
6/27 Lecture Agenda
● Announcements

● Part 2-1: k-Selection

● 10 minute break!

● Part 2-2: RadixSort and the limits of sorting  



Announcements!
● Pre-HW1 due tonight, 11:59 PM

● HW1 due Thursday, 11:59 PM (not Wednesday as originally 
stated)

● Templates and autograders for Problem 6 are available!

● Pre-HW2 out tonight

● HW2 out Wednesday night



Policy for Coding Problems
● The autograder will show the number of test cases successfully 

passed. However, this does not translate directly to your score 
for the problem. (Coding problems are worth 8 points like every 
other HW problem, or possibly 4 points for a hybrid theory + 
coding problem)

● In general:
○ To get full points, you need to solve all test cases.
○ If you solve anywhere between 1 and n-1 test cases, you get 

25-75% of the points.
■ That is, we want to put a premium on being fully correct, 

but also give credit for trying.
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k-Selection



A Warm-Up Problem…
● Suppose we have a (not necessarily sorted) list of n integers.

○ (e.g., [9, 4, 3, 0, 5]) 

● We wonder:

○ What is the largest absolute difference between any pair of 
(not necessarily consecutive) elements in the list?
■ here, the answer is 9: 9 - 0 = 9

○ What is the smallest absolute difference between any pair of 
(not necessarily consecutive) elements in the list?
■ here, the answer is 1: e.g., 4 - 3 = 1

● And how do we find these efficiently?



Largest Absolute Difference
● The two most different elements in the list are the smallest 

and the largest!

● We can find the smallest element in O(n) time by iterating 
through the list, keeping track of the smallest element we've 
seen so far.
○ Only O(1) work to check each new element.

● Same idea for the largest element.

● We can do both of these at once, then take the difference! It's 
O(n) time overall.



Smallest Absolute Difference
● Now it's trickier! The answer doesn't entail just finding the 

largest or smallest list elements. The pair could be anywhere!

                      [100, -55, -7, 28, 34, -6, -38, 144]

● A brute-force O(n2) strategy would be to check all pairs.



Smallest Absolute Difference
● Now it's trickier! The answer doesn't entail just finding the 

largest or smallest list elements. The pair could be anywhere!

                      [100, -55, -7, 28, 34, -6, -38, 144]

● A brute-force O(n2) strategy would be to check all pairs.

● We can do better by sorting the list in O(n log n) time, and then 
checking every consecutive pair.
○ No non-consecutive pair in a sorted list can have the 

smallest absolute difference, since we could do better by 
just moving the indices closer to each other…



Smallest Absolute Difference: Can we do better?

● If we have to sort the list, we're stuck at Ω(n log n).*
○ *kind of. More coming in the second half! 

● Do we have to sort the list? It sure seems like we do!

● If you think of a way to solve this problem without 
sorting, or can prove that the Ω(n log n) bound 
holds, let us know on Ed!



Another Problem: Find The Median
● Why should we care? Why not just take the mean?

○ The median is much less sensitive to outliers!

● Reminder of the definition:

○ In a list of odd length n, the median is the (n+1)/2 - th 
smallest value. (We'll focus on this case.)
■ in [9, 4, 3, 0, 5], it's 4.

○ In a list of even length n, the median is the mean of 
the n/2 - th and  ((n/2) + 1) - th smallest values.
■ in [2, 0, 2, 0], it's 1.



How do we find the median of an odd-length list?
● One idea: the median is the middle of the sorted 

list. So sort the list and take the middle 
element. Running time: O(n log n).

● Are we done? Can we go home?
○ No! This summer, we are 

trapped in an algorithm 
dimension in which we 
must always try to do 
better (or prove that we 
can't).



But doesn't this inherently require sorting?
● It seems like we might be stuck at Ω(n log n).

● However………………………………………………..…………………
……………………………..………………………………………………..
………………………………………………..………………………………
………………..

(suspense builds)
…………………………………………………………………………………
…………………..……………………………………………………………
………………………………………..



Commercial Break!
Hey, we could use more practice with recurrences! 
Let's solve this one, which I surely chose completely 
at random!

T(n) ≤ T(n/5) + T(7n/10) + n, n > 10

T(n) = 1, 1 ≤ n ≤ 10 Note the use of ≤ instead of =. 
This is fine – we can solve the 
= version as an upper bound. 



