6/22 Lecture Agenda

e Announcements

e Part1-2: Divide (and conquer) to multiply

e Part1-3: MergeSort

The power outage that forced Stanford University to cancel classes for a day

had no end in sight Wednesday afternoon, after Pacific Gas & Electric Co.
' said it could not access an area where repairs are needed to fix an
A n n 0 u n c e m e n tS " equipment failure due to a nearby grass fire.
SF Chronicle
e The is out! (But you knew that)

o We'll do Friday's normally-live Problem Session
(1:30-2:30) online (in addition to the 7:30-8:30 online
version)

o If power is still going to be out on Monday, we'll switch

to 2020-2021 style Zoom until it's better

o If this drags on, we may bump some deadlines a bit,
accordingly

e HW1 coming tonight (perhaps without autograders for
coding problem)

More announcements!

e The course site (cs161.stanford.edu) is mostly
complete, yay!

e Office hours start Thursday
o If any CAs need to cancel / reschedule /
relocate because of power issues, we'll let

you know
o You can find our Nooks via the link in the

upper right of the course site

6/22 Lecture Agenda

e Announcements

e Part1-2: Divide (and conquer) to multiply

e Part1-3: MergeSort

Divide and Conquer
Sorting & Randomization

W O R“- D ﬂ 5'8 Graph Search

Dynamic Programming
Divide (and Conquer) to Multiply Greed & Flow

Special Topics

Multiplication bl
1 2 3 .
"What iS this?ll x 4 5 BUt thlS lS
youshout."The CS161! Can
third grade?" we do
6 1 5
This is a perfectly 4920 better?

good algorithm...

Integer Multiplication
n

A

[
1233925720752752384623764283568364918374523856298
X 4562323582342395285623467235019130750135350013753

|

I 27?77
How fast is the grade-school £r

multiplication algorithm?

(How many one-digit operations?)

Integer Multiplication
n

A

[
1233925720752752384623764283568364918374523856298
X 4562323582342395285623467235019130750135350013753

|

How fast is the grade-school e At most n? multiplications

multip“cation a|g0r|thm? e At most n? additions (for CarriES)
e Finally, add n different numbers
of at most 2n digits

so: 0O(n?).

note: we reasonably treated single-digit
math operations as 0(1)

(How many one-digit operations?)

Can we do better?

It's not obvious that we should expect to be able to!

After all, don't we have to pair up each digit in the first
number with each digit in the second number? And
isn't that inherently O(n?)?

(Is O(n?) really so bad?

o Think of trying to get a group of n people to all get
along...

o So,yes. Yes it is. At least for big enough n.)

Divide and conquer

Break problem up into smaller (easier) sub-problems

Big problem

Smaller Smaller
problem problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Divide and conquer for multiplication

Break up an integer:

1234 =12X100 + 34

1234 X 5678
= (12X 100+34) (56 X 100 + 78)
=(12 X 56)10000+(34 X 56 + 12 X 78)100+(34 X 78)
|) |] | J |)
| 1 1 ||

O 0 6 O

One 4-digit multiply :> Four 2-digit multiplies

More generally (Suppose n s

even!)

r

_

Break up an n-digit integer:

[X1%2 -y = [B122 -+ Ty 2] X 10™/2 + [Zn/2+1%ns242 T

~N

J

X

x y = (ax 10™2 +b)(c x 102 + d)

= (ax ¢)10™ + (@ x d+ ¢ x b)10™/2 + (b x d)

'!

D 060 o

One n-digit multiply q Four (n/2)-digit multiplies

Divide and conquer algorithm
not very precisely...

x,y are n-digit numbers (Assume n is a power of 2...)

MU'tIplY(X, y) Base case: I've memorized my
o |f n=1: / 1-digit multiplication tables...
e Return xy

e Write x = a 10Z + b

a,b,c dare
n/2-digit numbers

« Writey = ¢ 102 + d
 Recursively compute ac, ad, bc, bd:
« ac = Multiply(a, c), etc..

o Add them up to get xy:
e Xy =ac 10n+ (ad + bc) 10/2 + bd

« We saw that this 4-digit multiplication problem
broke up into four 2-digit multiplication problems

1234 X 5678

e If you recurse on those 2-digit multiplication
problems, how many 1-digit multiplications do you
end up with total?

