
6/22 Lecture Agenda
● Announcements

● Part 1-2: Divide (and conquer) to multiply

● Part 1-3: MergeSort  



Announcements!
● The power is out! (But you knew that)

○ We'll do Friday's normally-live Problem Session 
(1:30-2:30) online (in addition to the 7:30-8:30 online 
version)

○ If power is still going to be out on Monday, we'll switch 
to 2020-2021 style Zoom until it's better

○ If this drags on, we may bump some deadlines a bit, 
accordingly

● HW1 coming tonight (perhaps without autograders for 
coding problem)

SF Chronicle



More announcements!
● The course site (cs161.stanford.edu) is mostly 

complete, yay!

● Office hours start Thursday
○ If any CAs need to cancel / reschedule / 

relocate because of power issues, we'll let 
you know

○ You can find our Nooks via the link in the 
upper right of the course site
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Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Divide (and Conquer) to Multiply



Multiplication

"What is this?" 
you shout. "The 
third grade?"

This is a perfectly 
good algorithm…

   1  1
   1  1  

  1 2 3
x   4 5
-------
  6 1 5
4 9 2 0
-------
5 5 3 5

But this is 
CS161! Can 
we do 
better?





● At most n2 multiplications
● At most n2 additions (for carries)
● Finally, add n different numbers 

of at most 2n digits

so: O(n2).
note: we reasonably treated single-digit 
math operations as O(1) 



Can we do better?
● It's not obvious that we should expect to be able to!

● After all, don't we have to pair up each digit in the first 
number with each digit in the second number? And 
isn't that inherently O(n2)?

● (Is O(n2) really so bad?
○ Think of trying to get a group of n people to all get 

along…
○ So, yes. Yes it is. At least for big enough n.)
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Well SHUCKS
● We tried out an awesome new 

strategy and it didn't do 
asymptotically better!
○ It didn't even seem to run 

faster than grade school 
multiplication!

● Guess we can pack up and go 
home. Thanks for coming to 
CS161!

● Or…













But are these practical?
● From a talk by David Harvey, regarding 

their O(n log n) multiplication algorithm  
based on Discrete Fourier Transforms: 
(https://www.youtube.com/watch?v=FKGRc867j10)



Isn't O(n log n) supposed to be better than O(n2)?

● Remember that the definition only 
guarantees that there is some constant past 
which some multiple is an upper bound.

● The very constant factors and multipliers 
that big-O ignores might be huge in 
practice!



So are these algorithms useless then?
● Karatsuba isn't going to take the third grade by storm…

○ but it is useful in cryptography!
■ and cryptography lets you buy things on your 

phone!
○ Also, CPython (the most common implementation) 

uses it to multiply sufficiently large numbers!

● Even the O(n log n log log n) algorithm can be used in 
practice…
○ and remember that even it may have seemed useless 

once!
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The sorting problem
Input: A list of comparable objects
● i.e., each object has a (not necessarily unique) value, and 

there is a way to compare any two values.

Output: A list of the same objects, but arranged such that their 
values are in nondecreasing order.

Some flavors:
● Is the sort stable? (i.e. is it guaranteed that any two 

elements with the same value stay in the same relative 
order even after sorting?)

● Is the implementation in-place or does it make a new copy?

because of ties



So many sorts of sorts!
We're not going to cover 
some, like bubble and 
selection, because IMO they're 
not really important. 
(Insertion will come up on a 
pre-HW or HW, maybe)

Each one we cover in CS161 
will illustrate a different idea 
(kinda like how it's good to 
know different types of 
programming languages)

P



What do major languages actually use to sort?
C++: Introsort (a hybrid of Quicksort, Heapsort, and 
Insertion Sort)

Java: Quicksort (for primitives), a modified MergeSort (for 
objects)

JavaScript: Implementation-dependent

Python: Timsort (a hybrid of Insertion Sort and MergeSort)

One takeaway from this: maybe there is no universally 
best sort?



Why MergeSort?
● It's asymptotically fast

● It's (IMO) one of the more beautiful sorts

● It includes a Merge step that is a powerful 
idea worth knowing about

● It illustrates "divide and conquer" well







The Merge Step
● Input: Two sorted lists.

● Output: A single sorted list containing all 
the elements of the input lists.

Ex: Input [3, 4, 6, 8], [1, 2, 5, 7]
Output [1, 2, 3, 4, 5, 6, 7, 8]



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1 2



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1 2 3



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1 2 3 4



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1 2 3 4 5



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1 2 3 4 5 6



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1 2 3 4 5 6 7



3 4 6 8 1 2 5 7

Repeatedly do the following:
● Check the elements pointed to by the two pointers.
● Add the smallest one to the new list. Advance that 

pointer.

1 2 3 4 5 6 7 8



Key Ideas
● Only works because the two input lists are already 

sorted.
○ But what sorted them? A deeper call to MergeSort!