T(n) ≤ T(n/5) + T(7n/10) + n
How can we approach this?

● The Master Theorem (HW1 Problem 3): nope. This 
doesn't fit the form.
○ What if we say T(n/5) ≤ T(7n/10), so we have

T(n) ≤ 2T(7n/10) + n?
○ Then we have a = 2, b = 10/7, d = 1, and

T(n) = O(n            ) ≈ O(n1.94)

● But this turns out to be a very loose upper bound!

log(10/7)2



T(n) ≤ T(n/5) + T(7n/10) + n
What about top-down unrolling?

● T(n) ≤ T(n/5) + T(7n/10) + n
    ≤ T(n/25) + T(7n/50) + n/5

                      + T(7n/50) + T(49n/100) + 7n/10
                  ≤ …

NOPELike a werewolf under a full 
moon, this looks like it's only 
going to get hairier.



T(n) ≤ T(n/5) + T(7n/10) + n
What about bottom-up investigation?

● T(1), …, T(10) = 1
● T(11) ≤ T(2.2) + T(7.7) ≤ T(3) + T(8) = 2
● …
● T(15) ≤ T(3) + T(10.5) ≤ T(3) + T(11) = 3

N O P E
This technique works well when 
we can spot some obvious 
pattern. The weird fractions 
make that unlikely here. 

it's fun to stay at the



T(n) ≤ T(n/5) + T(7n/10) + n
What if we use a program 
to calculate T(n) for a 
bunch of relatively small 
values, then make a plot?

But how do we prove it?







How do we write a proof when we don't know c?
● Go through the proof leaving c as a 

constant.

● Get some idea of what the constraints on c 
are.

● Pick a c that actually works.

● Rewrite the proof, using that c as if it fell 
out of the sky or sprang forth fully formed 
from our heads like Athena.



T(n) ≤ T(n/5) + T(7n/10) + n
Claim: T(n) ≤ cn, for all n ≥ 1.       n0 ≥ 1.

Base case: T(1) = 1 ≤ c * 1. OK, so we need c ≥ 1.

Inductive step: Suppose the claim holds for 1 ≤ n ≤ k-1. We'll show 
that it also holds for n = k.

T(k)  ≤ T(k/5) + T(7k/10) + k

           ≤ ck/5 + 7ck/10 + k 

           ≤ 9ck/10 + k    Hm, what if we make c = 10?



T(n) ≤ T(n/5) + T(7n/10) + n
Claim: T(n) ≤ cn, for all n ≥ 1.       n0 ≥ 1.

Base case: T(1) = 1 ≤ c * 1. OK, so we need c ≥ 1.

Inductive step: Suppose the claim holds for 1 ≤ n ≤ k-1. We'll show 
that it also holds for n = k.

T(k)  ≤ T(k/5) + T(7k/10) + k

           ≤ ck/5 + 7ck/10 + k 

           ≤ 9ck/10 + k    Hm, what if we make c = 10?
           
           ≤ 9k + k = 10k   Yay!



We used the Substitution Method!

● Guess the form of the answer to the 
recurrence. (e.g. by plotting it)

● Write an induction proof, figuring 
out the value of c as you go along.



End of Commercial Break!

T(n) ≤ T(n/5) + T(7n/10) + n, n > 10

T(n) = 1, 1 ≤ n ≤ 10

Solution: T(n) = O(n)

Now back to median-finding!



……………………………………………………OK, let's put on our 
ADVENTURE HATS and try to do it without sorting!

Where's the room for improvement? Intuitive idea:

● If we sort, we spend a lot of time finding the exact 
relationships among values that are not even 
close to the median.

● What a waste! Can we not?



What if we break the data into chunks, and ask each 
chunk what its median is?

Then the only sensible thing to do with those values 
would be to take their median.

Is it guaranteed that that value would be the overall 
median? (Can you argue this or find a 
counterexample?)

Medians of medians



list [2, 9, 1, 3, 8, 4, 7, 6, 5], true median 5

Break into chunks of 3: [2, 9, 1], [3, 8, 4], [7, 6, 5]

Take their medians: 2, 4, 6

Take the median of those: 4. Oh no!

But we did get pretty close. Does that help?

A counterexample



● Check every value in the list to see if it's greater or less 
than that estimate m.

● If less than half the other values are smaller than m, the true 
median is greater than m.