. 16 one-digit
Recursion Tree multiplies!

2 digits 2 digits 2 digits 2 digits

What is the running time?

 Better or worse than the grade school algorithm?

« How do we answer this question?
1. Tryit.
2. Try to understand it analytically.

1.

3000 -
2500 -

2000 A

Time(ms)

1000 -

500 -

Try it.

Multiplying n-digit integers

1500 -

—— Grade School Multiplication
—— Divide and Conquer |

0 100 200 300 400 500

Conjectures about
running time?

Doesn’t look too good
but hard to tell...

Maybe one implementation
is slicker than the other?

Maybe if we were to run it
to n=10000, things would
look different.

Something funny is happening at powers of 2...

. 64 one-digit
Recursion Tree multiplies!

8 digits

4 digits 4 digits 4 digits 4 digits

2. Try to understand the running
time analytically

Claim:

The running time of this algorithm is
AT LEAST n2 operations.

There are n2 1-digit problems

. 1 problem
of size n
0000 ..

4t problems
‘ ““ ‘ ‘ of size n/2t

Note: this is just a
cartoon — not going
todraw all 4t circles! qq0

of size 1

K If you cut nin half \

log2(n) times,
you get down to 1.

e So at level
t = log2(n)
we get...

4log2n — nlog24 - n

K problems of size 1. /

n2 problems

Well SHUCKS

e We tried out an awesome new
strategy and it didn't do
asymptotically better!

o Itdidn't even seem to run
faster than grade school
multiplication!

e Guess we can pack up and go
home. Thanks for coming to
CS161!

o Or...

Divide and conquer can actually make progress

 Karatsuba figured out how to do this better!

(a-10™2 +b)(c-10™2 + d)
=ac- 10" + ad—l—bc 0”/2—|-bd

Need these three things

LY

e If only we could recurse on three things instead of four...

Karatsuba integer multiplication

o Recursively compute these THREE things:

e AaC Subtract these off
. bd get this

« Assemble the product:

zy = (a- 102 4+ b)(c- 10"/2 + d)
= ac- 10" + (ad + bc)10™/2 + bd

How would this work?

(Still not super precise; still assume n

X,y are n-digit numbers is a power of 2.)

Multiply(x, y):

e If n=1:

e Return xy a,b,c,dare
n/2-digit numbers

«Writex=a 102+ bandy=c 102 + d
 ac = Multiply(a, c)

« bd = Multiply(b, d)

« z = Multiply(a+b, c+d)

e Xy =ac 10"+ (z—ac - bd) 10n/2 + bd

e Return xy

What's the running time?

‘ 1 problem ﬁlf you cut n in half \

of size n log2(n) times, you get
down to 1.
‘ ‘ ‘ 3 problems
of size n/2 + Soat level
t = log2(n)
e we get...

3t problems topan o wilop s o 16
‘ ‘ ‘ ‘ ‘ ‘ of size n/2t K prgb(;izr’;s_o?:ii; iv n/

Note: this is just a

cartoon — not going
todraw all 3t circles! oo We aren’t accounting for the

work at the higher levels!
pnl:6 But we’ll see later that this
problems turns out to be okay.

.‘..‘.““ of size 1

Can we do better?

» Toom-Cook (1963): instead of breaking into three n/2-sized
problems, break into five n/3-sized problems.

« Runsin time O(n1'465)

Optional: Try to figure out how
to break up an n-sized problem
into five n/3-sized problems!
(Hint: start with nine n/3-sized
problems).

Optional: Given that you can
break an n-sized problem
into five n/3-sized problem:s,
where does the 1.465 come
from?

