
6/29 Lecture Agenda
● Announcements

● Part 2-3: Randomized Algorithms and 
QuickSort

● 10 minute break!

● Part 2-4: Karger's Algorithm



Announcements!
● HW1 due Thursday, 11:59 PM

○ See Problem 6 (Coding) for a bit more detail. Also, no late days will 
be assessed on Problem 6 specifically (still a limit of 2 though)

● Quick feedback request coming soon

● HW2 out tonight

● Deadline to add the course is July 1, 5 PM.
○ If you added this week, please reach out to me.

● Remember: no class on July 4! (due times for Pre-HW2 and HW2 are 
longer to reflect the vacation)
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is July 4! = July 
24?
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LOL I'm so random
● A deterministic algorithm behaves the same 

way every time it is run on the same input.

● A randomized algorithm has access to – and 
uses – some source of randomness. It may 
produce different results each time it is run, 
even on the same input.



What is a "source of randomness"?
● Computers are good at doing exactly 

what you tell them! But how do you 
tell them to create randomness?

● There are deterministic algorithms to 
create "pseudorandom" sequences of 
bits that appear to be random.

● These still have to be seeded (kind of 
like a base case!) The seed can come 
from the current time (bad idea), or 
from, say, temperature fluctuation in 
the CPU… should be something 
intractable to reverse-engineer.
○ Ian's apocryphal? Keno story

The random patterns of 
lava lamps have been used 
as one such source!



Four "random" patterns ought to be enough, right?

This guy won $100K in 
1984 on the show Press 
Your Luck by memorizing 
the "random" patterns



Two ways to use randomness
● A Monte Carlo algorithm is always 

fast, but may be wrong some of the 
time.
○ side note: non-apocryphal 

roulette story

● A Las Vegas algorithm is always 
correct, but may be slow some of 
the time.

It's hard to remember which of 
these is which. Don't worry 
about memorizing the names.



What good is an algorithm that can be wrong?

● Say we have a randomized Monte Carlo algorithm to 
solve a problem with a yes-or-no answer, and it is 
correct 51% of the time.

● But that's not good enough! We want to be 99% sure 
that the answer is correct!

● Can we still get what we want?



Solution: Run the algorithm a lot!
● Run it k times, record whether each result is "Yes" or 

"No", and take the majority answer.

● The probability that we get more of the wrong answer 
than the right answer can be calculated with a normal 
approximation to the binomial distribution (out of scope 
for this class).
○ see https://web.stanford.edu/class/cs109a/109asp22notes6.pdf if curious

● It turns out that if we run this 13527 times, we have less 
than a 1% probability of getting the wrong overall answer. 
○ If we want more confidence, we can run more times.

https://web.stanford.edu/class/cs109a/109asp22notes6.pdf


Who wants to run an algorithm 13527 times?
● Computers are fast!

○ I run some brute-force combinatorics stuff in O(vernight) time

● Some problems may lack obvious deterministic solutions, but have 
easy randomized ones.



Who wants to run an algorithm 13527 times?
● Computers are fast!

○ I run some brute-force combinatorics stuff in O(vernight) time

● Some problems may lack obvious deterministic solutions, but have 
easy randomized ones.

● Real-world example: Primality testing!

○ Some forms of cryptography depend on products of two huge 
primes being very hard to factor.

○ But to use this, we need a source of huge primes.

○ A randomized algorithm makes this easy! Coming on HW2…



Why not just derandomize randomized algorithms?
● Consider some randomized algorithm. It is fed some list 

of random bits.

● What if we always give it the same fixed list of bits, 
making it deterministic? Won't it still work?
○ Yes, but there might be some inputs where it always 

fails because the fixed bit list just happens to be 
unlucky for those.

● There seem to be some problems that require 
randomness to be solved (see "Ramsey theory")



Let's see an example!
● On Monday we used the idea of partitioning:

○ We have some (unsorted) list.

○ We find some value in the list to use as a "pivot". In 
the context of k-Select, this was an estimate of the 
median.

○ We go through the list moving values smaller than 
the pivot to one side, and values larger than the pivot 
to the other side.



Finding a good pivot is a lot of work!
So what if we don't even try?

Here's a strategy to sort a list.

○ Pick an element of the list uniformly at random.

○ Use that element as a pivot.

○ Then recursively sort the left and right halves in the 
same way.



5 3 6 2 4 7 9 8 1

6 Pick a pivot at random

65 3 2 4 1 7 9 8 Partition

Two sublists of 
about half size! 
Then keep going!