● If exactly half the other values are smaller than m, the true 
median is m and we are done.

● If more than half the other values are smaller than m, the 
true median is smaller than m.

What can we do with our estimate? recall: list 
of unique 
elements, 
odd length



Repeat the following:

● Use the median of medians method to get an estimate m.

● Check m against all the other elements.

● If the median is smaller than m, throw out m and 
everything bigger. Then recurse.
○ Same idea if the median is bigger than m.

● The closer m is to correct, the more we get to throw away.

A job for divide and conquer!



● How do we recurse on a smaller list when the median 
we're searching for is no longer the median of that list?

● The method we described actually still works fine for 
finding any k-th largest element of a list! We know 
which half of the list our value is supposed to be in, so 
we estimate the median and then throw away the part 
of the list we know doesn't contain our value.

Wait a minute



We have a list of 101 elements. We want to find the median (51st smallest).

● Say our first estimate turns out to be the 58th largest value. Then we 
know the true median is one of the 57 values that (we now know) are 
less than that. So we save only those values.

 

An example



We have a list of 101 elements. We want to find the median (51st smallest).

● Say our first estimate turns out to be the 58th largest value. Then we 
know the true median is one of the 57 values that (we now know) are 
less than that. So we save only those values.

New problem! We have a list of 57 values. We want to find the 51st smallest.

● We estimate the median of this new list. It turns out to be the 23rd 
smallest value. We know the true median is one of the 57-23 = 34 values 
that (we now know) are greater than that. So we save only those values.

 

An example



We have a list of 101 elements. We want to find the median (51st smallest).

● Say our first estimate turns out to be the 58th largest value. Then we 
know the true median is one of the 57 values that (we now know) are 
less than that. So we save only those values.

New problem! We have a list of 57 values. We want to find the 51st smallest.

● We estimate the median of this new list. It turns out to be the 23rd 
smallest value. We know the true median is one of the 57-23 = 34 values 
that (we now know) are greater than that. So we save only those values.

Another new problem! We have a list of 34 values. We want to find the  
(51-23) = 28th smallest…

 

An example

Reminiscent of binary search!



This seems like it works! 
I'm going back to sleep.

But what if our 

estimates are bad?



Each of you please:

● Write down the numbers 1 through 15 in some order. 
Try to be random, or don't – it doesn't really matter.

● Break them into groups: first five, next five, last five.

● Within each group, find the median element.

● Take the median of those three medians.

How close does median-of-medians get us?



The true median is 8. So none of us was too 
far away!

In fact, there is no way anyone could have 
gotten a value below 6 or above 10…

We all got between 6 and 10



Suppose:

○ Each column is sorted 
from top to bottom.

○ The columns' medians 
a3, b3, c3, d3, e3 are sorted 
from left to right.

How many values are definitely 
less than c3?

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

Here we're using five groups of 5 (each column is a group)



Suppose:

○ Each column is sorted 
from top to bottom.

○ The columns' medians 
a3, b3, c3, d3, e3 are sorted 
from left to right.

How many values are definitely 
less than c3?

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5



One example of 
the worst-case 
scenario!

1 2 3 10 11

4 5 6 12 13

7 8 9 14 15

16 17 18 19 20

21 22 23 24 25



The same logic 
holds for 
values 
definitely 
greater than c3.

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5



There are n/5 groups 
of 5.

We get 3 from 
((n/5)-1)/2 of them, 
and 2 from the middle.

That's (3n/10)-3/2 + 2

i.e. just over 3n/10.

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5



● This means that when we throw away the part 
of the list we don't need, we can surely throw 
away just over 3n/10 of the values, without 
worrying that we threw away the right one!

● And we're left with no more than 7n/10 of the 
values…

So what?



● When an algorithm has 
some magic number in 
it, it's often for a very 
good reason.

● Why not 3? You'll 
investigate this on 
HW2!

Wait, where did this 5 thing come from?

in which Vin 
Diesel drives over 
the median a lot



● Finding the median of each group of 5 takes constant time. There 
are n/5 such groups. Then we look through all n elements to see 
whether each is bigger than the estimate.
So we do O(n) work. We'll handwave this as n but it could be 6n/5

● We can recurse on a subproblem of size n/5 to find the median of 
medians.

● Then we recurse on a subproblem of size no more than 7n/10.

