
6/29 Lecture Agenda
● Announcements

● Part 2-3: Randomized Algorithms and
QuickSort

● 10 minute break!

● Part 2-4: Karger's Algorithm

Announcements!
● HW1 due Thursday, 11:59 PM

○ See Problem 6 (Coding) for a bit more detail. Also, no late days will
be assessed on Problem 6 specifically (still a limit of 2 though)

● Quick feedback request coming soon

● HW2 out tonight

● Deadline to add the course is July 1, 5 PM.
○ If you added this week, please reach out to me.

● Remember: no class on July 4! (due times for Pre-HW2 and HW2 are
longer to reflect the vacation)

Announcements!
● HW1 due Thursday, 11:59 PM

○ See Problem 6 (Coding) for a bit more detail. Also, no late days will
be assessed on Problem 6 specifically (still a limit of 2 though)

● Quick feedback request coming soon

● HW2 out tonight

● Deadline to add the course is July 1, 5 PM.
○ If you added this week, please reach out to me.

● Remember: no class on July 4! (due times for Pre-HW2 and HW2 are
longer to reflect the vacation)

is July 4! = July
24?

6/29 Lecture Agenda
● Announcements

● Part 2-3: Randomized Algorithms and
QuickSort

● 10 minute break!

● Part 2-4: Karger's Algorithm

Divide and Conquer
Sorting &
Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Randomized Algorithms and
QuickSort

LOL I'm so random
● A deterministic algorithm behaves the same

way every time it is run on the same input.

● A randomized algorithm has access to – and
uses – some source of randomness. It may
produce different results each time it is run,
even on the same input.

What is a "source of randomness"?
● Computers are good at doing exactly

what you tell them! But how do you
tell them to create randomness?

● There are deterministic algorithms to
create "pseudorandom" sequences of
bits that appear to be random.

● These still have to be seeded (kind of
like a base case!) The seed can come
from the current time (bad idea), or
from, say, temperature fluctuation in
the CPU… should be something
intractable to reverse-engineer.
○ Ian's apocryphal? Keno story

The random patterns of
lava lamps have been used
as one such source!

Four "random" patterns ought to be enough, right?

This guy won $100K in
1984 on the show Press
Your Luck by memorizing
the "random" patterns

Two ways to use randomness
● A Monte Carlo algorithm is always

fast, but may be wrong some of the
time.
○ side note: non-apocryphal

roulette story

● A Las Vegas algorithm is always
correct, but may be slow some of
the time.

It's hard to remember which of
these is which. Don't worry
about memorizing the names.

What good is an algorithm that can be wrong?

● Say we have a randomized Monte Carlo algorithm to
solve a problem with a yes-or-no answer, and it is
correct 51% of the time.

● But that's not good enough! We want to be 99% sure
that the answer is correct!

● Can we still get what we want?

Solution: Run the algorithm a lot!
● Run it k times, record whether each result is "Yes" or

"No", and take the majority answer.

● The probability that we get more of the wrong answer
than the right answer can be calculated with a normal
approximation to the binomial distribution (out of scope
for this class).
○ see https://web.stanford.edu/class/cs109a/109asp22notes6.pdf if curious

● It turns out that if we run this 13527 times, we have less
than a 1% probability of getting the wrong overall answer.
○ If we want more confidence, we can run more times.

https://web.stanford.edu/class/cs109a/109asp22notes6.pdf

Who wants to run an algorithm 13527 times?
● Computers are fast!

○ I run some brute-force combinatorics stuff in O(vernight) time

● Some problems may lack obvious deterministic solutions, but have
easy randomized ones.

Who wants to run an algorithm 13527 times?
● Computers are fast!

○ I run some brute-force combinatorics stuff in O(vernight) time

● Some problems may lack obvious deterministic solutions, but have
easy randomized ones.

● Real-world example: Primality testing!

○ Some forms of cryptography depend on products of two huge
primes being very hard to factor.

