
6/22 Lecture Agenda
● Announcements

● Part 1-2: Divide (and conquer) to multiply

● Part 1-3: MergeSort

Announcements!
● The power is out! (But you knew that)

○ We'll do Friday's normally-live Problem Session
(1:30-2:30) online (in addition to the 7:30-8:30 online
version)

○ If power is still going to be out on Monday, we'll switch
to 2020-2021 style Zoom until it's better

○ If this drags on, we may bump some deadlines a bit,
accordingly

● HW1 coming tonight (perhaps without autograders for
coding problem)

SF Chronicle

More announcements!
● The course site (cs161.stanford.edu) is mostly

complete, yay!

● Office hours start Thursday
○ If any CAs need to cancel / reschedule /

relocate because of power issues, we'll let
you know

○ You can find our Nooks via the link in the
upper right of the course site

6/22 Lecture Agenda
● Announcements

● Part 1-2: Divide (and conquer) to multiply

● Part 1-3: MergeSort

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Divide (and Conquer) to Multiply

Multiplication

"What is this?"
you shout. "The
third grade?"

This is a perfectly
good algorithm…

 1 1
 1 1

 1 2 3
x 4 5

 6 1 5
4 9 2 0

5 5 3 5

But this is
CS161! Can
we do
better?

● At most n2 multiplications
● At most n2 additions (for carries)
● Finally, add n different numbers

of at most 2n digits

so: O(n2).
note: we reasonably treated single-digit
math operations as O(1)

Can we do better?
● It's not obvious that we should expect to be able to!

● After all, don't we have to pair up each digit in the first
number with each digit in the second number? And
isn't that inherently O(n2)?

● (Is O(n2) really so bad?
○ Think of trying to get a group of n people to all get

along…
○ So, yes. Yes it is. At least for big enough n.)

2

Well SHUCKS
● We tried out an awesome new

strategy and it didn't do
asymptotically better!
○ It didn't even seem to run

faster than grade school
multiplication!

● Guess we can pack up and go
home. Thanks for coming to
CS161!

● Or…

But are these practical?
● From a talk by David Harvey, regarding

their O(n log n) multiplication algorithm
based on Discrete Fourier Transforms:
(https://www.youtube.com/watch?v=FKGRc867j10)

Isn't O(n log n) supposed to be better than O(n2)?

● Remember that the definition only
guarantees that there is some constant past
which some multiple is an upper bound.

● The very constant factors and multipliers
that big-O ignores might be huge in
practice!

So are these algorithms useless then?
● Karatsuba isn't going to take the third grade by storm…

○ but it is useful in cryptography!
■ and cryptography lets you buy things on your

phone!
○ Also, CPython (the most common implementation)

uses it to multiply sufficiently large numbers!

● Even the O(n log n log log n) algorithm can be used in
practice…
○ and remember that even it may have seemed useless

once!

6/22 Lecture Agenda
● Announcements

● Part 1-2: Divide (and conquer) to multiply

● Part 1-3: MergeSort

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

MergeSort

The sorting problem
Input: A list of comparable objects
● i.e., each object has a (not necessarily unique) value, and

there is a way to compare any two values.

Output: A list of the same objects, but arranged such that their
values are in nondecreasing order.

Some flavors:
● Is the sort stable? (i.e. is it guaranteed that any two

elements with the same value stay in the same relative
order even after sorting?)

● Is the implementation in-place or does it make a new copy?

because of ties

So many sorts of sorts!
We're not going to cover
some, like bubble and
selection, because IMO they're
not really important.
(Insertion will come up on a
pre-HW or HW, maybe)

Each one we cover in CS161
will illustrate a different idea
(kinda like how it's good to
know different types of
programming languages)

P

What do major languages actually use to sort?
C++: Introsort (a hybrid of Quicksort, Heapsort, and
Insertion Sort)

Java: Quicksort (for primitives), a modified MergeSort (for
objects)

JavaScript: Implementation-dependent

Python: Timsort (a hybrid of Insertion Sort and MergeSort)

One takeaway from this: maybe there is no universally
best sort?

Why MergeSort?
● It's asymptotically fast

● It's (IMO) one of the more beautiful sorts

● It includes a Merge step that is a powerful
idea worth knowing about

● It illustrates "divide and conquer" well

The Merge Step
● Input: Two sorted lists.

● Output: A single sorted list containing all
the elements of the input lists.

Ex: Input [3, 4, 6, 8], [1, 2, 5, 7]
Output [1, 2, 3, 4, 5, 6, 7, 8]

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1 2

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1 2 3

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1 2 3 4

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1 2 3 4 5

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1 2 3 4 5 6

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1 2 3 4 5 6 7

3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that

pointer.