« Schonhage—Strassen (1971):
« Runs in time O(nlog(n)loglog(n))

e Furer (2007)
« Runs in time nlog(n) - 2000z (1)

« Harvey and van der Hoeven (2019) [This is just for fun, you
don’t need to know

« Runs in time O(nlog(n)) these algorithms!]

But are these practical?

e From a talk by David Harvey, regarding
their O(n log n) multiplication algorithm
based on Discrete Fourier Transforms:

(https: //www.youtube.com/watch?v=FKGRc867j 10)

For what n do we win?

The argument in our paper only kicks in for

n > 2“ ~ 1Of‘14857@911If‘r&éfw‘fwf‘fﬂ‘MOf},?r)()é,r»(]‘rv‘f“}173‘-’41‘35.".

This can probably be improved (a lot).

Isn't O(n log n) supposed to be better than 0(n?)?

e Remember that the definition only
guarantees that there is some constant past
which some multiple is an upper bound.

e The very constant factors and multipliers
that big-0 ignores might be huge in
practice!

So are these algorithms useless then?

e Karatsubaisn't going to take the third grade by storm...
o but it is useful in cryptography!
m and cryptography lets you buy things on your
phone!
o Also, CPython (the most common implementation)
uses it to multiply sufficiently large numbers!

e Even the O(nlog nloglog n) algorithm can be used in
practice...
o and remember that even it may have seemed useless
once!

6/22 Lecture Agenda

e Announcements

e Part1-2: Divide (and conquer) to multiply

e Part1-3: MergeSort

Divide and Conquer
Sorting & Randomization

WORLDAME=3N ...

Dynamic Programming
MergeSort Greed & Flow

Special Topics

The sorting problem

Input: A list of comparable objects
e i.e, each object has a (not necessarily unique) value, and
there is a way to compare any two values.

Output: A list of the same objects, but arranged such that their
values are in nondecreasing order.

because of ties
Some flavors:

e Isthe sort stable? (i.e. is it guaranteed that any two
elements with the same value stay in the same relative
order even after sorting?)

o Istheimplementation in-place or does it make a new copy?

S0 many sorts of sorts!

We're not going to cover
some, like bubble and
selection, because IMO they're
not really important.
(Insertion will come up on a
pre-HW or HW, maybe)

Each one we cover in CS161
will illustrate a different idea
(kinda like how it's good to
know different types of
programming languages)

PRESS STAHRT

What do major languages actually use to sort?

C++: Introsort (a hybrid of Quicksort, Heapsort, and
Insertion Sort)

Java: Quicksort (for primitives), a modified MergeSort (for
objects)

JavaScript: Implementation-dependent

Python: Timsort (a hybrid of Insertion Sort and MergeSort)

One takeaway from this: maybe there is no universally
best sort?

Why MergeSort?
e It's asymptotically fast

e It's (IMO) one of the more beautiful sorts

e Itincludes a Merge step that is a powerful
idea worth knowing about

e Itillustrates "divide and conquer" well

e Recall from last time:

Divide and
Conquer:

Big problem

Smaller Smaller
problem problem

Recurse! Recurse!

Yet smaller Yet smaller Yet smaller Yet smaller
problem problem problem problem

MergeSort

EOBDBEnn
LD CEET
Recursive magic!

S[ele]e

MERGE!Z 35 6

The Merge Step

e Input: Two sorted lists.

e Output: A single sorted list containing all
the elements of the input lists.

Ex: Input [3, 4, 6, 8], [1, 2, 5, 7]
Output [1, 2, 3, 4, 5, 6, 7, 8]

*

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

*

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

*

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

*

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

*

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

Sl
+ +

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

e
+ +

Repeatedly do the following:
e Check the elements pointed to by the two pointers.
e Add the smallest one to the new list. Advance that

pointer.

- > IRy - K

e
+ +

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

ESEX - | - [E < KB

e
+ +

Repeatedly do the following:

e Check the elements pointed to by the two pointers.

e Add the smallest one to the new list. Advance that
pointer.

o > RIS - K 7 BN

Key Ideas

e Only works because the two input lists are already
sorted.
o But what sorted them? A deeper call to MergeSort!

e Runsin O(n) time.

o Intuitively, this is because each step moves one of
the pointers ahead, and they can collectively move
only 2n steps. And comparing two values takes
constant time.

e Works fine with ties, but think of what you would need
to do to ensure that the sort remains stable...

