1/6 Lecture Agenda

e Announcements

e Part 3-1: Hash Tables and Universal
Hashing

e 10 minute break!

e Part 3-2: & Bloom ¢ Filters @



Announcements!

e HW2 Problem 5 (distributed median-finding) had some issues
o Runtime for (a) was updated a couple days ago, method still the same
o Part (b) is too broken, anyone who submits HW2 gets the 2 points (but
see my comments in the template about what I intended!)
o I've extended the HW2 deadline by a day

e Please check out the HW2 template if you haven't looked in a while — many
small helpful updates

e Gradescope had some issues with C++, fixed now (thanks, Lucas/Ricky!)
o For all coding problems this quarter, no late days will be charged, but
the final late deadline is still tight.

e Pre-HWS3 out tonight
o Includes a quick feedback form / check on how things are going



1/6 Lecture Agenda

e Announcements

e Part 3-1: Hash Tables and Universal
Hashing

e 10 minute break!

e Part 3-2: & Bloom ¢ Filters @



Divide and Conquer
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Finally, it's Indy's favorite data structure!

e Hash tables are stereotypically but not actually part of
the answer to every technical interview question.

e First, let'slook at them from the user's perspective.
Then let's look under the hood.



Hash table guarantees

we'll explain this later

e On average, you can:
o Insert an element in O(1) time.
o Query an element in O(1) time.
o Delete an element in O(1) time.

e The stored elements can be just keys (in which case
we have a set), or key-value pairs (in which case we
have an associative array, AKA dictionary)

o The values just come along for the ride!



Indy's warm-up problem: 2-SUM

e Given a list of n (not necessarily distinct) integers, determine
whether there are any two that sum to some given value k.



Indy's warm-up problem: 2-SUM

e Given a list of n (not necessarily distinct) integers, determine
whether there are any two that sum to some given value k.

e The solution:
o Make one pass through the list and put everything in a
hash table.
o Go through the list again. For each element e, find k - e,
and see if it's in the table. If so, return True. If this never
happens, return False.

m also make sure not to use the same element twice



Indy's warm-up problem: 2-SUM

e Given a list of n (not necessarily distinct) integers, determine
whether there are any two that sum to some given value k.

e The solution:

o Make one pass through the list and put everything in a
hash table. 0(1) * n = 0(n)

o Go through the list again. For each element e, find k - e,
and see if it's in the table. If so, return True. If this never
happens, return False. (0(1) + O(1)) * n = O(n)

m also make sure not to use the same element twice
could, e.g., store counts in the table as values. Still O(n) overall.



Indy's next problem: 3-SUM

e Given a list of n (not necessarily distinct) integers, determine
whether there are any three that sum to some given value k.



Indy's next problem: 3-SUM

e Given a list of n (not necessarily distinct) integers, determine
whether there are any three that sum to some given value k.

e Asolution:

o Make one pass through the list and put everything in a hash
table.

o Go through the list again, but now considering every pair (e, ej)
of elements. For each such element, find k - e, - e and see if it is
in the hash table. If so, return True. If this never happens, return
False.

m Asbefore, avoid reusing the same element. Now we can
throw in an O(n log n) sort to put duplicates close together?



Indy's next problem: 3-SUM

e Given a list of n (not necessarily distinct) integers, determine
whether there are any three that sum to some given value k.

e Asolution:

o Make one pass through the list and put everything in a hash
table. QO(1) * n = O(n)

o Go through the list again, but now considering every pair (e, ej)
of elements. For each such element, find k - e, - e and see if it is
in the hash table. If so, return True. If this never happens, return
False. (O(1) + O(1)) * n2 = O(n?)

m Asbefore, avoid reusing the same element. Now we can
throw in an O(n log n) sort to put duplicates close together?



A useful observation

MY ALGORITHM
IS O(N~2) ANYWARY

WHY SHOULDN'T |
O(N LOG N) SORT THE LIST?




