
7/6 Lecture Agenda
● Announcements

● Part 3-1: Hash Tables and Universal
Hashing

● 10 minute break!

● Part 3-2: 🌺Bloom🌼Filters🌹

Announcements!
● HW2 Problem 5 (distributed median-finding) had some issues

○ Runtime for (a) was updated a couple days ago, method still the same
○ Part (b) is too broken, anyone who submits HW2 gets the 2 points (but

see my comments in the template about what I intended!)
○ I've extended the HW2 deadline by a day

● Please check out the HW2 template if you haven't looked in a while – many
small helpful updates

● Gradescope had some issues with C++, fixed now (thanks, Lucas/Ricky!)
○ For all coding problems this quarter, no late days will be charged, but

the final late deadline is still tight.

● Pre-HW3 out tonight
○ Includes a quick feedback form / check on how things are going

7/6 Lecture Agenda
● Announcements

● Part 3-1: Hash Tables and Universal
Hashing

● 10 minute break!

● Part 3-2: 🌺Bloom🌼Filters🌹

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Hash for that Cash

Finally, it's Indy's favorite data structure!
● Hash tables are stereotypically but not actually part of

the answer to every technical interview question.

● First, let's look at them from the user's perspective.
Then let's look under the hood.

Hash table guarantees

● On average, you can:
○ Insert an element in O(1) time.
○ Query an element in O(1) time.
○ Delete an element in O(1) time.

● The stored elements can be just keys (in which case
we have a set), or key-value pairs (in which case we
have an associative array, AKA dictionary)
○ The values just come along for the ride!

we'll explain this later

Indy's warm-up problem: 2-SUM
● Given a list of n (not necessarily distinct) integers, determine

whether there are any two that sum to some given value k.

Indy's warm-up problem: 2-SUM
● Given a list of n (not necessarily distinct) integers, determine

whether there are any two that sum to some given value k.

● The solution:
○ Make one pass through the list and put everything in a

hash table.
○ Go through the list again. For each element ei, find k - ei

and see if it's in the table. If so, return True. If this never
happens, return False.
■ also make sure not to use the same element twice

Indy's warm-up problem: 2-SUM
● Given a list of n (not necessarily distinct) integers, determine

whether there are any two that sum to some given value k.

● The solution:
○ Make one pass through the list and put everything in a

hash table.
○ Go through the list again. For each element ei, find k - ei

and see if it's in the table. If so, return True. If this never
happens, return False.
■ also make sure not to use the same element twice

O(1) * n = O(n)

(O(1) + O(1)) * n = O(n)

could, e.g., store counts in the table as values. Still O(n) overall.

Indy's next problem: 3-SUM
● Given a list of n (not necessarily distinct) integers, determine

whether there are any three that sum to some given value k.

Indy's next problem: 3-SUM
● Given a list of n (not necessarily distinct) integers, determine

whether there are any three that sum to some given value k.

● A solution:
○ Make one pass through the list and put everything in a hash

table.
○ Go through the list again, but now considering every pair (ei, ej)

of elements. For each such element, find k - ei - ej and see if it is
in the hash table. If so, return True. If this never happens, return
False.
■ As before, avoid reusing the same element. Now we can

throw in an O(n log n) sort to put duplicates close together?

Indy's next problem: 3-SUM
● Given a list of n (not necessarily distinct) integers, determine

whether there are any three that sum to some given value k.

● A solution:
○ Make one pass through the list and put everything in a hash

table.
○ Go through the list again, but now considering every pair (ei, ej)

of elements. For each such element, find k - ei - ej and see if it is
in the hash table. If so, return True. If this never happens, return
False.
■ As before, avoid reusing the same element. Now we can

throw in an O(n log n) sort to put duplicates close together?

O(1) * n = O(n)

(O(1) + O(1)) * n2 = O(n2)

A useful observation

3-SUM: Can we do better?
● Some people finally did in 2014.

● It's even better now, but in a sense, still not much better than
O(n2).

Indy's bonus problem: 4-SUM
● Given a list of n (not necessarily distinct) integers, determine

whether there are any four that sum to some given value k.

What do you
think?

4-SUM solution
● Following the pattern, we'd expect to be stuck at O(n3), but

surprisingly, we can do better – almost as well as for 3-SUM!

