
6/27 Lecture Agenda
● Announcements

● Part 2-1: k-Selection

● 10 minute break!

● Part 2-2: RadixSort and the limits of sorting

Announcements!
● Pre-HW1 due tonight, 11:59 PM

● HW1 due Thursday, 11:59 PM (not Wednesday as originally
stated)

● Templates and autograders for Problem 6 are available!

● Pre-HW2 out tonight

● HW2 out Wednesday night

Policy for Coding Problems
● The autograder will show the number of test cases successfully

passed. However, this does not translate directly to your score
for the problem. (Coding problems are worth 8 points like every
other HW problem, or possibly 4 points for a hybrid theory +
coding problem)

● In general:
○ To get full points, you need to solve all test cases.
○ If you solve anywhere between 1 and n-1 test cases, you get

25-75% of the points.
■ That is, we want to put a premium on being fully correct,

but also give credit for trying.

6/27 Lecture Agenda
● Announcements

● Part 2-1: k-Selection

● 10 minute break!

● Part 2-2: RadixSort and the limits of sorting

Divide and Conquer
Sorting &
Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

k-Selection

A Warm-Up Problem…
● Suppose we have a (not necessarily sorted) list of n integers.

○ (e.g., [9, 4, 3, 0, 5])

● We wonder:

○ What is the largest absolute difference between any pair of
(not necessarily consecutive) elements in the list?
■ here, the answer is 9: 9 - 0 = 9

○ What is the smallest absolute difference between any pair of
(not necessarily consecutive) elements in the list?
■ here, the answer is 1: e.g., 4 - 3 = 1

● And how do we find these efficiently?

Largest Absolute Difference
● The two most different elements in the list are the smallest

and the largest!

● We can find the smallest element in O(n) time by iterating
through the list, keeping track of the smallest element we've
seen so far.
○ Only O(1) work to check each new element.

● Same idea for the largest element.

● We can do both of these at once, then take the difference! It's
O(n) time overall.

Smallest Absolute Difference
● Now it's trickier! The answer doesn't entail just finding the

largest or smallest list elements. The pair could be anywhere!

 [100, -55, -7, 28, 34, -6, -38, 144]

● A brute-force O(n2) strategy would be to check all pairs.

Smallest Absolute Difference
● Now it's trickier! The answer doesn't entail just finding the

largest or smallest list elements. The pair could be anywhere!

 [100, -55, -7, 28, 34, -6, -38, 144]

● A brute-force O(n2) strategy would be to check all pairs.

● We can do better by sorting the list in O(n log n) time, and then
checking every consecutive pair.
○ No non-consecutive pair in a sorted list can have the

smallest absolute difference, since we could do better by
just moving the indices closer to each other…

Smallest Absolute Difference: Can we do better?

● If we have to sort the list, we're stuck at Ω(n log n).*
○ *kind of. More coming in the second half!

● Do we have to sort the list? It sure seems like we do!

● If you think of a way to solve this problem without
sorting, or can prove that the Ω(n log n) bound
holds, let us know on Ed!

Another Problem: Find The Median
● Why should we care? Why not just take the mean?

○ The median is much less sensitive to outliers!

● Reminder of the definition:

○ In a list of odd length n, the median is the (n+1)/2 - th
smallest value. (We'll focus on this case.)
■ in [9, 4, 3, 0, 5], it's 4.

○ In a list of even length n, the median is the mean of
the n/2 - th and ((n/2) + 1) - th smallest values.
■ in [2, 0, 2, 0], it's 1.

How do we find the median of an odd-length list?
● One idea: the median is the middle of the sorted

list. So sort the list and take the middle
element. Running time: O(n log n).

● Are we done? Can we go home?
○ No! This summer, we are

trapped in an algorithm
dimension in which we
must always try to do
better (or prove that we
can't).

But doesn't this inherently require sorting?
● It seems like we might be stuck at Ω(n log n).