1 2 3 4 5 6 7 8

Key Ideas
● Only works because the two input lists are already

sorted.
○ But what sorted them? A deeper call to MergeSort!

● Runs in O(n) time.
○ Intuitively, this is because each step moves one of

the pointers ahead, and they can collectively move
only 2n steps. And comparing two values takes
constant time.

● Works fine with ties, but think of what you would need
to do to ensure that the sort remains stable…

But
● Is it correct?

○ Yes! We can prove it!

● Is it fast?
○ Yes! Runs in O(n log n) time. We can prove it!
○ Next time, we'll see that this is actually the

best we can do for sorts that operate by
comparing elements (as MergeSort does).

Induction on recursion levels
● Claim: When we are i levels up from the bottom, every chunk of size 2i is sorted.

(Note: we break the list into n / 2i chunks of size 2i each. The claim is not about
arbitrary blocks of size 2i.)

● Base case: 0 levels up from the bottom, each chunk of size 1 is trivially sorted.

● Inductive step: Suppose the claim holds for all 0 ≤ n < k. We will show that it
holds for n = k.
○ Consider any chunk of size 2k. It is formed from merging the two sorted lists

of size 2k-1 in the level below it.
○ Inductively, we know these are sorted.
○ As long as Merge correctly merges sorted lists (which we could also prove if

we wanted), then the chunk of size 2k is sorted.

Then at the end of the procedure, in particular, the overall list is sorted!

We assume here that n is an
integer power of 2. It's not
hard to adapt the idea,
though.

Now for the running time…

The running time, viewed as a recurrence…
Let T(n) denote the running time of a procedure (in this
case, MergeSort).

For MergeSort, we can define T(n) recursively as:

 T(n) = 2T(n/2) + O(n)
work of two
subproblems of
half size

work of
merging

This depends on itself! It's a recurrence.

Solving divide-and-conquer recurrences

We argued that this recurrence T(n) = 2T(n/2) + O(n)
solves to T(n) = O(n log n).

Is there a more general way of solving this kind of
recurrence without doing all that work again?

● See Homework 1, Problem 3!

Solving other recurrences

● What if the recurrence has some other form?
Or what if we want an exact solution?

● Unfortunately, there is no general all-purpose
technique for this. We'll look at some
possibilities here and in the next lecture.

Some conventions about T(n)

● T(n) represents a running time, so it is always
nonnegative.

● n represents something like the size of the
input, so it is always nonnegative.

T(n) = T(n-1) + 1, T(1) = 1

● One way: start at the top, unroll, find a pattern.

T(n)

= T(n-1) + 1

= (T(n-2) + 1) + 1
…
= T(1) + 1 + … + 1

two 1s

one 1

n-1 1s

Therefore
T(n) = n

T(n) = T(n-1) + 1, T(1) = 1
● Or: start at the bottom and find the pattern.

T(1) = 1

T(2) = T(1) + 1 = 1 + 1 = 2

T(3) = T(2) + 1 = 2 + 1 = 3

etc. (we could make this and the previous
argument more rigorous via induction)

Therefore
T(n) = n

T(n) = T(n-1) + n, T(1) = 1

● How about this one?

The secret to CS theory (and math)

● Work some small examples

● Spot a pattern

● Prove the pattern

● Pretend that you came up with the pattern out
of nowhere while sitting in a comfortable
armchair, sipping some brandy by a fire

T(n) = T(n-1) + n, T(1) = 1

● T(2) = T(1) + 2 = 1 + 2 = 3

● T(3) = T(2) + 3 = 3 + 3 = 6

● T(4) = T(3) + 4 = 6 + 4 = 10

1, 3, 6, 10… this looks familiar

Another secret to CS theory (and math)

If you have a sequence, put it into
oeis.org. Congrats! Now you are a number
theorist

T(n) = n(n+1) / 2
you say? Hm,
very interesting

There are all kinds of fun
and beautiful sequences
to discover!

T(n) = T(n-1) + n, T(1) = 1
● Claim: T(n) = n(n+1) / 2, for all n ≥ 1.

● Base case: T(1) = 1 (given!)

● Inductive step: Suppose the claim holds for all 1 ≤
n < k. We'll show it holds for n = k:
○ T(k) = T(k-1) + k (definition)
○ T(k) = (k-1)(k) / 2 + k (inductive step with n-1)
○ T(n) = k2 / 2 - k / 2 + k

= k2 / 2 + k / 2 = (k2 + k)/ 2 = k(k+1) / 2

Next week!
● How fast can we find the median of a list?

○ Mind-blowing algorithm!

● We can't beat O(n log n) for sorting!

● We can beat O(n log n) for sorting!

● Randomness is our friend and helps us sort!

● Absolutely amazing randomized algorithm for graph
cuts (Ian's favorite algorithm)

