019)
 - Runs in time $O(n\log(n))$

[This is just for fun, you don't need to know these algorithms!]

But are these practical?

 From a talk by David Harvey, regarding their O(n log n) multiplication algorithm based on Discrete Fourier Transforms: (https://www.youtube.com/watch?v=FKGRc867j10)



For what *n* do we win?

The argument in our paper only kicks in for

 $n \geqslant 2^{1729^{12}} \approx 10^{214857091104455251940635045059417341952}$

This can probably be improved (a lot).

Isn't $O(n \log n)$ supposed to be better than $O(n^2)$?

- Remember that the definition only guarantees that there is some constant past which some multiple is an upper bound.
- The very constant factors and multipliers that big-O ignores might be huge in practice!

So are these algorithms useless then?

- Karatsuba isn't going to take the third grade by storm...
 - but it is useful in cryptography!
 - and cryptography lets you buy things on your phone!
 - Also, CPython (the most common implementation) uses it to multiply sufficiently large numbers!
- Even the $O(n \log n \log \log n)$ algorithm can be used in practice...
 - and remember that even it may have seemed useless once!

6/22 Lecture Agenda

Announcements

- Part 1-2: Divide (and conquer) to multiply
- Part 1–3: MergeSort

Divide and Conquer

Sorting & Randomization
Data Structures

Graph Search

Dynamic Programming

Greed & Flow

Special Topics

The sorting problem

Input: A list of comparable objects

• i.e., each object has a (not necessarily unique) value, and there is a way to compare any two values.

Output: A list of the same objects, but arranged such that their values are in nondecreasing order.

because of ties

Some flavors:

- Is the sort **stable**? (i.e. is it guaranteed that any two elements with the same value stay in the same relative order even after sorting?)
- Is the implementation in-place or does it make a new copy?

So many sorts of sorts!

We're not going to cover some, like bubble and selection, because IMO they're not really important. (Insertion will come up on a pre-HW or HW, maybe)

Each one we cover in CS161 will illustrate a different idea (kinda like how it's good to know different types of programming languages)

What do major languages actually use to sort?

C++: Introsort (a hybrid of Quicksort, Heapsort, and Insertion Sort)

Java: Quicksort (for primitives), a modified MergeSort (for objects)

JavaScript: Implementation-dependent

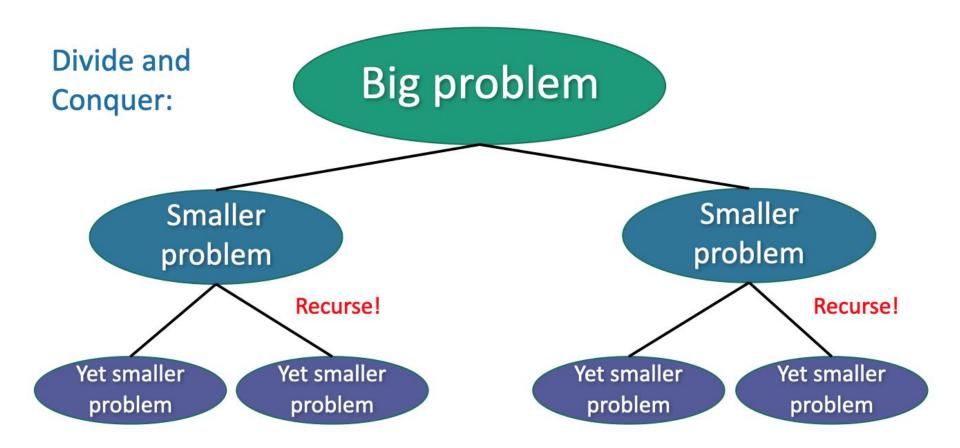
Python: Timsort (a hybrid of Insertion Sort and MergeSort)

One takeaway from this: maybe there is no universally best sort?

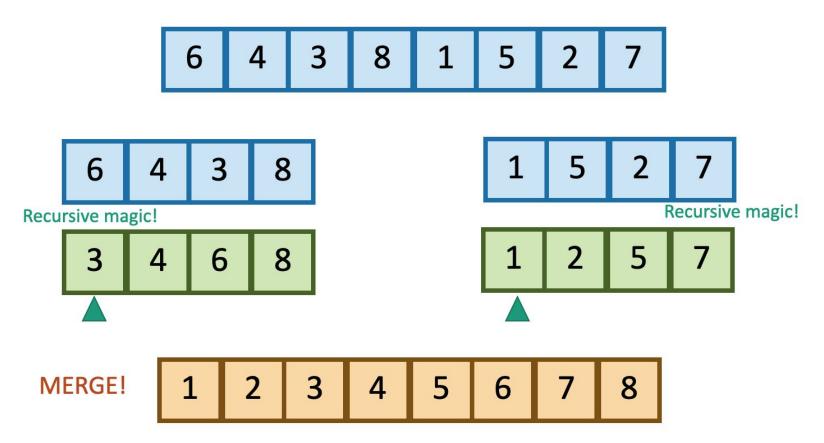
Why MergeSort?