3-SUM: Can we do better?

e Some people finally did in 2014.

e It's even better now, but in a sense, still not much better than
O(n?).

linear decision tree complexity of 38UM is O(n*/2 , /Tog ). These bounds were subsequently improved.[2I314] The current best known algorithm for 3SUM
runs in O(n? (log log n)°® /log? n) time.[4 Kane, Lovett, and Moran showed that the 6-linear decision tree complexity of 3SUM is O(nlog? n).[5) The latter

bound is tight (up to a logarithmic factor). It is still conjectured that 3SUM is unsolvable in O(nz_ﬂ(l)) expected time.[®!



Indy's bonus problem: 4-SUM

e Given a list of n (not necessarily distinct) integers, determine
whether there are any four that sum to some given value k.

What do you
think?




4-SUM solution

e Following the pattern, we'd expect to be stuck at O(n3), but
surprisingly, we can do better — almost as well as for 3-SUM!

e An O(nz) solution: possibly with another log n factor depending on implementation

o Make one pass through the list, considering every pair (e;, e)
of elements. Find e, + e Put this in as a key and (i, j) as a value.

o Make another pass through the list, again considering every
pair (e,, ej) of elements. For each such element, find k - e, - e
and see if it is in the hash table. If so, and if there is a
non-overlapping set with that sum, return True.

o If this never happens, return False.



We traded time for space

But in the real world, space can also cost time!

e If the data no longer fits nicely in the L1 cache
(orin L2 cache, or...), things could be slow.
o Ifitno longer fits in RAM, we're doomed?

e Focusing on improving time while ignoring
space is like a college gaming the US News &
World Report rankings.

o That said, we will frequently commit this
sin since this is a theory class.




An extreme (and silly) example

As long as the numbers are in the range, say, [1, 10°], and n is no
larger than 107, and k is no larger than 4 * 109, I can solve 4-SUM in
O(1) time*

* by precomputing the solutions to all 4 billion * (1 billion)®billion) possible
instances of the problem offline first, then just looking up the one we need

Please don't do this on an exam.

But this isn't totally ridiculous. It sometimes makes sense to
precompute all possible values when the number of them is
tractable. See CS166 / "The Method of Four Russians" if curious.



So the answer is always hash tables?

e Not really. Be a little careful about jumping right to a hash table
solution in an interview problem unless you have at least some
basis for doing so.

o Otherwise you may look like Interview Prep Jones

e Ahash table is often a useful auxiliary structure in a solution, but
not the entire focus of a solution.

e What about, say, the Equal Sum problem (can a list be divided into
two subsets of equal sum)? For that we'll use dynamic
programming, not hashing.



OK, but how do they work?

The structure has:
e some number n of "buckets"

e ahash function h that maps any input value (in the universe U,
e.g., all possible IP addresses) to one of these buckets, and...



OK, but how do they work?

The structure has:
e some number n of "buckets"

e ahash function h that maps any input value (in the universe U,
e.g., all possible IP addresses) to one of these buckets, and...

o isdeterministic
o doesn't take too long to evaluate

o spreads the values out pretty evenly among the buckets
(this is critical!)



Hash Tables (with chaining)

For demonstration
 Array of n buckets. purposes only!
This is a terrible hash
function! Don’t use this!

« Each bucket stores a linked list.

o We can insert into a linked list in time O(1)
 To find something in the linked list takes time O(length(list)).

e A hash function h:U — {1, ..., n}.

« For example, h(x) = least significant digit of x.

|
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n buckets (say n=9)




Hash Tables (with chaining)

For demonstration
 Array of n buckets. purposes only!
This is a terrible hash
function! Don’t use this!

e Each bucket stores a linked list.

e We can insert into a linked list in time O(1)
 To find something in the linked list takes time O(length(list)).

« A hash function #:U — {1, ..., n}.

« For example, h(x) = least significant digit of x.

INSERT: 1l 4>
E E IE 9 2l 122>
SEARCH43: Pl 43>
Scan through all the elements in
DELETES: L PR

) n buckets (say n=9)
Search for 43 and remove it.




Aside: Hash tables with open addressing

e The previous slide is about hash tables with chaining.

e There’s also something called “open addressing”

e You don’t need to know about it for this class.

1
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n=9 buckets
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This is a “chain”
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What we want from a hash table

1.