● However………………………………………………..…………………
……………………………..………………………………………………..
………………………………………………..………………………………
………………..

(suspense builds)
…………………………………………………………………………………
…………………..……………………………………………………………
………………………………………..

Commercial Break!
Hey, we could use more practice with recurrences!
Let's solve this one, which I surely chose completely
at random!

T(n) ≤ T(n/5) + T(7n/10) + n, n > 10

T(n) = 1, 1 ≤ n ≤ 10 Note the use of ≤ instead of =.
This is fine – we can solve the
= version as an upper bound.

T(n) ≤ T(n/5) + T(7n/10) + n
How can we approach this?

● The Master Theorem (HW1 Problem 3): nope. This
doesn't fit the form.
○ What if we say T(n/5) ≤ T(7n/10), so we have

T(n) ≤ 2T(7n/10) + n?
○ Then we have a = 2, b = 10/7, d = 1, and

T(n) = O(n) ≈ O(n1.94)

● But this turns out to be a very loose upper bound!

log(10/7)2

T(n) ≤ T(n/5) + T(7n/10) + n
What about top-down unrolling?

● T(n) ≤ T(n/5) + T(7n/10) + n
 ≤ T(n/25) + T(7n/50) + n/5

 + T(7n/50) + T(49n/100) + 7n/10
 ≤ …

NOPELike a werewolf under a full
moon, this looks like it's only
going to get hairier.

T(n) ≤ T(n/5) + T(7n/10) + n
What about bottom-up investigation?

● T(1), …, T(10) = 1
● T(11) ≤ T(2.2) + T(7.7) ≤ T(3) + T(8) = 2
● …
● T(15) ≤ T(3) + T(10.5) ≤ T(3) + T(11) = 3

N O P E
This technique works well when
we can spot some obvious
pattern. The weird fractions
make that unlikely here.

it's fun to stay at the

T(n) ≤ T(n/5) + T(7n/10) + n
What if we use a program
to calculate T(n) for a
bunch of relatively small
values, then make a plot?

But how do we prove it?

How do we write a proof when we don't know c?
● Go through the proof leaving c as a

constant.

● Get some idea of what the constraints on c
are.

● Pick a c that actually works.

● Rewrite the proof, using that c as if it fell
out of the sky or sprang forth fully formed
from our heads like Athena.

T(n) ≤ T(n/5) + T(7n/10) + n
Claim: T(n) ≤ cn, for all n ≥ 1. n0 ≥ 1.

Base case: T(1) = 1 ≤ c * 1. OK, so we need c ≥ 1.

Inductive step: Suppose the claim holds for 1 ≤ n ≤ k-1. We'll show
that it also holds for n = k.

T(k) ≤ T(k/5) + T(7k/10) + k

 ≤ ck/5 + 7ck/10 + k

 ≤ 9ck/10 + k Hm, what if we make c = 10?

T(n) ≤ T(n/5) + T(7n/10) + n
Claim: T(n) ≤ cn, for all n ≥ 1. n0 ≥ 1.

Base case: T(1) = 1 ≤ c * 1. OK, so we need c ≥ 1.

Inductive step: Suppose the claim holds for 1 ≤ n ≤ k-1. We'll show
that it also holds for n = k.

T(k) ≤ T(k/5) + T(7k/10) + k

 ≤ ck/5 + 7ck/10 + k

 ≤ 9ck/10 + k Hm, what if we make c = 10?

 ≤ 9k + k = 10k Yay!

We used the Substitution Method!

● Guess the form of the answer to the
recurrence. (e.g. by plotting it)

● Write an induction proof, figuring
out the value of c as you go along.

End of Commercial Break!

T(n) ≤ T(n/5) + T(7n/10) + n, n > 10

T(n) = 1, 1 ≤ n ≤ 10

Solution: T(n) = O(n)

Now back to median-finding!