MergeSort Pseudocode

MERGESORT(A):
e n = length(A)
eifn<1: If A has length 1,
_ It is already sorted!
e return A

Sort the left half

e L= MERGESORT(A[0 : n/2])
« R = MERGESORT(A[n/2:n)
e return MERG E(L,R) Merge the two halves

Sort the right half

What actually happens?

First, recursively break up the array all the way down to the
base cases

6|4‘ |8|1 5|

/

6

43|

8

=

-br/-b

/
3

8
\
8

|

=

2|7

E

N

K

:

\
5

Y
2

7

This array of
length 1is
sorted!

Then, merge them all back up!

Sorted sequence!

;MergeR /Merge% Merge! Merge!

CINEIR EN AR EN R R 3 b KA

A bunch of sorted lists of length 1 (in the order of the original sequence).

But

o Isitcorrect?
o Yes! We can prove it!

o Isitfast?
o Yes! Runs in O(nlog n) time. We can prove it!
o Next time, we'll see that this is actually the
best we can do for sorts that operate by
comparing elements (as MergeSort does).

We assume here that n is an
- - integer power of 2. It's not
Induction on recursion levels hard to adapt the dea,
though.
e Claim: When we are i levels up from the bottom, every chunk of size 2! is sorted.

(Note: we break the list inton / 2! chunks of size 2! each. The claim is not about
arbitrary blocks of size 2'.)

e Base case: 0 levels up from the bottom, each chunk of size 1 is trivially sorted.

e Inductive step: Suppose the claim holds for all 0 < n < k. We will show that it
holds for n = k.
o Consider any chunk of size 2. It is formed from merging the two sorted lists
of size 2%°*in the level below it.
o Inductively, we know these are sorted.
o Aslong as Merge correctly merges sorted lists (which we could also prove if
we wanted), then the chunk of size 2* is sorted.

Then at the end of the procedure, in particular, the overall list is sorted!

Now for the running time... <D -

Focus on just one of 0 @ @ @

these sub-problems

Level t

2tsubproblems
at level t.

(Size 1) Level log(n)

How much work in this sub-problem?

Time spent MERGE-ing
the two subproblems

Time spent within the
two sub-problems

How much work in this sub-problem?

Let k=n/2t...

Time spent MERGE-ing
the two subproblems

Time spent within the
two sub-problems

How long does it
take to MERGE?

° o

k/2 k/2
] A
(\ (\

3|4‘6|8‘ |1‘2|5|7
yy A

MERGE! 1|2‘3|4|5 6|7|8

L O(k) time, as we
saw!

Recursion tree

There are O(k) operations
done at this node.

v e®e%® &
(Size 1)

Recursion tree

How many operations are done at this level of the
~ tree? (Just MERGE-ing subproblems).

How about at this level of the tree?
(between both n/2-sized problems)

This level?

st This level?

w There are O(k) operations
done at this node.

Recursion tree

S;Z:c::f Amount of work
problems problem at this level
1 n O(n)
2 n/2 = O(n)
4 n/4 O(n)
2t n/2t = O(n)
n | 1 O(n)

Total runtime...

e O(n) steps per level, at every level

e log(n) + 1 levels

e O(nlog(n)) total!

The running time, viewed as a recurrence...

Let T(n) denote the running time of a procedure (in this
case, MergeSort).

For MergeSort, we can define T(n) recursively as:

T(n) = 2T(n/2) + O(n)

work of two work of
subproblems of = merging
half size

This depends on itself! It's a recurrence.

Solving divide-and-conquer recurrences

We argued that this recurrence T(n) = 2T(n/2) + O(n)
solves to T(n) = O(n log n).

Is there a more general way of solving this kind of
recurrence without doing all that work again?

e See Homework 1, Problem 3!