We want there to be not many buckets (say, n).
» This means we don’t use too much space

We want the items to be pretty spread-out in the buckets.

o This means it will be fast to SEARCH/INSERT/DELETE

VvV V

9

>

n=9 buckets

o[ 1>

n=9 buckets




Worst-case analysis

 Goal: Design a function #: U — {1, ..., n} so that:

o No matter what n items of U a bad guy chooses, the
buckets will be balanced.

« Here, balanced means O(1) entries per bucket.

o If we had this, then we’d achieve our dream of O(1)
INSERT/DELETE/SEARCH

Can you come up with
such a function?




We really can’t beat the bad guy here.

_ e \::\
snnsansatatit
2220200000000
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The universe U has M items

They get hashed into n buckets

At least one bucket has at least M/n items hashed to it.
Bad guy chooses n of the items that landed in this
very full bucket.

h(x)

These are all the things that
hash to the first bucket.

Universe U

L n buckets




Let's do what | did as a petulant child...

S8 E I = s] =
Ii xIin ﬂh vuvuv
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..change the rules of the game!



The game

1. An adversary chooses any n items
Uy, Uy, ..., 4, € U, and any
sequence of INSERT/DELETE/SEARCH
operations on those items.

13 |22 431192 || 7

INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92




The ga me 2. You, the algorithm,

chooses a random hash
function

h:U - {1,...,n}.
1. An adversary chooses any n items 0
Uy, Uy, ..., U, € U, and any 6
sequence of INSERT/DELETE/SEARCH
operations on those items.

] 22|

INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92




The ga me 2. You, the algorithm,

chooses a random hash
function

h:U - {l
1. An adversary chooses any n items
Uy, Uy, ..., u, € U, and any &
sequence of INSERT/DELETE/SEARCH
operations on those items.

3. HASH IT OUT #hashpuns

BEEEE

INSERT 13, INSERT 22, INSERT 43, 22
INSERT 92, INSERT 7, SEARCH 43, . - _>

DELETE 92, SEARCH 7, INSERT 92 '
AN I

nl 12192 !>




Expected number of items in u;’s bucket?

h is uniformly random




A uniformly random hash function
leads to balanced buckets

« We can show:
« For all ways a bad guy could choose u; u,, ..., u
into the hash table, and foralli € {1, ..., n},
E[ number of items in &, ‘s bucket ] < 2.

to put

n’

e Which implies:

« No matter what sequence of operations and items the
bad guy chooses,

E[ time of INSERT/DELETE/SEARCH ] = O(1)
e So our solution is:

Pick a uniformly random hash function?



What'’s wrong with this plan?

 Hint: How would you implement (and store) and
uniformly random function 2: U — {1,...,n}?

e If hiis a uniformly random function:

That means that h(1) is a uniformly random
number between 1 and n.

h(2) is also a uniformly random number
between 1 and n, independent of h(1).

h(3) is also a uniformly random number
between 1 and n, independent of h(1), h(2).

h(n) is also a uniformly random number
between 1 and n, independent of h(1), h(2),
.., h(n-1).



A uniformly random hash function
is not a good idea.

e In order to store/evaluate a uniformly random hash
function, we’d use a lookup table:

All of the M

things in the —

universe

AAAAAA
AAAAAB
AAAAAC
AAAAAD

27777Y
277777

1
5
3
3

w

o Each value of h(x) takes
log(n) bits to store.

e Storing M such values

 In contrast, direct addressing
(initializing a bucket for every
item in the universe) requires
only M bits.



Hash families

« A hash family is a collection of hash functions.

"All of the hash functions” is
an example of a hash family.



This is still a terrible idea!

Exa m p I e: Don’t use this example!
: F d ical v!
a smaller hash fam||y or pedagogical purposes only

« H = { function which returns the least sig. digit,

function which returns the most sig. digit }
e Pick h in H at random.
« Store just one bit

to remember
which we picked.