……………………………………………………OK, let's put on our
ADVENTURE HATS and try to do it without sorting!

Where's the room for improvement? Intuitive idea:

● If we sort, we spend a lot of time finding the exact
relationships among values that are not even
close to the median.

● What a waste! Can we not?

What if we break the data into chunks, and ask each
chunk what its median is?

Then the only sensible thing to do with those values
would be to take their median.

Is it guaranteed that that value would be the overall
median? (Can you argue this or find a
counterexample?)

Medians of medians

list [2, 9, 1, 3, 8, 4, 7, 6, 5], true median 5

Break into chunks of 3: [2, 9, 1], [3, 8, 4], [7, 6, 5]

Take their medians: 2, 4, 6

Take the median of those: 4. Oh no!

But we did get pretty close. Does that help?

A counterexample

● Check every value in the list to see if it's greater or less
than that estimate m.

● If less than half the other values are smaller than m, the true
median is greater than m.

● If exactly half the other values are smaller than m, the true
median is m and we are done.

● If more than half the other values are smaller than m, the
true median is smaller than m.

What can we do with our estimate? recall: list
of unique
elements,
odd length

Repeat the following:

● Use the median of medians method to get an estimate m.

● Check m against all the other elements.

● If the median is smaller than m, throw out m and
everything bigger. Then recurse.
○ Same idea if the median is bigger than m.

● The closer m is to correct, the more we get to throw away.

A job for divide and conquer!

● How do we recurse on a smaller list when the median
we're searching for is no longer the median of that list?

● The method we described actually still works fine for
finding any k-th largest element of a list! We know
which half of the list our value is supposed to be in, so
we estimate the median and then throw away the part
of the list we know doesn't contain our value.

Wait a minute

We have a list of 101 elements. We want to find the median (51st smallest).

● Say our first estimate turns out to be the 58th largest value. Then we
know the true median is one of the 57 values that (we now know) are
less than that. So we save only those values.

An example

We have a list of 101 elements. We want to find the median (51st smallest).

● Say our first estimate turns out to be the 58th largest value. Then we
know the true median is one of the 57 values that (we now know) are
less than that. So we save only those values.

New problem! We have a list of 57 values. We want to find the 51st smallest.

● We estimate the median of this new list. It turns out to be the 23rd
smallest value. We know the true median is one of the 57-23 = 34 values
that (we now know) are greater than that. So we save only those values.

An example

We have a list of 101 elements. We want to find the median (51st smallest).

● Say our first estimate turns out to be the 58th largest value. Then we
know the true median is one of the 57 values that (we now know) are
less than that. So we save only those values.

New problem! We have a list of 57 values. We want to find the 51st smallest.

● We estimate the median of this new list. It turns out to be the 23rd
smallest value. We know the true median is one of the 57-23 = 34 values
that (we now know) are greater than that. So we save only those values.

Another new problem! We have a list of 34 values. We want to find the
(51-23) = 28th smallest…

An example

Reminiscent of binary search!

This seems like it works!
I'm going back to sleep.

But what if our

estimates are bad?

Each of you please:

● Write down the numbers 1 through 15 in some order.
Try to be random, or don't – it doesn't really matter.

● Break them into groups: first five, next five, last five.

● Within each group, find the median element.

● Take the median of those three medians.

How close does median-of-medians get us?

The true median is 8. So none of us was too
far away!

In fact, there is no way anyone could have
gotten a value below 6 or above 10…

We all got between 6 and 10

Suppose:

○ Each column is sorted
from top to bottom.

○ The columns' medians
a3, b3, c3, d3, e3 are sorted
from left to right.

How many values are definitely
less than c3?

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

Here we're using five groups of 5 (each column is a group)

Suppose:

○ Each column is sorted
from top to bottom.

○ The columns' medians
a3, b3, c3, d3, e3 are sorted
from left to right.

How many values are definitely
less than c3?

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

One example of
the worst-case
scenario!