● Runs in O(n) time.
○ Intuitively, this is because each step moves one of 

the pointers ahead, and they can collectively move 
only 2n steps. And comparing two values takes 
constant time.

● Works fine with ties, but think of what you would need 
to do to ensure that the sort remains stable…









But
● Is it correct?

○ Yes! We can prove it!

● Is it fast?
○ Yes! Runs in O(n log n) time. We can prove it!
○ Next time, we'll see that this is actually the 

best we can do for sorts that operate by 
comparing elements (as MergeSort does).



Induction on recursion levels
● Claim: When we are i levels up from the bottom, every chunk of size 2i is sorted. 

(Note:  we break the list into n / 2i  chunks of size 2i each. The claim is not about 
arbitrary blocks of size 2i.)  

● Base case: 0 levels up from the bottom, each chunk of size 1 is trivially sorted.

● Inductive step: Suppose the claim holds for all 0 ≤ n < k. We will show that it 
holds for n = k.
○ Consider any chunk of size 2k. It is formed from merging the two sorted lists 

of size 2k-1 in the level below it.
○ Inductively, we know these are sorted.
○ As long as Merge correctly merges sorted lists (which we could also prove if 

we wanted), then the chunk of size 2k is sorted.

Then at the end of the procedure, in particular, the overall list is sorted!

We assume here that n is an 
integer power of 2. It's not 
hard to adapt the idea, 
though.



Now for the running time…

















The running time, viewed as a recurrence…
Let T(n) denote the running time of a procedure (in this 
case, MergeSort).

For MergeSort, we can define  T(n) recursively as:

                                    T(n) = 2T(n/2) + O(n)
work of two 
subproblems of 
half size 

work of 
merging 

This depends on itself! It's a recurrence. 



Solving divide-and-conquer recurrences

We argued that this recurrence T(n) = 2T(n/2) + O(n) 
solves to T(n) = O(n log n).

Is there a more general way of solving this kind of 
recurrence without doing all that work again?

● See Homework 1, Problem 3!



Solving other recurrences

● What if the recurrence has some other form? 
Or what if we want an exact solution?

● Unfortunately, there is no general all-purpose 
technique for this. We'll look at some 
possibilities here and in the next lecture.



Some conventions about T(n)

● T(n) represents a running time, so it is always 
nonnegative.

● n represents something like the size of the 
input, so it is always nonnegative.



T(n) = T(n-1) + 1, T(1) = 1

● One way: start at the top, unroll, find a pattern.

T(n) 

= T(n-1) + 1

= (T(n-2) + 1) + 1
…
= T(1) + 1 + … + 1

two 1s

one 1

n-1 1s

Therefore
T(n) = n



T(n) = T(n-1) + 1, T(1) = 1
● Or: start at the bottom and find the pattern.

T(1) = 1 

T(2) = T(1) + 1 = 1 + 1 = 2

T(3) = T(2) + 1 = 2 + 1 = 3

etc. (we could make this and the previous 
argument more rigorous via induction)

Therefore
T(n) = n



T(n) = T(n-1) + n, T(1) = 1

● How about this one?



The secret to CS theory (and math)

● Work some small examples

● Spot a pattern

● Prove the pattern

● Pretend that you came up with the pattern out 
of nowhere while sitting in a comfortable 
armchair, sipping some brandy by a fire



T(n) = T(n-1) + n, T(1) = 1

● T(2) = T(1) + 2 = 1 + 2 = 3

● T(3) = T(2) + 3 = 3 + 3 = 6

● T(4) = T(3) + 4 = 6 + 4 = 10

1, 3, 6, 10… this looks familiar



Another secret to CS theory (and math)

If you have a sequence, put it into 
oeis.org. Congrats! Now you are a number 
theorist



T(n) = n(n+1) / 2 
you say? Hm, 
very interesting



There are all kinds of fun 
and beautiful sequences 
to discover!



T(n) = T(n-1) + n, T(1) = 1
● Claim: T(n) = n(n+1) / 2, for all n ≥ 1.

● Base case: T(1) = 1 (given!)

● Inductive step: Suppose the claim holds for all 1 ≤ 
n < k. We'll show it holds for n = k:
○ T(k) = T(k-1) + k (definition)
○ T(k) = (k-1)(k) / 2 + k (inductive step with n-1)
○ T(n) = k2 / 2 - k / 2 + k

= k2 / 2 + k / 2 =  (k2 + k)/ 2 = k(k+1) / 2



Next week!
● How fast can we find the median of a list?

○ Mind-blowing algorithm!

● We can't beat O(n log n) for sorting!

● We can beat O(n log n) for sorting!

● Randomness is our friend and helps us sort!

● Absolutely amazing randomized algorithm for graph 
cuts (Ian's favorite algorithm)