The ga me 2. You, the algorithm, chooses a random hash
h, = Most_significant_digit function h:U — {0, - 9} Choose it

h, = Least_significant_digit randomly from H. 0
H={h, h;}
1. Anadversary (who knows H) chooses any n | pICked hl

items uy, u,, ..., u, € U, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

| —  —— —— 3. HASHITOUT 4 0uns
19 (122(|42||92|| O

0 _>0|9
1

INSERT 19, INSERT 22, INSERT 42,
INSERT 92, INSERT O, SEARCH 42,
DELETE 92, SEARCH 0, INSERT 92




The game 2. You, the algorithm, chooses a random hash
h, = Most_significant_digit ~ function A:U — {0,..., 9}. Choose it
h, = Least_significant_digit ra ndomly from H.

H = {h,, h;} O @

1. Anadversary (who knows H) chooses any n | pICkEd hl

items uy, u,, ..., u, € U, and any sequence

of INSERT/DELETE/SEARCH operations on
those items.

- 3. HASHIT OUT #hashauns
101 || 12 ‘121‘ 141 [[131

INSERT 11, INSERT 101, INSERT 141,

INSERT 121, INSERT 131, SEARCH 11 i1l 101 :Q

131, SEARCH 121, SEARCH 101...

2 141
7
121
9

131




Strategy

e Pick a small hash family H, so that when | choose h
randomly from H,

In English: fix any
two elements of U.

1 The probability
that they collide
PhEH{ h(ui) = h(“}) } <-— under a random h

n in H is small.

« A hash family H that satisfies this is
called a universal hash family.

for all u;, w,el with u; # u;,




Universal hash family

 H is a universal hash family if, when h is chosen
uniformly at random from H,

forallu, u;€ U withu; #u,

PheH{ h(ul) = h(uj)} S%
Example

 H = the set of all functions h: U — {1,...,n}

o We saw this earlier — it corresponds to picking a
uniformly random hash function.

o Unfortunately this H is really really large.



» Pick a small hash family H, so that when |
choose h randomly from H,

PheH{ () = h(w,) } < %

 h, = Most_significant_digit

Non-example

« h, = Least_significant_digit
e H= {hor hl}

NOT a universal hash family:

P,y {h(101) = h(11D)} =1 > %o



A small universal hash family??

 Here’s one:
o Pickaprimep> M.
 Define
fop(X)=ax+b modp

h, ) (x) = fop(x) modn
« Define:

H =44, (X)) 8 E { L. p—1j B P—1} ]

e Claim:
H is a universal hash family.



Modular Arithmetic

e Think of working modulo m as adding
times on a clock with m hours.
o except hour mis labeled 0

e e.g.,9:00 + 5hours =2:00
(9+5)mod12 =2

e 2:00 - 5hours=9:00
(2-5)mod12=9



Let's pick n = 3 (3 buckets), M = 4 (size of universe), p = 5. Then:
fap(z) = (az +b) mod 5
hap(z) = fap(z) mod 3

Our universal hash family is: H = {h, () : @ € {1,2,3,4},b € {0,1,2,3,4}}



Let's pick n = 3 (3 buckets), M = 4 (size of universe), p = 5. Then:
fas(@) = (az +b) mod 5
hab(z) = fap(z) mod 3
Our universal hash family is: H = {hq,(z) : a € {1,2,3,4},b € {0,1,2,3,4}}
Looking at just one of the hash functions in this family, h, , (x):
haa(z) = faa(z) mod 3 = ((2z +4) mod 5) mod 3

What does this do to every value in the universe, {0,1,2,3}?

e h24(0)=((2-04+4) mod5) mod 3=4 mod 3=1
e has(1)=((2-14+4) mod5) mod3=1 mod3=1
e ha4(2)=((2-24+4) mod 5) mod 3=3 mod 3=0
® h24(3)=((2-3+4) mod5) mod 3=0 mod 3=0



Let's pick p = 5, n = 3 (3 buckets), M = 4 (size of universe). Then:
fas(@) = (az +b) mod 5
hap(x) = fap(z) mod 3
Our universal hash family is: H = {hq(z) : a € {1,2,3,4},b € {0,1,2,3,4}}
Looking at just one of the hash functions in this family, h, , (x):
ha4(x) = f2,4(z) mod 3 = ((2z +4) mod 5) mod 3

What does this do to every value in the universe, {0,1,2,3}?