● An O(n2) solution: possibly with another log n factor depending on implementation

○ Make one pass through the list, considering every pair (ei, ej)
of elements. Find ei + ej. Put this in as a key and (i, j) as a value.

○ Make another pass through the list, again considering every
pair (ei, ej) of elements. For each such element, find k - ei - ej
and see if it is in the hash table. If so, and if there is a
non-overlapping set with that sum, return True.

○ If this never happens, return False.

We traded time for space
But in the real world, space can also cost time!

● If the data no longer fits nicely in the L1 cache
(or in L2 cache, or…), things could be slow.
○ If it no longer fits in RAM, we're doomed?

● Focusing on improving time while ignoring
space is like a college gaming the US News &
World Report rankings.

○ That said, we will frequently commit this
sin since this is a theory class.

An extreme (and silly) example
As long as the numbers are in the range, say, [1, 109], and n is no
larger than 109, and k is no larger than 4 * 109, I can solve 4-SUM in
O(1) time*

* by precomputing the solutions to all 4 billion * (1 billion)(1 billion) possible
instances of the problem offline first, then just looking up the one we need

Please don't do this on an exam.

But this isn't totally ridiculous. It sometimes makes sense to
precompute all possible values when the number of them is
tractable. See CS166 / "The Method of Four Russians" if curious.

So the answer is always hash tables?
● Not really. Be a little careful about jumping right to a hash table

solution in an interview problem unless you have at least some
basis for doing so.
○ Otherwise you may look like Interview Prep Jones

● A hash table is often a useful auxiliary structure in a solution, but
not the entire focus of a solution.

● What about, say, the Equal Sum problem (can a list be divided into
two subsets of equal sum)? For that we'll use dynamic
programming, not hashing.

OK, but how do they work?
The structure has:

● some number n of "buckets"

● a hash function h that maps any input value (in the universe U,
e.g., all possible IP addresses) to one of these buckets, and…

OK, but how do they work?
The structure has:

● some number n of "buckets"

● a hash function h that maps any input value (in the universe U,
e.g., all possible IP addresses) to one of these buckets, and…

○ is deterministic

○ doesn't take too long to evaluate

○ spreads the values out pretty evenly among the buckets
(this is critical!)

Let's do what I did as a petulant child…

…change the rules of the game!

Modular Arithmetic
● Think of working modulo m as adding

times on a clock with m hours.
○ except hour m is labeled 0

● e.g., 9:00 + 5 hours = 2:00
(9 + 5) mod 12 = 2

● 2:00 - 5 hours = 9:00
(2 - 5) mod 12 = 9

(0)

Let's pick n = 3 (3 buckets), M = 4 (size of universe), p = 5. Then:

Let's pick n = 3 (3 buckets), M = 4 (size of universe), p = 5. Then:

Looking at just one of the hash functions in this family, h2,4(x):

Let's pick p = 5, n = 3 (3 buckets), M = 4 (size of universe). Then:

Looking at just one of the hash functions in this family, h2,4(x):

This looks like a terrible
hash function! It's not
even using bucket 2…

Context
● The yellow cells show how

our h2,4(x) hashes the
possible inputs 0, 1, 2, 3.

● But we only require that
for any two values in the
universe, the probability
(over the randomness of
which of the 20 hash
functions we choose) is
≤ ⅓. Is that true?

● The probability of
a collision
between items 0
and 1 is 4/20 = ⅕.
which is ≤ ⅓.

● But we have to
check all pairs of
items…

So we're OK!

What if we chose a
non-prime? (p = 12
here)

So what did we do?
● We exhibited a construction for universal hash families of

size only O(M2), where M is the universe size. (We had to pick
p ≥ M, and a and b can both be as large as p-1)

○ All we have to do is pick a, b uniformly at random and the
bad guy is foiled!

○ Also, the hashing calculations are fast!

● We did not actually prove that this construction works in
general, and for that I'll refer you to CLRS.

Takeaways
● Hash tables are awesome and support average-case O(1) insertion,

lookup, and deletion
○ and there are lots of other kinds too! If you're curious, look up

"cuckoo hashing…"

● Universal hash functions give us a sort of guarantee that there probably
won't be too many collisions
○ Of course, it could still happen due to bad luck, just like Quicksort's

worst-case.

● Designing your own hash functions is like designing your own
cryptography: d o n ' t
○ It's too easy to miss a subtle issue.