○ But to use this, we need a source of huge primes.

○ A randomized algorithm makes this easy! Coming on HW2…

Why not just derandomize randomized algorithms?
● Consider some randomized algorithm. It is fed some list

of random bits.

● What if we always give it the same fixed list of bits,
making it deterministic? Won't it still work?
○ Yes, but there might be some inputs where it always

fails because the fixed bit list just happens to be
unlucky for those.

● There seem to be some problems that require
randomness to be solved (see "Ramsey theory")

Let's see an example!
● On Monday we used the idea of partitioning:

○ We have some (unsorted) list.

○ We find some value in the list to use as a "pivot". In
the context of k-Select, this was an estimate of the
median.

○ We go through the list moving values smaller than
the pivot to one side, and values larger than the pivot
to the other side.

Finding a good pivot is a lot of work!
So what if we don't even try?

Here's a strategy to sort a list.

○ Pick an element of the list uniformly at random.

○ Use that element as a pivot.

○ Then recursively sort the left and right halves in the
same way.

5 3 6 2 4 7 9 8 1

6 Pick a pivot at random

65 3 2 4 1 7 9 8 Partition

Two sublists of
about half size!
Then keep going!

5 3 6 2 4 7 9 8 1

9 Pick a pivot at random

95 3 6 2 4 7 8 1 Partition

One empty sublist,
one of almost full
size! Then keep
going!

The worst case is really bad
● The first call creates sublists of size n-1 and 0.

● The recursive call on the sunlist of size n-1 creates
sublists of size n-2 and 0.

● So our total work is: n + (n-1) + (n-2) + … + 1, which we
know is O(n2).

…and this algorithm is ironically called QuickSort!

What does "worst case" mean here?
● In deterministic algorithms, by "worst

case" we meant: use the input that makes
the algorithm run the slowest.

● In randomized algorithms, by "worst
case" we mean the worst of two worlds:
○ the input is as bad as possible, and
○ a "bad guy" has seen the input and

then chosen our algorithm's
randomness for us.

● Many randomized algorithms essentially do not care
about how "bad" the input is!

○ All lists are equally good/bad for QuickSort, since
only the relative order of the elements matters.

○ What about ties? These only help. When we're
partitioning, we can just slurp up any values that
exactly match the pivot.

Some good news…

● Us: We'd like to QuickSort [4, 2, 1, 3, 5].

● Bad Guy: Cool. OK, your pivot is 1.

(we do the first step to get [1] and [4, 2, 3, 5])

● Us: We'd like to QuickSort [4, 2, 3, 5].

● Bad Guy: Heh, suckers. OK, your pivot is 2…

But the "bad guy" can doom us

● Here average means over all possible ways the
randomized algorithm might make its choices, not
over all possible inputs.
○ What would that even mean? There are ∞

● We still use a worst-case input. (But for QuickSort, any
list of distinct elements is equally bad)

● But now the bad guy has no power! We consider all
ways that the dice of our algorithm might fall, and take
the average of those running times.

What about the average case?

● On average, QuickSort should choose a pivot sort of
close to the median of the list, right?

● So the list roughly breaks into two halves of about
the same size, right?

● T(n) = 2T(n/2) + O(n)
● so, by the Master Theorem, O(n log n)

An incorrect argument

it takes a linear pass through the
list to partition

Waverly's reasoning is not sound. We'll see
why in Problem Session 2. But her answer
turns out to be right!

● The running time is
determined by how many pairs
of elements we compare.

● In QuickSort, whenever we
compare two elements, one of
them is always the current
pivot.

● Any pair is compared at most
once, and it's possible to never
compare some pairs.

To argue correctly, we'll need some probability
3 1 2

2

Partition:
● compare 3 to 2
● compare 1 to 2

1 2 3

We never compared 1 and 3!

If two non-pivot elements end up on
opposite sides of a pivot:

● They will never be compared to
each other.
○ The recursive QuickSort calls

for the two sides are totally
separate!