e h24(0)=((2-0+4) mod5) mod 3=4 mod3=1

This looks like a terrible
e has(1)=((2-14+4) mod5) mod3=1 mod3=1 hash function! It's not
o h4(2) = ((2-2+4) mod5) mod3=3 mod3=0 even using bucket 2.
e h24(3)=((2-3+4) mod 5) mod 3=0 mod 3=0
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Context

e The yellow cells show how
our h, (x) hashes the
p0531b1e inputs o, 1, 2, 3.

e But we only require that
for any two values in the
universe, the probability
(over the randomness of
which of the 20 hash
functions we choose) is
< 1/3 Is that true?
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e The probability of
a collision
between items 0
and 1is 4/20 = %.
which is = 1.

e But we haveto
check all pairs of
items...
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So we're OK!
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So what did we do?

e We exhibited a construction for universal hash families of
size only O(M?), where M is the universe size. (We had to pick
p 2 M, and a and b can both be as large as p-1)

o All we have to do is pick a, b uniformly at random and the
bad guy is foiled!

o Also, the hashing calculations are fast!

e We did not actually prove that this construction works in
general, and for that I'll refer you to CLRS.



Takeaways

Hash tables are awesome and support average-case O(1) insertion,
lookup, and deletion
o and there are lots of other kinds too! If you're curious, look up
"cuckoo hashing..."

Universal hash functions give us a sort of guarantee that there probably
won't be too many collisions
o Of course, it could still happen due to bad luck, just like Quicksort's
worst-case.

Designing your own hash functions is like designing your own
cryptography: don 't
o It's too easy to miss a subtle issue.
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Divide and Conquer
Sorting & Randomization

WORLDES=2N |

Dynamic Programming

Bloom Filters: Store Seeds, Not
Whole Plants Greed & Flow

Special Topics



Motivation

e You are writing a Web browser that knows / remembers
which URLs are spammy or malicious.

e How do you keep track of which URLs are bad?



Indy's solution: Put the URLs in a hash table!

¢ (Ahash set as opposed to a hash map.)
e When a URL is reported as bad, put it in the hash table.

e When visiting a new URL, first check to see if it's in the hash
table. (If so, do not proceed.)

e What's a big problem with this approach?



e What's a big problem with this approach?

o URLSs can change and no longer be spammy: not a huge
problem. These can be removed from the table.

o Multiple URLs might hash to the same bucket: that's fine.
We still check everything in a bucket, so we'll find the

right one if it's there.



URLs are big

m I m E E] HugeURL, Because TinyURL Is For Wimps

For instance why would you want to simply link to http:/wired.com, when you

can link to [http:/www.hugeurl.com/?

OGMzNjgzNjl0YjQIMWJIODBMWIyZWUyNzQ5
YzZiZMmMTMmVmOwd2QyUXIVWGXxWVOd4WFIUSm9WMVI3Wkc5V1ZsbDNXa2M1
YWxKcldgQIVWbHBQVjBaYWMySkVUbGhoTVVWVVZtcEdZVO015U2tWVW]HaG9U]
(http:/www.hugeurl.com/?
OGMzNjgzNjI0YjQIMWJIODBMWIyZWUyNzQ5YzliZiMmMTMmVmOwd2QyUXIVWGxWVO0d4
WMVI3Wkc5V1ZsbDNXa2M1YWxKcldqQIVWbHBQVjBaYWMySkVUbGhoTVVwWVVZtcEdZVO015U]
JHaG9UV3N3ZUZacVFtRIRNazEIVT]OV1ZXSkhhRzIVVm1oRFZWWmFkR1ZHV214U2JHdzFWa2
z]GcINuUmhSemxWVmpOTOO0xcFZXbUZrUjAIRIpFWINUbFpVVmtwV2JURXdZVEZrUOZOclpH
VXBZVKZWYWQxTkdVbFZTYIVacVZtdGFNRIZOZUZOVW]VWTJVbFJHVj FaRmIzZFdhalpoV]BaT%{img
tSkdTbWxXTTW1oWIYXZDRiMKI3TUhoWGJHUINIZbFZhY2xWc1VrZFhiR3QzV2tSUIZIMXJjRWxhUO___
hCSFZqSkZIVIZZWKZwV1JWcHIWVEJhVD]Oc2NFaGpSbEpUVmxoQ1dsWnJXbGRoTVZWNVZXNU9hb
EpOVWxsWm]GWmhZMVpzY2xkdF]teFdiVkolVmp]MWEXWXdANVVZTYTFwV1rWktSRIpxUVhoalZsW