5 3 6 2 4 7 9 8 1

9 Pick a pivot at random

95 3 6 2 4 7 8 1 Partition

One empty sublist, 
one of almost full 
size! Then keep 
going!



The worst case is really bad
● The first call creates sublists of size n-1 and 0.

● The recursive call on the sunlist of size n-1 creates 
sublists of size n-2 and 0.

● So our total work is: n + (n-1) + (n-2) + … + 1, which we 
know is O(n2).

…and this algorithm is ironically called QuickSort!



What does "worst case" mean here?
● In deterministic algorithms, by "worst 

case" we meant: use the input that makes 
the algorithm run the slowest.

● In randomized algorithms, by "worst 
case" we mean the worst of two worlds:
○ the input is as bad as possible, and
○ a "bad guy" has seen the input and 

then chosen our algorithm's 
randomness for us.



● Many randomized algorithms essentially do not care 
about how "bad" the input is!

○ All lists are equally good/bad for QuickSort, since 
only the relative order of the elements matters.

○ What about ties? These only help. When we're 
partitioning, we can just slurp up any values that 
exactly match the pivot.

Some good news…



● Us: We'd like to QuickSort [4, 2, 1, 3, 5].

● Bad Guy: Cool. OK, your pivot is 1.

(we do the first step to get [1] and [4, 2, 3, 5])

● Us: We'd like to QuickSort [4, 2, 3, 5].

● Bad Guy: Heh, suckers. OK, your pivot is 2…

But the "bad guy" can doom us



● Here average means over all possible ways the 
randomized algorithm might make its choices, not 
over all possible inputs.
○ What would that even mean? There are ∞

● We still use a worst-case input. (But for QuickSort, any 
list of distinct elements is equally bad)

● But now the bad guy has no power! We consider all 
ways that the dice of our algorithm might fall, and take 
the average of those running times.

What about the average case?



● On average, QuickSort should choose a pivot sort of 
close to the median of the list, right?

● So the list roughly breaks into two halves of about 
the same size, right?

● T(n) = 2T(n/2) + O(n)
● so, by the Master Theorem, O(n log n)

An incorrect argument

it takes a linear pass through the 
list to partition

Waverly's reasoning is not sound. We'll see 
why in Problem Session 2. But her answer 
turns out to be right!



● The running time is 
determined by how many pairs 
of elements we compare.

● In QuickSort, whenever we 
compare two elements, one of 
them is always the current 
pivot.

● Any pair is compared at most 
once, and it's possible to never 
compare some pairs.

To argue correctly, we'll need some probability
3 1 2

2

Partition:
● compare 3 to 2
● compare 1 to 2

1 2 3

We never compared 1 and 3!



If two non-pivot elements end up on 
opposite sides of a pivot:

● They will never be compared to 
each other.
○ The recursive QuickSort calls 

for the two sides are totally 
separate!

● They have never been compared 
to each other.
○ Otherwise one of them 

would have been a pivot 
earlier, and we wouldn't be 
looking at it now.

3 1 2

2

Partition:
● compare 3 to 2
● compare 1 to 2

1 2 3

We never compared 1 and 3!



● Consider the j-th and k-th largest elements of the list, with j < k. 
(Call them Ej and Ek.) (They may not be in sorted order in the list.)

● What is the probability that they get compared?

○ If Ej or Ek is chosen as the pivot in this round, the two surely get 
compared (since the pivot is compared with everything else).

○ If the pivot is smaller than or larger than both, then they 
might still get compared in the next round.

○ If the pivot is between the two (larger than Ej, smaller than Ek) 
they definitely never get compared.

Arguing over the average case



● Consider the j-th and k-th largest elements of the list, with j < k. 
(Call them Ej and Ek.) (They may not be in sorted order in the list.)

● What is the probability that they get compared?

○ If Ej or Ek is chosen as the pivot in this round, the two surely get 
compared (since the pivot is compared with everything else).

○ If the pivot is smaller than or larger than both, then they 
might still get compared in the next round. This part is hard to 
handle!

○ If the pivot is between the two (larger than Ej, smaller than Ek) 
they definitely never get compared.

Arguing over the average case



● Consider the j-th and k-th largest elements of the list, with j < 
k. (Call them Ej and Ek.)

● What is the probability that they get compared?

○ It's the probability that in the sublist of elements
[Ej, Ej+1, …, Ek-1, Ek], i.e. those that are no less than Ej and no 
greater than Ek, either Ej or Ek is chosen as a pivot before 
any other element in the range is.

○ Since the total size of the range is k - j + 1, this probability is 
2 / (k - j + 1).

Arguing over the average case



● An indicator random variable is associated with some event, 
and it is 1 if the event happens and 0 if not.