● They have never been compared
to each other.
○ Otherwise one of them

would have been a pivot
earlier, and we wouldn't be
looking at it now.

3 1 2

2

Partition:
● compare 3 to 2
● compare 1 to 2

1 2 3

We never compared 1 and 3!

● Consider the j-th and k-th largest elements of the list, with j < k.
(Call them Ej and Ek.) (They may not be in sorted order in the list.)

● What is the probability that they get compared?

○ If Ej or Ek is chosen as the pivot in this round, the two surely get
compared (since the pivot is compared with everything else).

○ If the pivot is smaller than or larger than both, then they
might still get compared in the next round.

○ If the pivot is between the two (larger than Ej, smaller than Ek)
they definitely never get compared.

Arguing over the average case

● Consider the j-th and k-th largest elements of the list, with j < k.
(Call them Ej and Ek.) (They may not be in sorted order in the list.)

● What is the probability that they get compared?

○ If Ej or Ek is chosen as the pivot in this round, the two surely get
compared (since the pivot is compared with everything else).

○ If the pivot is smaller than or larger than both, then they
might still get compared in the next round. This part is hard to
handle!

○ If the pivot is between the two (larger than Ej, smaller than Ek)
they definitely never get compared.

Arguing over the average case

● Consider the j-th and k-th largest elements of the list, with j <
k. (Call them Ej and Ek.)

● What is the probability that they get compared?

○ It's the probability that in the sublist of elements
[Ej, Ej+1, …, Ek-1, Ek], i.e. those that are no less than Ej and no
greater than Ek, either Ej or Ek is chosen as a pivot before
any other element in the range is.

○ Since the total size of the range is k - j + 1, this probability is
2 / (k - j + 1).

Arguing over the average case

● An indicator random variable is associated with some event,
and it is 1 if the event happens and 0 if not.

● Here, let Ijk be the indicator for whether elements Ej and Ek ever
get compared (at any point in the algorithm).

● The total number of comparisons is the sum over all j < k of Ijk.

● We want the expectation (average) of that sum, over all the
ways that QuickSort could randomly choose its pivots.

● (See Prereq Review #3 on the site!)

Expectation and indicator random variables

This is the number
of comparisons.

Linearity of
expectation (see
Prereq Review #3)

Expectation of an
indicator is the
probability of its event
(see Prereq Review #3)

This is the
probability we
found earlier.

Simplify the term in the
summation by defining
l = k - j (and changing
the bounds
accordingly)

Use inequalities to
make the term in the
summation easier to
work with

Simplify the term in the
summation by defining
l = k - j (and changing
the bounds
accordingly)

Use inequalities to
make the term in the
summation easier to
work with

Now we use another math fact (and I do want you to remember this
one): the sum 1/1 + 1/2 + … + 1/l is the l-th harmonic number, Hl. And
these grow slowly: Hl = O(log l).

Simplify the term in the
summation by defining
l = k - j (and changing
the bounds
accordingly)

Use inequalities to
make the term in the
summation easier to
work with

Now we use another math fact (and I do want you to remember this
one): the sum 1/1 + 1/2 + … + 1/l is the l-th harmonic number, Hl. And
these grow slowly: Hl = O(log l).

● You would not have been expected to come up with all of that
on your own!

● But I do want you to understand the details, since many of the
"tricks" used there are useful again and again.

○ Indicator random variables
○ Linearity of expectation
○ Changing variables to simplify an expression
○ Using inequalities to simplify an expression
○ Harmonic numbers

That was a lot

● QuickSort is O(n log n) in the average case!

● (Side note: it's also O(n log n) in the best case. Then the
recursion tree does look just like MergeSort.)

● In practice, it's really fast!

● BTW, QuickSort is a "Las Vegas"
algorithm: it's always correct,
but might be slow.

So, wait what were we doing again?