TRENDII

V3N3ZUZacVFtRIRNazEIVT]OV1ZXSkhhRzIVVm1oRFZWWmFkR1ZHV214U2JH Most

dzFWa2QwYz]GcINuUmhSemxWVmpOTOO0xcFZXbUZrUjA1R1IpFWINUbFpVVmtw )
V2JURXAZVEZrUOZOclpHcFRSVXBZVKZWYWQxXTkdVbFZTY1VacVZtdGFNRIZO Eg
ZUZOVWJVWTJVbFJHVjFaRmIzZFdhalpoVjBaT2NtSkdTbWxTTW1oWIYXZDRi —-—
MKI3TUhoWGJHUINZbFZhY2xWc1VrZFhiR3QzV2tSUIZrMX]JjRWxhUOhCSFZq

Ql7ZNN7 7N 7N TTW AHNAN FThUVNTIN AN FACnQhEnl TVmvnNT AN TYh(CRATV71AT




We can try to deal with big URLs...

e Hash them to smaller hash codes and store those. But:

o Now there can be false positives — an innocent URL that
happens to hash to the same value as a known malicious
one would be rejected.

o This might still be too much space, for the heart of man
is an unfathomable wellspring of evil (i.e., there are a lot
of sketchy URLS)

s What if we're on a smartphone or something? What
if space really is the limiting factor?



Bloom Filters

We need:
e Some number b of bits, all initialized to 0.

e Some set k of hash functions h,, ..., h, that each hash to the
range [0, b-1].

o For simplicity here, we assume that when given the same
element x, the hash functions all choose different values in
that range [0, b-1]. This is not trivial to achieve, but we'll
assume it for now for convenience. It's not super
unrealistic when b is very large relative to k (since then it
kinda happens anyway)



Insertion

When we see a new item x (say, a URL), we:

e Putitin every hash function
o 1i.e., calculate h (x), ..., h(x)

e Seteachbith(x), ..., h(x)to1.
o If any of these are already 1, that's fine. They stay 1.



Querying

When we want to know if we have seen an item x, we:

e Putitin every hash function
o 1i.e., calculate h (x), ..., h(x)

e Checkeachbit h (x), ..., h,(x).

e If at least one of these is 0, we have definitely not seen
this item before.
o But what if all of them are 1?



Suppose b =8, k = 3.

3 hash
functions

0 1 2 3 4 3) 6 7
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An Insertion

csl6l.stanford.edu




An Insertion
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An Insertion

0 1 2 3 4 3) 6 7
[ - AR

Note: At this point the structure has
completely forgotten the specific string
cs161.stanford.edu




Another Insertion

o 1+ 2 3 4 5 6 7
[ - AR

sketchytimeshares.com/sign-me-up.php




Another Insertion

0 1 2 3 4 5 6 7
- [ - KK
/ 6
sketchytimeshares.com/sign-me-up.php —p n 4

\no



Another Insertion

0 1 2 3

4 5 6 7
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sketchytimeshares.com/sign-me-up.php —p n 4

\no



Querying Something We've Seen
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csl6l.stanford.edu




Querying Something We've Seen

Seems inefficient to do this again. Couldn't we
somehow remember that we'd calculated the
hashes before? ...well then we'd be back to
storing URLSs




Querying Something We've Seen

Sure, we've seen it before!




Querying Something We Haven't Seen

0 1 2 3

4 5 6 7
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csl70.0rg




Querying Something We Haven't Seen




Querying Something We Haven't Seen

A\

Guess we haven't seen it
before!
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Querying Something Else We Haven't Seen
>

doctorswithoutborders.org n




Querying Something Else We Haven't Seen

0 1 2 3 4

5 6 7
-
/ 6
doctorswithoutborders.org —p n 3

\n1



Querying Something Else We Haven't Seen

0 1 2 3

4 5 6 7
.. @ @38 >
octorswithoutborders.org —> n 3

\n1

Guess we've seen it before!