1 2 3 10 11

4 5 6 12 13

7 8 9 14 15

16 17 18 19 20

21 22 23 24 25

The same logic
holds for
values
definitely
greater than c3.

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

There are n/5 groups
of 5.

We get 3 from
((n/5)-1)/2 of them,
and 2 from the middle.

That's (3n/10)-3/2 + 2

i.e. just over 3n/10.

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c3 d3 e3

a4 b4 c4 d4 e4

a5 b5 c5 d5 e5

● This means that when we throw away the part
of the list we don't need, we can surely throw
away just over 3n/10 of the values, without
worrying that we threw away the right one!

● And we're left with no more than 7n/10 of the
values…

So what?

● When an algorithm has
some magic number in
it, it's often for a very
good reason.

● Why not 3? You'll
investigate this on
HW2!

Wait, where did this 5 thing come from?

in which Vin
Diesel drives over
the median a lot

● Finding the median of each group of 5 takes constant time. There
are n/5 such groups. Then we look through all n elements to see
whether each is bigger than the estimate.
So we do O(n) work. We'll handwave this as n but it could be 6n/5

● We can recurse on a subproblem of size n/5 to find the median of
medians.

● Then we recurse on a subproblem of size no more than 7n/10.

T(n) ≤ T(n/5) + T(7n/10) + n

A recurrence for this method

…which we
conveniently already
know is O(n)

This is a linear-time algorithm!!!
● Not only that, it lets us find any k-th smallest element,

not just the median.

○ The median-of-medians part is used to divide up
the current list into two parts, so that we can throw
away the part we don't need, and it has a good
chunk of elements (over 70%).

○ But, that said, we can search for any element we
want, since we always know which of the two lists
to look in.

● MedianOfMedians itself needs to find a
median. So it recursively calls Select! (but on a
smaller list)

● Partition runs in O(n) time and just shoves
values to the left or right of p. Those values are
not sorted relative to each other.
○ so, sort of like MergeSort, but not quite

Subtleties

● What if we want the median of a list of even size?
○ Select the two middle values and average them!

● What if there are repeated elements?
○ This turns out not to hurt. e.g., say there are five 7s…

think of them as 7.01, 7.02, 7.03, 7.04, 7.05.

● What if some sublist isn't a multiple of 5?
○ This one is a more serious annoyance. We can notionally

pad the final group of 5 with ∞ values, but then this eats
into our guarantee (a bit) since some of the values we get
to throw away are fake. But it all still holds.

More subtleties

6/27 Lecture Agenda
● Announcements

● Part 2-1: k-Selection

● 10 minute break!

● Part 2-2: RadixSort and the limits of sorting

6/27 Lecture Agenda
● Announcements

● Part 2-1: k-Selection

● 10 minute break!

● Part 2-2: RadixSort and the limits of sorting

Divide and Conquer
Sorting &
Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

(Breaking) The Limits of Sorting

A confusing claim last week…

In what sense can we not beat O(n log n)?

● In this part, we will only consider sorts based on
comparisons of two elements at a time.

● When would this be relevant? Suppose we're sorting
something that we can't quantify absolutely. e.g., rocks
from less pretty to prettiest.

○ assuming transitivity (i.e., there is no cycle in which
A > B, B > C, C > A)

How many outcomes of sorting?

● Say we have a sorting algorithm that takes in lists
of length n in which all elements are distinct.

● How many possible outcomes could this return?

● There are n choices for the first element, n-1
choices for the second element, and so on… so this
is n! (n factorial).

It's n!

A comparison-based method is a tree

Is the second
element greater
than the first?

Yes

Ask another
question or

return an
answer

Ask another
question or

return an
answer

No

Sorting a list of distinct elements [a, b, c]
Is a < b? No

Is b < c?

a, b, c Is a < c?

a, c, b c, a, b

Is b < c?

c, b, aIs a < c?

b, a, c b, c, a

No

No

No

No

Yes

Yes
Yes

Yes
Yes

How deep is the tree?
● A shallower tree means an asymptotically better algorithm!