● Sorry, Sisi. Today is pretty
math/theory-heavy.

● One thing to consider: when
we partition a list, we
shouldn't actually create a
bunch of separate lists in
memory. We can cleverly swap
stuff around in the existing
list. (Coming in Problem
Session 2)

We never said anything about implementation

What do major languages actually use to sort?
C++: Introsort (a hybrid of Quicksort, Heapsort, and
Insertion Sort)

Java: Quicksort (for primitives), a modified MergeSort (for
objects)

JavaScript: Implementation-dependent

Python: Timsort (a hybrid of Insertion Sort and MergeSort)

One takeaway from this: maybe there is no universally
best sort?

● If a bad guy knows we're using
QuickSort and has the ability to
choose our randomness… or knows
the random generator and can
choose our input…

● In, say, a coding contest, this is
annoying (my solution got hacked
by the right test case!)

● In a real application, this could be
serious.

But remember the bad guy

● If you want speed and are willing to tolerate a chance we might not
be correct, a Monte Carlo algorithm may be the way to go.
○ and you can push that failure chance arbitrarily low by

running the algorithm more and more times.

● If you want correctness and can tolerate occasional slowness, a
Las Vegas algorithm may be for you!

Randomized Algorithms Takeaway

● If you want speed and are willing to tolerate a chance we might not
be correct, a Monte Carlo algorithm may be the way to go.
○ and you can push that failure chance arbitrarily low by

running the algorithm more and more times.

● If you want correctness and can tolerate occasional slowness, a
Las Vegas algorithm may be for you!

● Any randomized algorithm can be made deterministic (say, for
gov't work) but at the cost of average-case goodness. (There will
probably be some pathological inputs that do really badly)

● We thought outside the narrow box of "always has to be correct
and fast", and got more real-world flexibility.

Randomized Algorithms Takeaway

6/29 Lecture Agenda
● Announcements

● Part 2-3: Randomized Algorithms and
QuickSort

● 10 minute break!

● Part 2-4: Karger's Algorithm

6/29 Lecture Agenda
● Announcements

● Part 2-3: Randomized Algorithms and
QuickSort

● 10 minute break!

● Part 2-4: Karger's Algorithm

Divide and Conquer
Sorting &
Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Karger's Amazing Algorithm

An Early Taste of Graphs ● Graphs consist of
vertices (sometimes
called nodes) connected
by edges.

● Here, the edges are
undirected (two-way)
and the graph is
connected (every vertex
is reachable from every
other)

● We'll talk about how
these are actually
represented in memory
later in the course.

Graph Cuts ● A cut is a set of edges
that, when removed,
break the graph into two
separate connected
components.

● What does "connected"
mean here? It means
that within a
component, you can get
from every vertex to
every other. But you
can't get from one
component to another!

Finding a Minimum Cut

Here we had to remove
three edges to disconnect
the graph.

But we could do it with only
two! Also notice that this isn't
the only min cut of size 2.

A Useful Observation ● The degree of a vertex is
the number of edges
touching it.

● The size of a minimum
cut of a graph is surely
no greater than the
smallest degree of any of
its vertices.

● (Why? Because we can
just remove all of that
vertex's edges! Then the
vertex is its own
connected component.)

2
3

3
2

Something to Ponder

Can the size of a graph's minimum cut possibly
be smaller than the degrees of any of its vertices?

Yes!

Here every vertex has degree at least 2,
but we only need to remove the middle
edge to disconnect the graph.

One more thing about min cuts…

A min cut might be a set of edges that
do not share a vertex.

Min Cut is a hard problem!
● What would a brute force solution look like?

○ Check all possible subsets of edges.
○ For each such subset, see if removing it

disconnects the graph.
■ Take any smallest subset of edges like this.

This is maybe not a job for Brutus
● In a graph with n vertices, there could be an edge between

any two of them!
○ This is n choose 2, which is (n)(n-1) / 2 = O(n2).