● Here, let Ijk be the indicator for whether elements Ej and Ek ever 
get compared (at any point in the algorithm).

● The total number of comparisons is the sum over all j < k of Ijk.

● We want the expectation (average) of that sum, over all the 
ways that QuickSort could randomly choose its pivots.

● (See Prereq Review #3 on the site!)

Expectation and indicator random variables



This is the number 
of comparisons. 

Linearity of 
expectation (see 
Prereq Review #3)

Expectation of an 
indicator is the 
probability of its event 
(see Prereq Review #3)

This is the 
probability we 
found earlier.



Simplify the term in the 
summation by defining 
l = k - j (and changing 
the bounds 
accordingly)

Use inequalities to 
make the term in the 
summation easier to 
work with



Simplify the term in the 
summation by defining 
l = k - j (and changing 
the bounds 
accordingly)

Use inequalities to 
make the term in the 
summation easier to 
work with

Now we use another math fact (and I do want you to remember this 
one): the sum 1/1 + 1/2 + … + 1/l is the l-th harmonic number, Hl. And 
these grow slowly: Hl = O(log l).



Simplify the term in the 
summation by defining 
l = k - j (and changing 
the bounds 
accordingly)

Use inequalities to 
make the term in the 
summation easier to 
work with

Now we use another math fact (and I do want you to remember this 
one): the sum 1/1 + 1/2 + … + 1/l is the l-th harmonic number, Hl. And 
these grow slowly: Hl = O(log l).





● You would not have been expected to come up with all of that 
on your own!

● But I do want you to understand the details, since many of the 
"tricks" used there are useful again and again.

○ Indicator random variables
○ Linearity of expectation
○ Changing variables to simplify an expression
○ Using inequalities to simplify an expression
○ Harmonic numbers

That was a lot



● QuickSort is O(n log n) in the average case!

● (Side note: it's also O(n log n) in the best case. Then the 
recursion tree does look just like MergeSort.)

● In practice, it's really fast!

● BTW, QuickSort is a "Las Vegas"
algorithm: it's always correct,
but might be slow.

So, wait what were we doing again?



● Sorry, Sisi. Today is pretty 
math/theory-heavy.

● One thing to consider: when 
we partition a list, we 
shouldn't actually create a 
bunch of separate lists in 
memory. We can cleverly swap 
stuff around in the existing 
list. (Coming in Problem 
Session 2)

We never said anything about implementation



What do major languages actually use to sort?
C++: Introsort (a hybrid of Quicksort, Heapsort, and 
Insertion Sort)

Java: Quicksort (for primitives), a modified MergeSort (for 
objects)

JavaScript: Implementation-dependent

Python: Timsort (a hybrid of Insertion Sort and MergeSort)

One takeaway from this: maybe there is no universally 
best sort?



● If a bad guy knows we're using 
QuickSort and has the ability to 
choose our randomness… or knows 
the random generator and can 
choose our input…

● In, say, a coding contest, this is 
annoying (my solution got hacked 
by the right test case!)

● In a real application, this could be 
serious.

But remember the bad guy



● If you want speed and are willing to tolerate a chance we might not 
be correct, a Monte Carlo algorithm may be the way to go.
○ and you can push that failure chance arbitrarily low by 

running the algorithm more and more times.

● If you want correctness and can tolerate occasional slowness, a 
Las Vegas algorithm may be for you!

Randomized Algorithms Takeaway



● If you want speed and are willing to tolerate a chance we might not 
be correct, a Monte Carlo algorithm may be the way to go.
○ and you can push that failure chance arbitrarily low by 

running the algorithm more and more times.

● If you want correctness and can tolerate occasional slowness, a 
Las Vegas algorithm may be for you!

● Any randomized algorithm can be made deterministic (say, for 
gov't work) but at the cost of average-case goodness. (There will 
probably be some pathological inputs that do really badly)

● We thought outside the narrow box of "always has to be correct 
and fast", and got more real-world flexibility.

Randomized Algorithms Takeaway
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An Early Taste of Graphs ● Graphs consist of 
vertices (sometimes 
called nodes) connected 
by edges.

● Here, the edges are 
undirected (two-way) 
and the graph is 
connected (every vertex 
is reachable from every 
other)

● We'll talk about how 
these are actually 
represented in memory 
later in the course.



Graph Cuts ● A cut is a set of edges 
that, when removed, 
break the graph into two 
separate connected 
components.

● What does "connected" 
mean here? It means 
that within a 
component, you can get 
from every vertex to 
every other. But you 
can't get from one 
component to another!