○ Remember, we judge algorithms by how they perform on
their worst-case inputs.

● This is a binary tree. How shallow can it possibly be, if we fill up
every level as much as possible?

● We have n! leaf nodes, and therefore we necessarily have
exactly n! - 1 internal nodes. Let's stuff 2(n!) - 1 nodes into a
tree…
○ This is a best case. A worse algorithm might have the same

leaf node twice.

How deep is the tree?

● We can get:
○ 1 node on the first level
○ 2 nodes on the second level
○ 4 nodes on the third level…

● With n levels, we can fit at most 2n - 1 nodes.

● Number of levels needed to fit k nodes = floor(log2k) + 1

● To get 2(n!) - 1 nodes into a tree… floor(log2(2(n!)-1)) + 1

log2 of n!

log2(n!) = log2(n) + log2(n-1) + … + log2(2) + log2(1)

● A powerful trick! Notice that each of the terms from
log2(n) to log2((n/2) + 1) is greater than log2(n/2),
which is log2n - log22 = log2n - 1

● There are n/2 such terms, and so their sum is
greater than (n/2) (log2n - 1).

● Oh no! This is Ω(n log n).

We will handwave away 2n! - 1 as being bounded
below by n!.

No comparison-based sorting
algorithm can be o(n log n)

This is sad! But negative
results like this are useful.

The value of lower bounds
"Hey I have a binary search tree that lets you do any
insertion in O(1) time and can be traversed in O(n) time"

● No you don't!

● If you did, we could do a comparison-based sort of a list
in O(n) time as follows:

○ Insert all elements into the tree: n * O(1) = O(n)
○ Traverse the tree to get the sorted order: O(n)
○ Total running time: O(n)

But what if we use a sort that isn't
limited to binary comparisons?

A real-life algorithmic triumph
● You are a grad student at UC Berkeley. (I know

– boo, hiss!) You just proctored a biology
exam.

● You have a pile of exams to sort by student ID.
○ The IDs are all 8 digits long. (Here we'll

pretend it's 5)

● There are too many to lay out all around the
room to do a MergeSort or something. The
grad student office is small.

● You want to get this over with fast so you can
go to Naan n' Curry and walk home and
continue avoiding your graduate research.

94305
94301
84305
73301
94315
93301
94401
54412

Here's the initial list of IDs, in some
arbitrary order.

94305
94301
84305
73301
94315
93301
94401
54412

Here's the initial list of IDs, in some
arbitrary order.

What if we take advantage of the fact
that there are only 10 digits possible?

Then we only need 10 piles.

We could sort them by first digit and
then sort each pile recursively. But

notice that the distribution of digits is
uneven – most start with 9, etc.

94305
94301
84305
73301
94315
93301
94401
54412

Awesome idea:

Sort by the last digit first.

Then sort by the next-to-last digit,
preserving the order from the last

round when there are ties.

And so on!

94305
94301
84305
73301
94315
93301
94401
54412

94305
94301
84305
73301
94315
93301
94401
54412

94301
73301
93301
94401
54412
94305
84305
94315

94305
94301
84305
73301
94315
93301
94401
54412

94301
73301
93301
94401
54412
94305
84305
94315

94305
94301
84305
73301
94315
93301
94401
54412

94301
73301
93301
94401
54412
94305
84305
94315

94301
73301
93301
94401
94305
84305
54412
94315

94305
94301
84305
73301
94315
93301
94401
54412

94301
73301
93301
94401
54412
94305
84305
94315

94301
73301
93301
94401
94305
84305
54412
94315

94301
73301
93301
94305
84305
94315
94401
54412

94305
94301
84305
73301
94315
93301
94401
54412

94301
73301
93301
94401
54412
94305
84305
94315

94301
73301
93301
94401
94305
84305
54412
94315

94301
73301
93301
94305
84305
94315
94401
54412

73301
93301
94301
94305
84305
94315
94401
54412

94305
94301
84305
73301
94315
93301
94401
54412

94301
73301
93301
94401
54412
94305
84305
94315

94301
73301
93301
94401
94305
84305
54412
94315

94301
73301
93301
94305
84305
94315
94401
54412

73301
93301
94301
94305
84305
94315
94401
54412

54412
73301
84305
93301
94301
94305
94315
94401

sorted!