T(n) ≤ T(n/5) + T(7n/10) + n

A recurrence for this method

…which we 
conveniently already 
know is O(n)



This is a linear-time algorithm!!!
● Not only that, it lets us find any k-th smallest element, 

not just the median.

○ The median-of-medians part is used to divide up 
the current list into two parts, so that we can throw 
away the part we don't need, and it has a good 
chunk of elements (over 70%).

○ But, that said, we can search for any element we 
want, since we always know which of the two lists 
to look in.





● MedianOfMedians itself needs to find a 
median. So it recursively calls Select! (but on a 
smaller list)

● Partition runs in O(n) time and just shoves 
values to the left or right of p. Those values are 
not sorted relative to each other.
○ so, sort of like MergeSort, but not quite

Subtleties



● What if we want the median of a list of even size? 
○ Select the two middle values and average them!

● What if there are repeated elements?
○ This turns out not to hurt. e.g., say there are five 7s… 

think of them as 7.01, 7.02, 7.03, 7.04, 7.05.

● What if some sublist isn't a multiple of 5?
○ This one is a more serious annoyance. We can notionally 

pad the final group of 5 with ∞ values, but then this eats 
into our guarantee (a bit) since some of the values we get 
to throw away are fake. But it all still holds.

More subtleties
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(Breaking) The Limits of Sorting



A confusing claim last week…



In what sense can we not beat O(n log n)?

● In this part, we will only consider sorts based on 
comparisons of two elements at a time.

● When would this be relevant? Suppose we're sorting 
something that we can't quantify absolutely. e.g., rocks 
from less pretty to prettiest.

○ assuming transitivity (i.e., there is no cycle in which
A > B, B > C, C > A)



How many outcomes of sorting?

● Say we have a sorting algorithm that takes in lists 
of length n in which all elements are distinct.

● How many possible outcomes could this return?

● There are n choices for the first element, n-1 
choices for the second element, and so on… so this 
is n! (n factorial).



It's n!



A comparison-based method is a tree

Is the second 
element greater 
than the first?

Yes

Ask another 
question or 

return an 
answer

Ask another 
question or 

return an 
answer

No



Sorting a list of distinct elements [a, b, c]
Is a < b? No

Is b < c?

a, b, c Is a < c?

a, c, b c, a,  b

Is b < c?

c, b, aIs a < c?

b, a, c b, c, a

No

No

No

No

Yes

Yes
Yes

Yes
Yes



How deep is the tree?
● A shallower tree means an asymptotically better algorithm!

○ Remember, we judge algorithms by how they perform on 
their worst-case inputs.

● This is a binary tree. How shallow can it possibly be, if we fill up 
every level as much as possible?

● We have n! leaf nodes, and therefore we necessarily have 
exactly n! - 1 internal nodes. Let's stuff 2(n!) - 1 nodes into a 
tree…
○ This is a best case. A worse algorithm might have the same 

leaf node twice.



How deep is the tree?

● We can get:
○ 1 node on the first level
○ 2 nodes on the second level
○ 4 nodes on the third level…

● With n levels, we can fit at most 2n - 1 nodes.

● Number of levels needed to fit k nodes = floor(log2k) + 1

● To get 2(n!) - 1 nodes into a tree… floor(log2(2(n!)-1)) + 1



log2 of n!

log2(n!) = log2(n) + log2(n-1) + … + log2(2) + log2(1)

● A powerful trick! Notice that each of the terms from 
log2(n) to log2((n/2) + 1) is greater than log2(n/2), 
which is log2n - log22 = log2n - 1

● There are n/2 such terms, and so their sum is 
greater than (n/2) (log2n - 1).

● Oh no! This is Ω(n log n).

We will handwave away 2n! - 1 as being bounded 
below by n!.



No comparison-based sorting 
algorithm can be o(n log n) 

This is sad! But negative 
results like this are useful.



The value of lower bounds
"Hey I have a binary search tree that lets you do any 
insertion in O(1) time and can be traversed in O(n) time"

● No you don't!

● If you did, we could do a comparison-based sort of a list 
in O(n) time as follows:

○ Insert all elements into the tree: n * O(1) = O(n)
○ Traverse the tree to get the sorted order: O(n)
○ Total running time: O(n)



But what if we use a sort that isn't 
limited to binary comparisons?