Finding a Minimum Cut

Here we had to remove 
three edges to disconnect 
the graph.

But we could do it with only 
two! Also notice that this isn't 
the only min cut of size 2. 



A Useful Observation ● The degree of a vertex is 
the number of edges 
touching it.

● The size of a minimum 
cut of a graph is surely 
no greater than the 
smallest degree of any of 
its vertices.

● (Why? Because we can 
just remove all of that 
vertex's edges! Then the 
vertex is its own 
connected component.)

2
3

3
2



Something to Ponder

Can the size of a graph's minimum cut possibly 
be smaller than the degrees of any of its vertices?



Yes!

Here every vertex has degree at least 2, 
but we only need to remove the middle 
edge to disconnect the graph.



One more thing about min cuts…

A min cut might be a set of edges that 
do not share a vertex.



Min Cut is a hard problem!
● What would a brute force solution look like?

○ Check all possible subsets of edges.
○ For each such subset, see if removing it 

disconnects the graph.
■ Take any smallest subset of edges like this.



This is maybe not a job for Brutus
● In a graph with n vertices, there could be an edge between 

any two of them!
○ This is n choose 2, which is (n)(n-1) / 2 = O(n2).

● In a graph with E edges, there are 2E ways to select a 
subset of them. (Each one either is or isn't included.)

● So there are O(2      ) possible cuts to check. Yeowwwch!
○ And we haven't even learned yet how much time it 

takes to count the number of connected components! 
(Coming in Unit 4)

(n2)



So what do we do?
● Min Cut can be solved deterministically 

using a technique called Max Flow, 
which is coming in Unit 6.

● However, there is a beautiful 
randomized approach as well, called 
Karger's algorithm.

● We're going to focus on the idea and 
the analysis, not the implementation.



Normally…
● I like to give some intuition on how one might come up 

with an idea.

● But this case is more like Strassen's matrix 
multiplication algorithm in Problem 4 of Homework 1, 
where it's hard to imagine anyone coming up with it.

● This one does something 👻weird👻 with graphs that 
we won't see anywhere else in the course.



Edge Contractions To contract an edge of a 
graph:
● merge its two vertices
● all their edges come 

along for the ride
● delete any edge(s) 

between the two vertices
suppose we contract 
the yellow edge

then the red edge



Here's something interesting…
suppose we contract 
the yellow edge

then the red edge

By doing this, we happened to find a min cut (the orange 
and teal edges).



Karger's Algorithm
● Repeat the following until there are only two vertices left in 

the graph:

○ Select an edge uniformly at random from all remaining 
edges. (not from all remaining pairs of vertices)

○ Contract that edge.

● Return the set of edges between the vertices as the min cut.



What if that fails?

● Repeat the following until there are only two vertices 
left in the graph:

○ Select an edge uniformly at random from all 
remaining edges.

○ Contract that edge.

● Return the set of edges between the vertices.

● OK, fine. Do this a lot:

● Return the smallest cut found as the min cut.



What if that fails?

● Repeat the following until there are only two vertices 
left in the graph:

○ Select an edge uniformly at random from all 
remaining edges.

○ Contract that edge.

● Return the set of edges between the vertices.

● OK, fine. Do this a lot:

● Return the smallest cut found as the min cut.

Side note: this is a 
Monte Carlo 
algorithm!



How much is "a lot"? Why would this even work?

● It's time for some more    M A T H
Brutus is leaving



● Suppose we have an arbitrary graph. Consider any single 
min cut M in the graph.
○ There may be more than one, but we won't need to 

think about them to make our point.

● Let's find the probability that this cut survives one 
instance of Karger's procedure.

● If we ever lose even one of those edges, we fail!



● Let M be the orange and teal edges.

● What's the probability that we are still OK after our first 
edge contraction?



-red
-yellow

-green

original

With 2/5 probability, 
we contract orange or 
teal and we lose. With 3/5 probability, we're 

still OK.



-red
-yellow

-green

Then, in any of 
these scenarios, 
we lose on the next 
turn with 
probability 2/4. 
Otherwise, with 
probability 2/4, we 
win
immediately! (This 
takes some 
checking.)

So: success probability is 3/5 * 2/4 = 3/10.

Pattern: Is the answer always just (n-|M|)/n * (n-|M|-1)/(n-1) 
* …, where |M| is the size of the min cut?



It's not that simple On this turn we 
have a 2/4 
chance of 
surviving.

But here it's a 
3/5 chance.



● Suppose we are at some stage of the algorithm, and we have 
not lost yet.

● Let |M| be the size of our min cut M.