7/6 Lecture Agenda
● Announcements

● Part 3-1: Hash Tables and Universal
Hashing

● 10 minute break!

● Part 3-2: 🌺Bloom🌼Filters🌹

7/6 Lecture Agenda
● Announcements

● Part 3-1: Hash Tables and Universal
Hashing

● 10 minute break!

● Part 3-2: 🌺Bloom🌼Filters🌹

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Bloom Filters: Store Seeds, Not
Whole Plants

Motivation
● You are writing a Web browser that knows / remembers

which URLs are spammy or malicious.

● How do you keep track of which URLs are bad?

Indy's solution: Put the URLs in a hash table!
● (A hash set as opposed to a hash map.)

● When a URL is reported as bad, put it in the hash table.

● When visiting a new URL, first check to see if it's in the hash
table. (If so, do not proceed.)

● What's a big problem with this approach?

● When a URL is reported as bad, put it in the hash table.

● When visiting a new URL, first check to see if it's in the hash
table. (If so, do not proceed.)

● What's a big problem with this approach?

○ URLs can change and no longer be spammy: not a huge
problem. These can be removed from the table.

○ Multiple URLs might hash to the same bucket: that's fine.
We still check everything in a bucket, so we'll find the
right one if it's there.

URLs are big

We can try to deal with big URLs…
● Hash them to smaller hash codes and store those. But:

○ Now there can be false positives – an innocent URL that
happens to hash to the same value as a known malicious
one would be rejected.

○ This might still be too much space, for the heart of man
is an unfathomable wellspring of evil (i.e., there are a lot
of sketchy URLs)

■ What if we're on a smartphone or something? What
if space really is the limiting factor?

Bloom Filters
We need:

● Some number b of bits, all initialized to 0.

● Some set k of hash functions h1, …, hk that each hash to the
range [0, b-1].

○ For simplicity here, we assume that when given the same
element x, the hash functions all choose different values in
that range [0, b-1]. This is not trivial to achieve, but we'll
assume it for now for convenience. It's not super
unrealistic when b is very large relative to k (since then it
kinda happens anyway)

Insertion
When we see a new item x (say, a URL), we:

● Put it in every hash function
○ i.e., calculate h1(x), …, hk(x)

● Set each bit h1(x), …, hk(x) to 1.
○ If any of these are already 1, that's fine. They stay 1.

Querying
When we want to know if we have seen an item x, we:

● Put it in every hash function
○ i.e., calculate h1(x), …, hk(x)

● Check each bit h1(x), …, hk(x).

● If at least one of these is 0, we have definitely not seen
this item before.
○ But what if all of them are 1?

0 0 0 0 0 0 0 0

Suppose b = 8, k = 3.

h1

h2

h3

8 bits

3 hash
functions

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

An Insertion

h1

h2

h3

cs161.stanford.edu

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

An Insertion

h1

h2

h3

cs161.stanford.edu

0 1 2 3 4 5 6 7

cs161.stanford.edu

0 0 0 0 0 0 0 0

An Insertion

h1

h2

h3

0 1 2 3 4 5 6 7

1

0

3

cs161.stanford.edu

0 0 0 0 0 0 0 0

An Insertion

h1

h2

h3

0 1 2 3 4 5 6 7

1

0

3

1 1 1

0 0 0 0 0 0 0 0

An Insertion

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1

Note: At this point the structure has
completely forgotten the specific string
cs161.stanford.edu

0 0 0 0 0 0 0 0

Another Insertion

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1

sketchytimeshares.com/sign-me-up.php

0 0 0 0 0 0 0 0

Another Insertion

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1

sketchytimeshares.com/sign-me-up.php

6

4

0

0 0 0 0 0 0 0 0

Another Insertion

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1

sketchytimeshares.com/sign-me-up.php

6

4

0

1 1

0 0 0 0 0 0 0 0

Querying Something We've Seen

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

cs161.stanford.edu

0 0 0 0 0 0 0 0
h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

cs161.stanford.edu

1

0

3

Querying Something We've Seen

Seems inefficient to do this again. Couldn't we
somehow remember that we'd calculated the
hashes before? …well then we'd be back to
storing URLs

0 0 0 0 0 0 0 0
h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

cs161.stanford.edu

1

0

3

Querying Something We've Seen

Sure, we've seen it before!