● In a graph with E edges, there are 2E ways to select a
subset of them. (Each one either is or isn't included.)

● So there are O(2) possible cuts to check. Yeowwwch!
○ And we haven't even learned yet how much time it

takes to count the number of connected components!
(Coming in Unit 4)

(n2)

So what do we do?
● Min Cut can be solved deterministically

using a technique called Max Flow,
which is coming in Unit 6.

● However, there is a beautiful
randomized approach as well, called
Karger's algorithm.

● We're going to focus on the idea and
the analysis, not the implementation.

Normally…
● I like to give some intuition on how one might come up

with an idea.

● But this case is more like Strassen's matrix
multiplication algorithm in Problem 4 of Homework 1,
where it's hard to imagine anyone coming up with it.

● This one does something 👻weird👻 with graphs that
we won't see anywhere else in the course.

Edge Contractions To contract an edge of a
graph:
● merge its two vertices
● all their edges come

along for the ride
● delete any edge(s)

between the two vertices
suppose we contract
the yellow edge

then the red edge

Here's something interesting…
suppose we contract
the yellow edge

then the red edge

By doing this, we happened to find a min cut (the orange
and teal edges).

Karger's Algorithm
● Repeat the following until there are only two vertices left in

the graph:

○ Select an edge uniformly at random from all remaining
edges. (not from all remaining pairs of vertices)

○ Contract that edge.

● Return the set of edges between the vertices as the min cut.

What if that fails?

● Repeat the following until there are only two vertices
left in the graph:

○ Select an edge uniformly at random from all
remaining edges.

○ Contract that edge.

● Return the set of edges between the vertices.

● OK, fine. Do this a lot:

● Return the smallest cut found as the min cut.

What if that fails?

● Repeat the following until there are only two vertices
left in the graph:

○ Select an edge uniformly at random from all
remaining edges.

○ Contract that edge.

● Return the set of edges between the vertices.

● OK, fine. Do this a lot:

● Return the smallest cut found as the min cut.

Side note: this is a
Monte Carlo
algorithm!

How much is "a lot"? Why would this even work?

● It's time for some more M A T H
Brutus is leaving

● Suppose we have an arbitrary graph. Consider any single
min cut M in the graph.
○ There may be more than one, but we won't need to

think about them to make our point.

● Let's find the probability that this cut survives one
instance of Karger's procedure.

● If we ever lose even one of those edges, we fail!

● Let M be the orange and teal edges.

● What's the probability that we are still OK after our first
edge contraction?

-red
-yellow

-green

original

With 2/5 probability,
we contract orange or
teal and we lose. With 3/5 probability, we're

still OK.

-red
-yellow

-green

Then, in any of
these scenarios,
we lose on the next
turn with
probability 2/4.
Otherwise, with
probability 2/4, we
win
immediately! (This
takes some
checking.)

So: success probability is 3/5 * 2/4 = 3/10.

Pattern: Is the answer always just (n-|M|)/n * (n-|M|-1)/(n-1)
* …, where |M| is the size of the min cut?

It's not that simple On this turn we
have a 2/4
chance of
surviving.

But here it's a
3/5 chance.

● Suppose we are at some stage of the algorithm, and we have
not lost yet.

● Let |M| be the size of our min cut M.

● Suppose the graph currently has v remaining vertices.
○ Recall that every vertex has degree at least |M|, or else

the the min cut would be smaller. So the total number of
edges in the graph is at least (v * |M|) / 2.

● We just need to not pick one of the |M| edges of M. So we
lose with probability at most |M| / ((v * |M|) / 2) = 2 / v.
○ and survive with probability at least (v-2) / v.

the /2 is since each edge is
counted twice

● Suppose the graph currently has v remaining vertices.
○ Recall that every vertex has degree at least |M|, or else

the the min cut would be smaller. So the total number of
edges in the graph is at least (v * |M|) / 2.

But how do we know this is still true at any stage of the
algorithm?