● Suppose the graph currently has v remaining vertices.
○ Recall that every vertex has degree at least |M|, or else 

the the min cut would be smaller. So the total number of 
edges in the graph is at least (v * |M|) / 2.

● We just need to not pick one of the |M| edges of M. So we 
lose with probability at most |M| / ((v * |M|) / 2) = 2 / v.
○ and survive with probability at least (v-2) / v.

the /2 is since each edge is 
counted twice



● Suppose the graph currently has v remaining vertices.
○ Recall that every vertex has degree at least |M|, or else 

the the min cut would be smaller. So the total number of 
edges in the graph is at least (v * |M|) / 2.

But how do we know this is still true at any stage of the 
algorithm?



● Suppose the graph currently has v remaining vertices.
○ Recall that every vertex has degree at least |M|, or else 

the the min cut would be smaller. So the total number of 
edges in the graph is at least (v * |M|) / 2.

But how do we know this is still true at any stage of the 
algorithm?

Suppose that at some point, we had a vertex 
with fewer than |M| edges. But then those 
edges would be an even better min cut in the 
original graph.



Putting it together
● In a round in which we have v remaining vertices, we 

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We 
stop when we're down to 2.

● So our overall survival chance is



Putting it together
● In a round in which we have v remaining vertices, we 

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We 
stop when we're down to 2.

● So our overall survival chance is

Note that this doesn't 
depend on the number 
of edges! This sidesteps 
the earlier problem.



Putting it together
● In a round in which we have v remaining vertices, we 

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We 
stop when we're down to 2.

● So our overall survival chance is



Putting it together
● In a round in which we have v remaining vertices, we 

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We 
stop when we're down to 2.

● So our overall survival chance is



Putting it together
● In a round in which we have v remaining vertices, we 

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We 
stop when we're down to 2.

● So our overall survival chance is

= 2 / (n(n-1))



This is huge! (figuratively)
● How many times do we need to try, in expectation, to 

get our first success when the probability of 
succeeding is  2 / (n(n-1))?

● This is a geometric distribution. The expectation is the 
inverse of the success probability.

● So in expectation, it takes us only n(n-1)/2 = O(n2) 
tries to get our min cut.
○ but this doesn't guarantee it…

like how you need to roll a 6-sided 
die 6 times on average to see a 1



But how many times do we actually need to try
● Say we want to find the number k of trials needed to 

be 99% sure we find our min cut M.

● Probability of failing every time:

● …, so, of succeeding at least once:

● Set that last quantity equal to 0.99, and we can solve 
for k!



this trick shows up all over CS theory!

Let ε be the error probability 
we're willing to tolerate.



The upshot: We 
need O(n2 log (1/ε)) 
trials. 



Some details
● The algorithm never has to do any checking to see that the 

min cut actually disconnects the graph!!

● The algorithm's success guarantees only depend on the size of 
the graph, not on the size of the min cut!!

● Why is it enough to succeed just once?
○ Because we take the smallest cut we find. All the failures 

don't really matter.

● What if there are multiple min cuts?
○ This only helps us! We might find one of those instead.



So… why does this work?!?!?!
● The min cut has to be small relative to the total 

number of edges in the graph. (It's at most the 
minimum degree!)

● As long as we don't remove the min cut edges, 
contracting helps us get rid of all the other unwanted 
edges faster? (HW2 will have you see what happens if 
you don't contract edges.)

● But I wasn't satisfied… so…





This morning: He sent back an amazingly 
detailed and thoughtful response!!!!!

I'll post it in Ed (he has given permission)



-red
-yellow

-green

Then, in any of 
these scenarios, 
we lose on the next 
turn with 
probability 2/4. 
Otherwise, with 
probability 2/4, we 
win
immediately! (This 
takes some 
checking.)

So: success probability is 3/5 * 2/4 = 3/10.

Pattern: Is the answer always just (n-k)/n * (n-k-1)/(n-1) * …?

This was sort of correct, but 
not… you'll see on HW2.



This is my favorite algorithm!
● What about the rest of the staff's favorite algorithms/ 

data structures?

○ Goli: Fast Fourier Transform, Segment Trees, 
Shor's (quantum) Algorithm

○ Ivan: Camerini's Algorithm, Gradient Descent
○ Lucas: Binary Indexed Trees
○ Ricky: Euclid's (GCD) Algorithm
○ Rishu: Rainbow coloring of graph edges
○ Ziang: Rapidly-Exploring Random Tree



Next Week!
● No class on Monday!

● Lectures are on Wednesday and Friday. We'll study 
some great data structures! Including hash tables!
○ (Sisi and Indy are happy.)