0 0 0 0 0 0 0 0

Querying Something We Haven't Seen

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

cs170.org

0 0 0 0 0 0 0 0

Querying Something We Haven't Seen

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

cs170.org

1

7

0

0 0 0 0 0 0 0 0

Querying Something We Haven't Seen

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

cs170.org

1

7

0
Guess we haven't seen it
before!

Homework 13 and a
project!!!!

0 0 0 0 0 0 0 0

Querying Something Else We Haven't Seen

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

doctorswithoutborders.org

0 0 0 0 0 0 0 0

Querying Something Else We Haven't Seen

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

doctorswithoutborders.org

6

3

1

0 0 0 0 0 0 0 0

Querying Something Else We Haven't Seen

h1

h2

h3

0 1 2 3 4 5 6 7

1 1 1 1 1

doctorswithoutborders.org

6

3

1
Guess we've seen it before!

Oh no! A false positive!
Bloom filters can return false positives – saying we've seen
something before when we haven't.

Can they also return false negatives, i.e., say we haven't seen
something before when we actually have?

But no false negatives
Bloom filters can return false positives – saying we've seen
something before when we haven't.

Can they also return false negatives, i.e., say we haven't seen
something before when we actually have?

No. If we've seen something
before, all of the bits it hashes
to are definitely set.

How likely are false positives?
● Say we have inserted n items into a Bloom filter with b

bits and k hash functions.

● Now we query for some item x we haven't seen. What is
the probability of a false positive?

○ This means every one of the bits that x is hashed
to (we'll call them "targeted bits") must already
be a 1. Let's first look at just one of them.

Probability that a single targeted bit is 1
● As is often the case, it turns out to be easier to solve for

the probability that the bit is 0, and then subtract that
from 1. (Either the bit is 0, or it's 1.)

● This only happens if none of the previously inserted
items set this bit to 1.

● What is the probability that any one of them did?

Let's focus on some arbitrary bit. What's the probability that it is 0 at
the time of our new insertion?

● This only happens if none of the n previously inserted items set
this bit to 1.

● What is the probability that any one of them did?

○ Each item is hashed to k different bits. So with probability k/b,
an insertion sets this bit.

○ Therefore, with probability 1 - (k/b), the insertion does not set
the bit.

○ And with probability [1 - (k/b)]n, none of the insertions do.
(Note: this assumes that the different inserted values hash
independently)

Note: other analyses that you may
see might not assume this

Probability that all targeted bits are 1
● For any given targeted bit, it is 0 with probability

[1 - (k/b)]n. So it is 1 with probability 1 - [1 - (k/b)]n.

● If we apply the argument to each of the k targeted bits independently,
they are all 1 with probability
(1 - [1 - (k/b)]n)k.

○ Is this legitimate? These values are not really independent! If one bit
is set, we conditionally know that others are less likely to be set.

○ We could sidestep this non-independence by finding the expected
number of 1s, but that doesn't give us a probability. (It can let us
estimate one, but that's more like CS265 material…)

b b

b

This is hard! Let's let someone else do it!

Ashish (Goel) is a
prof here!

So, suppose n = 1000, k = 5. Then:

● If b = 10000, this probability is about 0.009.
● If b = 1000, this probability is about 0.97.
● If b = 100, this probability is basically 1.

b b

b

This is hard! Let's let someone else do it!

Ashish (Goel) is a
prof here!

So, suppose n = 1000, k = 5. Then:

● If b = 10000, this probability is about 0.009.
● If b = 1000, this probability is about 0.97.
● If b = 100, this probability is basically 1.

Isn't this really bad performance for n = b?
But remember that we're comparing entire URLs with
single bits! Normally we can have b >> n

● You're not responsible for the math of the probability of
a false positive, or for that formula.

● I want you to understand the overall ideas:

○ More bits = better performance, of course, but the
whole idea is to save space, so we can't go wild here.
(If this stops fitting in cache space, it's extra bad)

○ More hash functions = lower collision probability for
different items, but the filter fills up faster

○ Can tune these parameters based on the anticipated
number of items

Some final observations
● Insertion and querying both take constant time!

● Deletion? uh… doesn't really work.
○ You'll investigate this on HW3!

● If the table fills up too much, you're also out of luck. The
best option may be to keep the old one but also start a new
larger one

● One good modern application: forbidden passwords (like
"qwerty123456" and "password")