● Suppose the graph currently has v remaining vertices.
○ Recall that every vertex has degree at least |M|, or else

the the min cut would be smaller. So the total number of
edges in the graph is at least (v * |M|) / 2.

But how do we know this is still true at any stage of the
algorithm?

Suppose that at some point, we had a vertex
with fewer than |M| edges. But then those
edges would be an even better min cut in the
original graph.

Putting it together
● In a round in which we have v remaining vertices, we

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We
stop when we're down to 2.

● So our overall survival chance is

Putting it together
● In a round in which we have v remaining vertices, we

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We
stop when we're down to 2.

● So our overall survival chance is

Note that this doesn't
depend on the number
of edges! This sidesteps
the earlier problem.

Putting it together
● In a round in which we have v remaining vertices, we

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We
stop when we're down to 2.

● So our overall survival chance is

Putting it together
● In a round in which we have v remaining vertices, we

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We
stop when we're down to 2.

● So our overall survival chance is

Putting it together
● In a round in which we have v remaining vertices, we

survive with probability at least (v-2) / v.

● We start with n vertices and each round eliminates one. We
stop when we're down to 2.

● So our overall survival chance is

= 2 / (n(n-1))

This is huge! (figuratively)
● How many times do we need to try, in expectation, to

get our first success when the probability of
succeeding is 2 / (n(n-1))?

● This is a geometric distribution. The expectation is the
inverse of the success probability.

● So in expectation, it takes us only n(n-1)/2 = O(n2)
tries to get our min cut.
○ but this doesn't guarantee it…

like how you need to roll a 6-sided
die 6 times on average to see a 1

But how many times do we actually need to try
● Say we want to find the number k of trials needed to

be 99% sure we find our min cut M.

● Probability of failing every time:

● …, so, of succeeding at least once:

● Set that last quantity equal to 0.99, and we can solve
for k!

this trick shows up all over CS theory!

Let ε be the error probability
we're willing to tolerate.

The upshot: We
need O(n2 log (1/ε))
trials.

Some details
● The algorithm never has to do any checking to see that the

min cut actually disconnects the graph!!

● The algorithm's success guarantees only depend on the size of
the graph, not on the size of the min cut!!

● Why is it enough to succeed just once?
○ Because we take the smallest cut we find. All the failures

don't really matter.

● What if there are multiple min cuts?
○ This only helps us! We might find one of those instead.

So… why does this work?!?!?!
● The min cut has to be small relative to the total

number of edges in the graph. (It's at most the
minimum degree!)

● As long as we don't remove the min cut edges,
contracting helps us get rid of all the other unwanted
edges faster? (HW2 will have you see what happens if
you don't contract edges.)

● But I wasn't satisfied… so…

This morning: He sent back an amazingly
detailed and thoughtful response!!!!!

I'll post it in Ed (he has given permission)

-red
-yellow

-green

Then, in any of
these scenarios,
we lose on the next
turn with
probability 2/4.
Otherwise, with
probability 2/4, we
win
immediately! (This
takes some
checking.)

So: success probability is 3/5 * 2/4 = 3/10.

Pattern: Is the answer always just (n-k)/n * (n-k-1)/(n-1) * …?

This was sort of correct, but
not… you'll see on HW2.

This is my favorite algorithm!
● What about the rest of the staff's favorite algorithms/

data structures?

○ Goli: Fast Fourier Transform, Segment Trees,
Shor's (quantum) Algorithm

○ Ivan: Camerini's Algorithm, Gradient Descent
○ Lucas: Binary Indexed Trees
○ Ricky: Euclid's (GCD) Algorithm
○ Rishu: Rainbow coloring of graph edges
○ Ziang: Rapidly-Exploring Random Tree

Next Week!
● No class on Monday!

● Lectures are on Wednesday and Friday. We'll study
some great data structures! Including hash tables!
○ (Sisi and Indy are happy.)