RadixSort!
● Start with a list L of n items, each with d "digits", where

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each

element, and placing the element at the rightmost end
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the
rightmost end of L.

This ensures that the sort
is stable.

RadixSort!
● Start with a list L of n items, each with d "digits", where

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each

element, and placing the element at the rightmost end
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the
rightmost end of L.

O(b)

O(d)

O(n) * O(1) – linked list?

O(b)*O(n)?

RadixSort!
● Start with a list L of n items, each with d "digits", where

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each

element, and placing the element at the rightmost end
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the
rightmost end of L.

O(b)

O(d)

O(n) * O(1)
There are still only
n elements total,
though, however
they're distributed.

O(b) * O(n)? O(b) + O(n)

RadixSort!
● Start with a list L of n items, each with d "digits", where

there are b possible values (o through b-1) for each "digit".
● Make b empty "buckets" (lists), numbered o through b-1.

● For i in [d, d-1, … 1]:
○ Go through the list L, looking at the i-th digit of each

element, and placing the element at the rightmost end
of the bucket matching that digit.

○ (Now L is empty.)
○ For j in [0, 1, …, b-1]:

■ Add the elements in bucket j, in order, to the
rightmost end of L.

O(b)

O(d)

O(n) * O(1)

O(b) + O(n)

O(b) + O(d*(n+b+n) = O(d(n+b))

● When b is assumed to be small relative to n, O(d(n+b))
reduces to O(dn), which is how you'll usually see the
running time given.

● Example: 64-bit integers
○ d = 64
○ b = 2 (each bit can be 0 or 1)
○ Overall running time on a list of size n:

 O(64(n+2)) = O(n)

But but didn't we just say we can't beat n log n
● Radix sort is not a comparison-based sort. Notice that

values are never directly compared with each other!

● It relies on there being a finite (and small) number of
possible values b for each digit.

Some details
● When d = 1, this is sometimes called counting sort.

○ Got a list of values that are all in the range 1 through 100? Why
even sort them? Just count the number of each type!

● Works on, e.g., words as well! (If using, say, lowercase English
letters, words are just base-26 numbers.)

● Works even if different values have different lengths: just
front-pad with 0s.

● Works even if different "digits" have different bases.

● Handles duplicate values just fine.

Rough correctness argument
● Consider two list elements a and b, with a < b.

● Starting from the left (the most significant digit), find
the first digit j at which a and b differ.

● When radix sort got around to sorting digit j, it placed
a earlier in the list than b. Then it maintained that
relative order in all remaining rounds, since a and b
were always tied for the same digit thereafter.

Why not just use this instead of MergeSort?
● Constant factors! O(dn) is not really O(n).

○ Also, if all values are distinct, then n can be no
larger than bd, which means d ≥ logbn.
So O(dn) is O(n log n). (Big) oh no!

● Sometimes we may want to sort values that can't be
(easily) mapped to base-b numbers.

● The bucket overhead takes extra space, and it's hard to
plan for how it will be used (depends on which buckets
end up getting the most elements).

Radix is Latin for "root", as in "numerical base"

These radishes are roots. But they cannot be (easily) sorted via RadixSort.

Next time
● Harnessing the power of

randomness!

● We'll see the idea of pivoting /
partitioning again as we study
QuickSort!

● The next lecture is the most
probability-intensive. A review
document on probability is
coming.