Solving other recurrences

e What if the recurrence has some other form?
Or what if we want an exact solution?

e Unfortunately, there is no general all-purpose
technique for this. We'll look at some
possibilities here and in the next lecture.

Some conventions about T(n)

e T(n)represents a running time, so it is always
nonnegative.

e nrepresents something like the size of the
input, so it is always nonnegative.

T(n)=T(n-1)+1,T(1)=1

e One way: start at the top, unroll, find a pattern.

T(n)
=T(n-1) +1

(n-1) +1 ones Therefore
=(T(n-2)+ D +1 o1 T(n) =n

=T(1)+1+..+1 n-11s

T(n)=T(n-1)+1,T(1)=1

e Or: start at the bottom and find the pattern.

T(l) =1
T(2)=T(1) +1=1+1=2 %?ﬁ;’e:f(;re
T(3)=T(2) +1=2+1=3

etc. (we could make this and the previous
argument more rigorous via induction)

T(n)=T(n-1)+n,T(1) =1

3
A

e How about this one?

The secret to GS theory (and math)

e Work some small examples

e Spot a pattern

e Prove the pattern

e Pretend that you came up with the pattern out
of nowhere while sitting in a comfortable
armchair, sipping some brandy by a fire

T(n)=T(n-1)+n,T(1) =1

e T(2)=T(1)+2=1+2=3
e T(3)=T(2)+3=3+3=6
e T(4)=T(3)+4=6+4=10

1, 3, 6, 10... this looks familiar

Another secret to CS theory (and math)

The On-Line Encyclopedia of Integer Séqhehces@ (OEIS®)

Enter a sequence, word, or sequence number:

[1,3.6.10 |

Hints Welcome Video

If you have a sequence, put it into
oeis.org. Congrats! Now you are a number
theorist

Search: seq:1,3,6,10
Displaying 1-10 of 533 results found.

Sort: relevance | references | number | modified | created ~ Format: long | short | data

A000217 Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2=0+1+2 + ... + n. o
(Formerly M2535 N1002)

3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210,

435, 465, 496, 528, 561, 595, 630, 666, 703, 741,

1275, 1326, 1378, 1431 (list; graph;

0, 1,
231, 253, 276, 300, 325, 351, 378, 406,
780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225,

T(n) =n(n+1) / 2
you say? Hm,
very interesting

A000004

- - -

o O O O

-

o O O O

The zero sequence.

(Formerly M0000)
I OI ol 0l OI OI Ol OI OI OI ol OI ol ol OI OI Ol ol ol Ol OI ol 0, OI OI Ol Ol
14 0I Ol 0! OI Ol Ol ol ol OI ol OI Ol ol OI Ol ol Ol ol Ol ol 0' ol OI ol 0' Ol
. 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
, 0, 0, 0, O, O, 0, O, O (list; graph; refs; listen; history; text; internal format)

0,1

N. J. A. Sloane, Table of n, a(n) for n = 0..1000 [Useful when plotting one
sequence against another. See Swayne link.]

Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv
preprint arXiv:1406.3081 [math.CO], 2014-2015.

D. F. Swavne. Plot nairs aof seaduences in the ORTS

There are all kinds of fun
and beautiful sequences
to discover!

T(n)=T(n-1)+n,T(1) =1
e Claim: T(n) =n(n+1)/2,foralln=1.
e Base case: T(1) = 1(given!)

e Inductive step: Suppose the claim holds forall 1 <
n < k. We'll show it holds for n = k:
o T(k) = T(k-1) + k (definition)
o T(k) = (k-1)(k) / 2 + k (inductive step with n-1)
o T(n)=k*/2-k/2+k
=k?>/2+k/2=(k*+k)/2=k(k+1)/2 B

Next week!

e How fast can we find the median of a list?
o Mind-blowing algorithm!

e We can't beat O(n log n) for sorting!
e We can beat O(n log n) for sorting!
e Randomness is our friend and helps us sort!

e Absolutely amazing randomized algorithm for graph
cuts (Ian's favorite algorithm)