A real-life algorithmic triumph
● You are a grad student at UC Berkeley. (I know 

– boo, hiss!) You just proctored a biology 
exam.

● You have a pile of exams to sort by student ID.
○ The IDs are all 8 digits long. (Here we'll 

pretend it's 5)

● There are too many to lay out all around the 
room to do a MergeSort or something. The 
grad student office is small.

● You want to get this over with fast so you can 
go to Naan n' Curry  and walk home and 
continue avoiding your graduate research.



94305
94301
84305
73301
94315
93301
94401
54412

Here's the initial list of IDs, in some 
arbitrary order.



94305
94301
84305
73301
94315
93301
94401
54412

Here's the initial list of IDs, in some 
arbitrary order.

What if we take advantage of the fact 
that there are only 10 digits possible? 

Then we only need 10 piles.

We could sort them by first digit and 
then sort each pile recursively. But 

notice that the distribution of digits is 
uneven – most start with 9, etc.



94305
94301
84305
73301
94315
93301
94401
54412

Awesome idea:

Sort by the last digit first.

Then sort by the next-to-last digit, 
preserving the order from the last 

round when there are ties.

And so on!



94305
94301
84305
73301
94315
93301
94401
54412
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sorted!



RadixSort!
● Start with a list L of n items, each with d "digits", where 

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each 

element, and placing the element at the rightmost end 
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the 
rightmost end of L.

This ensures that the sort 
is stable.



RadixSort!
● Start with a list L of n items, each with d "digits", where 

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each 

element, and placing the element at the rightmost end 
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the 
rightmost end of L.

O(b)

O(d)

O(n) * O(1) – linked list?

O(b)*O(n)? 



RadixSort!
● Start with a list L of n items, each with d "digits", where 

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each 

element, and placing the element at the rightmost end 
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the 
rightmost end of L.

O(b)

O(d)

O(n) * O(1)
There are still only 
n elements total, 
though, however 
they're distributed.

O(b) * O(n)? O(b) + O(n)



RadixSort!
● Start with a list L of n items, each with d "digits", where 

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each 

element, and placing the element at the rightmost end 
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the 
rightmost end of L.

O(b)

O(d)

O(n) * O(1)

O(b) + O(n)

O(b) + O(d*(n+b+n) = O(d(n+b))



● When b is assumed to be small relative to n, O(d(n+b)) 
reduces to O(dn), which is how you'll usually see the 
running time given.

● Example: 64-bit integers
○ d = 64
○ b = 2 (each bit can be 0 or 1)
○ Overall running time on a list of size n: 

              O(64(n+2)) = O(n)



But but didn't we just say we can't beat n log n
● Radix sort is not a comparison-based sort. Notice that 

values are never directly compared with each other!

● It relies on there being a finite (and small) number of 
possible values b for each digit.



Some details
● When d = 1, this is sometimes called counting sort.

○ Got a list of values that are all in the range 1 through 100? Why 
even sort them? Just count the number of each type!

● Works on, e.g., words as well! (If using, say, lowercase English 
letters, words are just base-26 numbers.)

● Works even if different values have different lengths: just 
front-pad with 0s.

● Works even if different "digits" have different bases.

● Handles duplicate values just fine.



Rough correctness argument
● Consider two list elements a and b, with a < b.

● Starting from the left (the most significant digit), find 
the first digit j at which a and b differ.

● When radix sort got around to sorting digit j, it placed 
a earlier in the list than b. Then it maintained that 
relative order in all remaining rounds, since a and b 
were always tied for the same digit thereafter.



Why not just use this instead of MergeSort?
● Constant factors! O(dn) is not really O(n).

○ Also, if all values are distinct, then n can be no 
larger than bd, which means d ≥ logbn.
So O(dn) is O(n log n). (Big) oh no!

● Sometimes we may want to sort values that can't be 
(easily) mapped to base-b numbers.

● The bucket overhead takes extra space, and it's hard to 
plan for how it will be used (depends on which buckets 
end up getting the most elements).



Radix is Latin for "root", as in "numerical base"

These radishes are roots. But they cannot be (easily) sorted via RadixSort.



Next time
● Harnessing the power of 

randomness!

● We'll see the idea of pivoting / 
partitioning again as we study 
QuickSort!

● The next lecture is the most 
probability-intensive. A review 
document on probability is 
coming.