- It's asymptotically fast
- It's (IMO) one of the more beautiful sorts
- It includes a Merge step that is a powerful idea worth knowing about
- It illustrates "divide and conquer" well

Recall from last time:



MergeSort

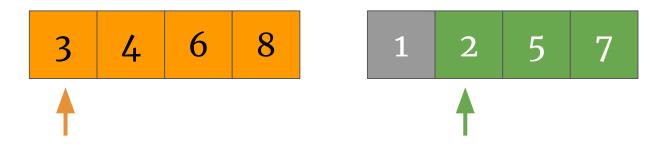


The Merge Step

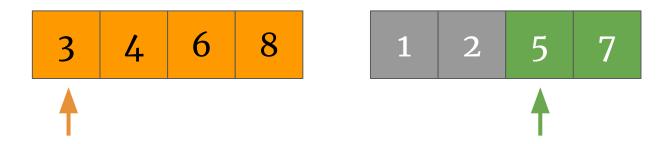
- Input: Two sorted lists.
- Output: A single sorted list containing all the elements of the input lists.

Ex: Input [3, 4, 6, 8], [1, 2, 5, 7] Output [1, 2, 3, 4, 5, 6, 7, 8]

- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.

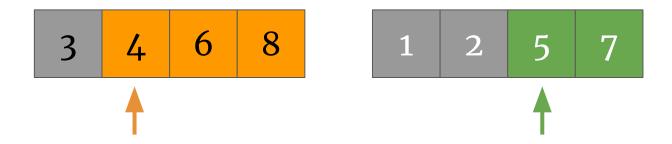


- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.

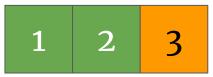


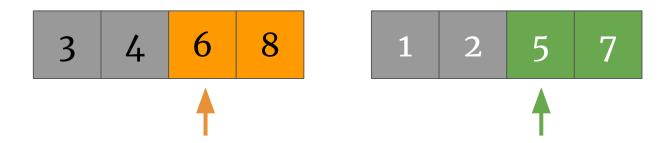
- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.

1 2

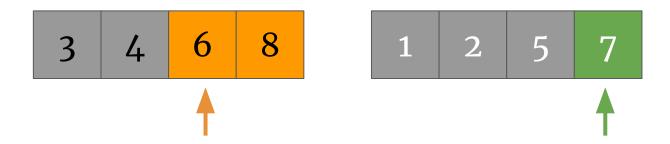


- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.

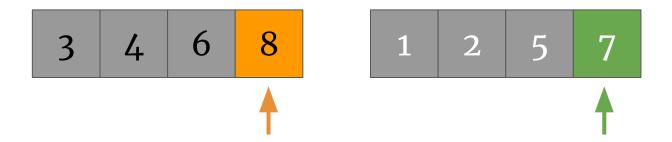




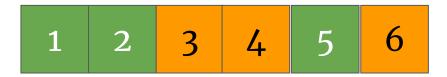
- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.

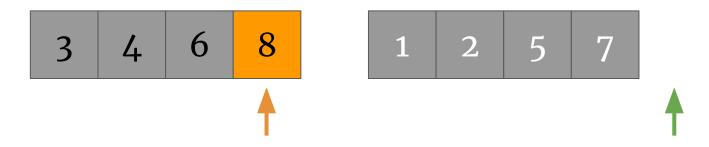


- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.

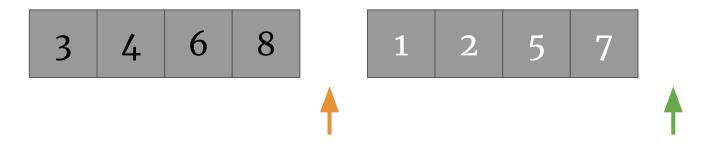


- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.

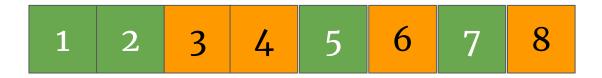




- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.



- Check the elements pointed to by the two pointers.
- Add the smallest one to the new list. Advance that pointer.



Key Ideas

- Only works because the two input lists are already sorted.
 - But what sorted them? A deeper call to MergeSort!
- Runs in O(n) time.
 - Intuitively, this is because each step moves one of the pointers ahead, and they can collectively move only 2n steps. And comparing two values takes constant time.
- Works fine with ties, but think of what you would need to do to ensure that the sort remains stable...

MergeSort Pseudocode

MERGESORT(A):

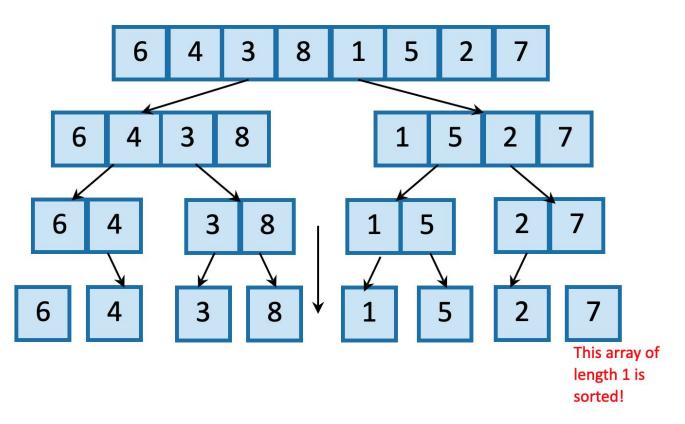
- n = length(A)
- if n ≤ 1: If A has length 1, It is already sorted!
 - return A
- L = MERGESORT(A[0 : n/2])
- R = MERGESORT(A[n/2 : n])
- return MERGE(L,R) Merge the two halves

Sort the left half

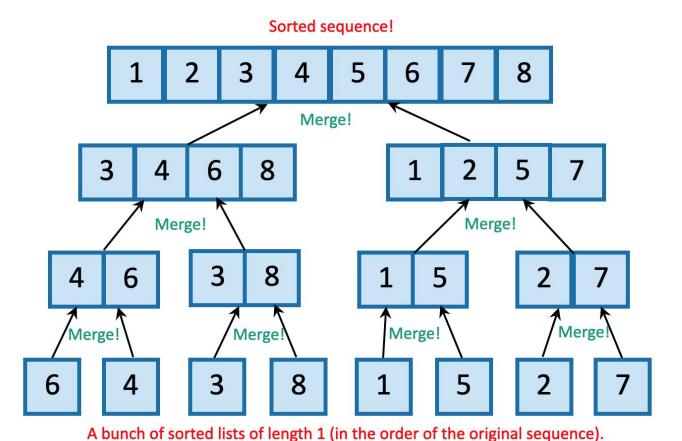
Sort the right half

What actually happens?

First, recursively break up the array all the way down to the base cases



Then, merge them all back up!



But

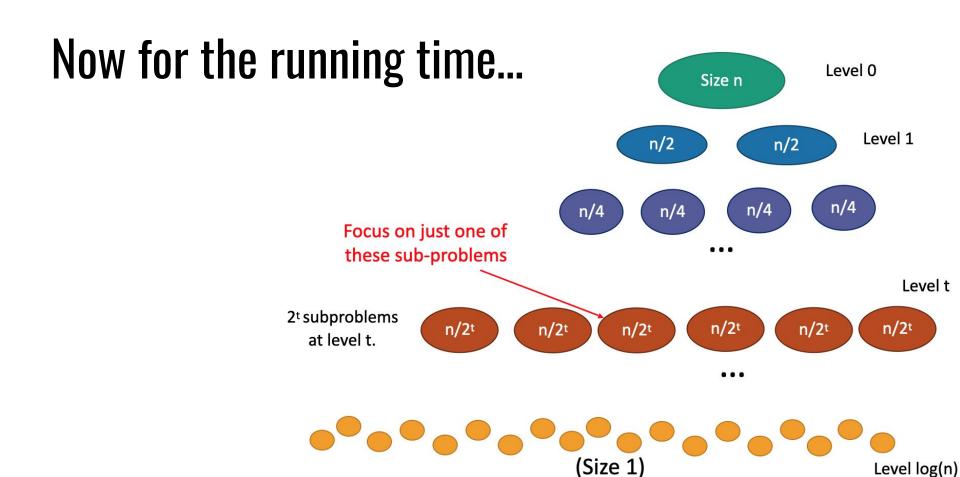
- Is it correct?
 - Yes! We can prove it!
- Is it fast?
 - \circ Yes! Runs in O($n \log n$) time. We can prove it!
 - Next time, we'll see that this is actually the best we can do for sorts that operate by comparing elements (as MergeSort does).

Induction on recursion levels

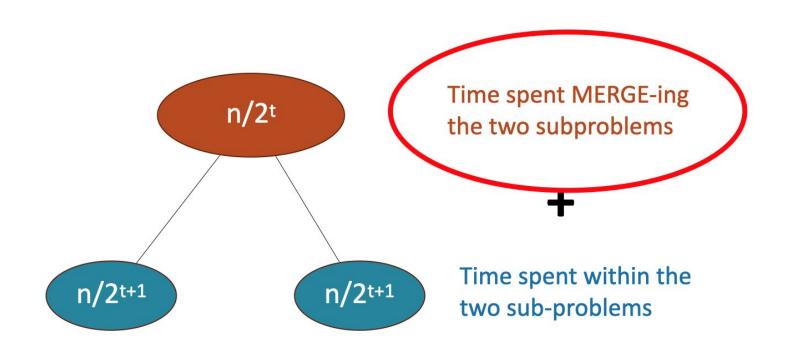
We assume here that n is an integer power of 2. It's not hard to adapt the idea, though.

- Claim: When we are i levels up from the bottom, every chunk of size 2^i is sorted. (Note: we break the list into $n / 2^i$ chunks of size 2^i each. The claim is not about arbitrary blocks of size 2^i .)
- Base case: 0 levels up from the bottom, each chunk of size 1 is trivially sorted.
- **Inductive step:** Suppose the claim holds for all $0 \le n < k$. We will show that it holds for n = k.
 - Consider any chunk of size 2^k . It is formed from merging the two sorted lists of size 2^{k-1} in the level below it.
 - Inductively, we know these are sorted.
 - As long as Merge correctly merges sorted lists (which we could also prove if we wanted), then the chunk of size 2^k is sorted.

Then at the end of the procedure, in particular, the overall list is sorted!



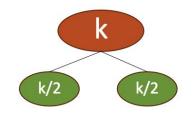
How much work in this sub-problem?

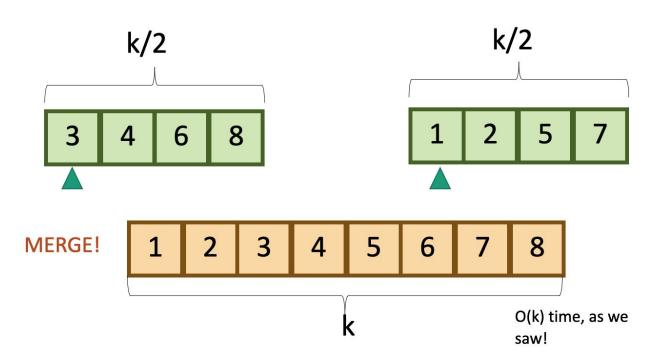


How much work in this sub-problem?

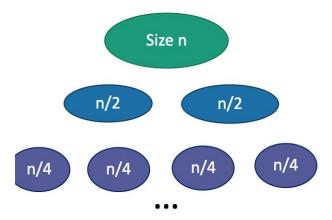
Let k=n/2^t... Time spent MERGE-ing the two subproblems Time spent within the k/2 k/2 two sub-problems

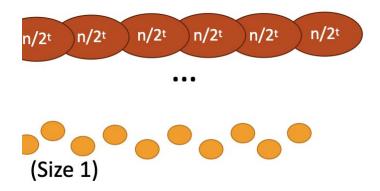
How long does it take to MERGE?

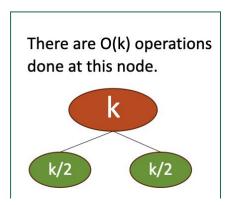




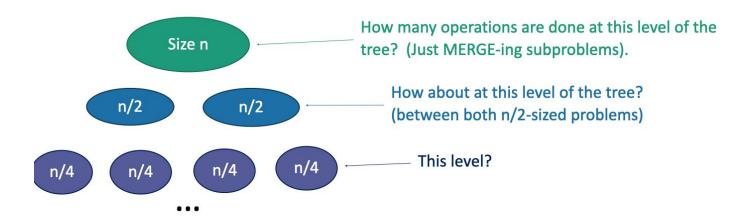
Recursion tree

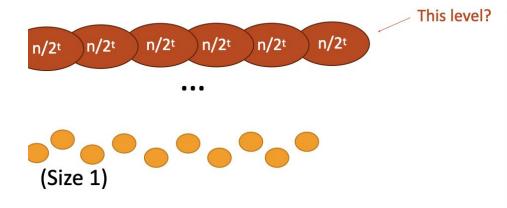


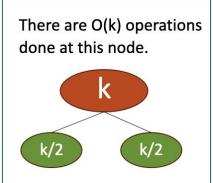




Recursion tree







Recursion tree Size of Amount of work # each at this level Level problems problem O(n) Size n 0 1 n n/2 n/2 n/2 O(n) 2 1 2 n/4 O(n)4 n/4 n/4 n/4 n/4 ••• ... n/2t n/2t n/2t n/2t t n/2^t $n/2^t$ n/2t O(n) **2**^t log(n) (Size 1) O(n)n

Total runtime...

O(n) steps per level, at every level

log(n) + 1 levels

O(n log(n)) total!

The running time, viewed as a recurrence...

Let T(n) denote the running time of a procedure (in this case, MergeSort).

For MergeSort, we can define T(n) recursively as:

$$T(n) = 2T(n/2) + O(n)$$
work of two work of subproblems of merging half size

This depends on itself! It's a **recurrence**.

Solving divide-and-conquer recurrences

We argued that this recurrence T(n) = 2T(n/2) + O(n) solves to $T(n) = O(n \log n)$.

Is there a more general way of solving this kind of recurrence without doing all that work again?

See Homework 1, Problem 3!

Solving other recurrences

- What if the recurrence has some other form?
 Or what if we want an exact solution?
- Unfortunately, there is no general all-purpose technique for this. We'll look at some possibilities here and in the next lecture.

Some conventions about T(n)

- *T*(*n*) represents a running time, so it is always nonnegative.
- *n* represents something like the size of the input, so it is always nonnegative.

$$T(n) = T(n-1) + 1, T(1) = 1$$

• One way: start at the top, unroll, find a pattern.

$$T(n)$$

$$= T(n-1) + 1 \quad one 1$$

$$= (T(n-2) + 1) + 1 \quad two 1s$$
...
$$= T(1) + 1 + ... + 1 \quad n-1 1s$$

Therefore T(n) = n

T(n) = T(n-1) + 1, T(1) = 1

• Or: start at the bottom and find the pattern.

$$T(1)=1$$

$$T(2) = T(1) + 1 = 1 + 1 = 2$$

$$T(3) = T(2) + 1 = 2 + 1 = 3$$

etc. (we could make this and the previous argument more rigorous via induction)

Therefore T(n) = n

$$T(n) = T(n-1) + n, T(1) = 1$$

• How about this one?

The secret to CS theory (and math)

- Work some small examples
- Spot a pattern
- Prove the pattern



$$T(n) = T(n-1) + n, T(1) = 1$$

•
$$T(2) = T(1) + 2 = 1 + 2 = 3$$

•
$$T(3) = T(2) + 3 = 3 + 3 = 6$$

•
$$T(4) = T(3) + 4 = 6 + 4 = 10$$

1, 3, 6, 10... this looks familiar

Another secret to CS theory (and math)

The On-Line Encyclopedia of Integer Sequences® (OEIS®)

	er a sequen	ice, wor	d, or seque	nce number:	_
1,3,6,10					
	Search	Hints	Welcome	Video	

If you have a sequence, put it into oeis.org. Congrats! Now you are a number theorist

Search: seq:1,3,6,10

Displaying 1-10 of 533 results found.

page 1 2 3 4 5 6 7 8 9 10 ... 54

Sort: relevance | references | number | modified | created | Format: long | short | data

A000217

Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n.

(Formerly M2535 N1002)

0, **1**, **3**, **6**, **10**, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431 (list; graph; refs; listen; history; text; internal format)

T(n) = n(n+1) / 2you say? Hm, very interesting

There are all kinds of fun and beautiful sequences to discover!

T(n) = T(n-1) + n, T(1) = 1

- Claim: T(n) = n(n+1) / 2, for all $n \ge 1$.
- Base case: T(1) = 1 (given!)
- **Inductive step:** Suppose the claim holds for all $1 \le n < k$. We'll show it holds for n = k:
 - T(k) = T(k-1) + k (definition)
 - T(k) = (k-1)(k) / 2 + k (inductive step with n-1)
 - $T(n) = k^2 / 2 k / 2 + k$ $= k^2 / 2 + k / 2 = (k^2 + k) / 2 = k(k+1) / 2$

Next week!

- How fast can we find the median of a list?
 - Mind-blowing algorithm!
- We can't beat $O(n \log n)$ for sorting!
- We can beat $O(n \log n)$ for sorting!
- Randomness is our friend and helps us sort!
- Absolutely amazing randomized algorithm for graph cuts (Ian's favorite algorithm)