Oh no! A false positive!

Bloom filters can return false positives — saying we've seen
something before when we haven't.

Can they also return false negatives, i.e., say we haven't seen
something before when we actually have?




But no false negatives

Bloom filters can return false positives — saying we've seen
something before when we haven't.

Can they also return false negatives, i.e., say we haven't seen
something before when we actually have?

No. If we've seen something
before, all of the bits it hashes
to are definitely set.




How likely are false positives?

e Say we have inserted n items into a Bloom filter with b
bits and k hash functions.

e Now we query for some item x we haven't seen. What is
the probability of a false positive?

o This means every one of the bits that x is hashed
to (we'll call them "targeted bits'') must already
be a 1. Let's first look at just one of them.



Probability that a single targeted bit is 1

e Asis often the case, it turns out to be easier to solve for
the probability that the bit is 0, and then subtract that
from 1. (Either the bit is 0, or it's 1.)

e This only happens if none of the previously inserted
items set this bit to 1.

e What is the probability that any one of them did?



Let's focus on some arbitrary bit. What's the probability that it is 0 at
the time of our new insertion?

e This only happens if none of the n previously inserted items set
this bit to 1.

e What is the probability that any one of them did?

o Each item is hashed to k different bits. So with probability k/b,
an insertion sets this bit. Note: other analyses that you may
see might not assume this

o Therefore, with probability 1 - (k/b), the insertion does not set
the bit.

o And with probability [1 - (k/b)]", none of the insertions do.
(Note: this assumes that the different inserted values hash
independently)



Probability that all targeted bits are 1

e For any given targeted bit, it is 0 with probability
[1- (k/b)]". So it is 1 with probability 1 - [1 - (k/b)]".

e If we apply the argument to each of the k targeted bits independently,
they are all 1 with probability

(1-[1- (k/b)I")~

o Isthis legitimate? These values are not really independent! If one bit
is set, we conditionally know that others are less likely to be set.

o We could sidestep this non-independence by finding the expected
number of 1s, but that doesn't give us a probability. (It can let us
estimate one, but that's more like CS265 material...)



This is hard! Let's let someone else do it!

Goel and Gupta,!'% however, give a rigorous upper bound that makes no approximations and requires no assumptions. They show that the
false positive probability for a finite Bloom filter with b bits ( b > 1), nelements, and k hash functions is at most

k(n+0.5) \ k
e < (l—e_ b-1 ) .

So, suppose n =1000, k = 5. Then:

e Ifb =10000, this probability is about 0.009.
e Ifb=1000, this probability is about 0.97.
e Ifb =100, this probability is basically 1.

Ashish (Goel) is a
prof here!



This is hard! Let's let someone else do it!

Goel and Gupta,!'% however, give a rigorous upper bound that makes no approximations and requires no assumptions. They show that the
false positive probability for a finite Bloom filter with b bits ( b > 1), nelements, and k hash functions is at most

k(n+0.5) \ k
e < (l—e_ b-1 ) .

So, suppose n =1000, k = 5. Then:

e Ifb =10000, this probability is about 0.009.
e Ifb=1000, this probability is about 0.97.
If b = 100, this probability is basically 1.

Ashish (Goel) is a

It th =b?
Isn't this really bad performance for n = b: prof here!

But remember that we're comparing entire URLs with
single bits! Normally we can have b >>n



e You're not responsible for the math of the probability of
a false positive, or for that formula.

e Iwantyou to understand the overall ideas:
o More bits = better performance, of course, but the
whole idea is to save space, so we can't go wild here.

(If this stops fitting in cache space, it's extra bad)

o More hash functions = lower collision probability for
different items, but the filter fills up faster

o Can tune these parameters based on the anticipated
number of items



Some final observations

e Insertion and querying both take constant time!

e Deletion? uh... doesn't really work.
o You'll investigate this on HW3!

e If the table fills up too much, you're also out of luck. The
best option may be to keep the old one but also start a new
larger one

e One good modern application: forbidden passwords (like
"gqwerty123456" and ''password'')



