
7/8 Lecture Agenda
● Announcements

● Part 3-3: Heaps and Priority Queues

● 10 minute break!

● Part 3-4: Self-Balancing BSTs

Announcements!
● HW2 due this Sunday (Jul 10)

● Pre-HW3 due next Wednesday (Jul 13)

● HW3 out tonight (best case) or tomorrow (worst
case)

● HW1 solutions out tonight; we'll get it graded as soon
as we can!

Looking ahead to the midterm
● 85 minutes; two or three multipart problems and some

"True/False + justify your answer" questions

● Lecture coverage: Units 1, 2, 3, first lecture of Unit 4. HW / Pre-HW
coverage: Units 1, 2, 3

● You are not responsible for small details (e.g., the Gray code from
Pre-HW1). Emphasis will be on ideas we've seen and practiced
multiple times.

● Weds. lecture (before the Friday exam): Midterm Review!
○ I'll walk through each lecture explaining what to focus on.

7/8 Lecture Agenda
● Announcements

● Part 3-3: Heaps and Priority Queues

● 10 minute break!

● Part 3-4: Self-Balancing BSTs

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Heaps and Priority Queues

First, let's recap trees
● A tree is a connected graph with n nodes and exactly

n-1 edges.

○ Node is just another word for vertex. But for some
reason it's more common to call them nodes when
talking about trees.

● These properties are enough to guarantee an absence
of cycles!

Not a tree

Correct number of edges, but not connected.

Also not a tree

Connected, but too many edges.
(Even one edge too many is guaranteed to
create a cycle!)

A tree!

Even though it doesn't branch, a linear
graph like this is still a perfectly legit tree.

Also a tree!

This is called a "star graph". The term isn't
important, but this can be a useful worst (or
at least extreme) case for some algorithms.

Where's the root?

Where's the root?

Technically, any node in a tree can be
the root!

Two kinds of node

● Leaves are connected to only 1 other
node.

● The other nodes are sometimes
called "internal nodes".

Binary trees
● A tree is binary if

every node is either a
leaf or has at most two
children.
○ (By talking about

children, we imply
that we have
designated a root.)

Notice that
● Binary trees are not

necessarily
well-balanced

● Internal nodes do not
necessarily have 2
children

● There are other
possible ways to root
this tree

Trees: Why do we care?
● Computer programs can

generally be represented as
trees. (CS143, Compilers, is a
tree class!)
○ Same with natural

language…

● Trees are a good fit for anything
with a natural hierarchical
relationship (e.g. directories on
a computer)

Nodes can have values!

1

2 3

4 5

Traversals
● The only one that's really

important in CS161 is the
inorder traversal, which is
defined recursively:

○ Do an inorder traversal
of the left child, if any.

○ Give your own value.

○ Do an inorder traversal
of the right node, if any.

1

2 3

4 5

● Start at the root, 1.
● Traverse the left child:

○ Now the root is 2.
○ Traverse the left child:

■ Now the root is 4.
■ No left child.
■ Print the root, 4.
■ No right child.

○ Print the root, 2.
○ Traverse the right child:

■ Now the root is 5.
■ No left child.
■ Print the root, 5.
■ No right child.

● Print the root, 1.
● Traverse the right child:

○ Now the root is 3.
○ No left child.
○ Print the root, 3.
○ No right child.

1

2 3

4 5

Result: 4, 2, 5, 1, 3.

● Start at the root, 1.
● Traverse the left child:

○ Now the root is 2.
○ Traverse the left child:

■ Now the root is 4.
■ No left child.
■ Print the root, 4.
■ No right child.

○ Print the root, 2.
○ Traverse the right child:

■ Now the root is 5.
■ No left child.
■ Print the root, 5.
■ No right child.

● Print the root, 1.
● Traverse the right child:

○ Now the root is 3.
○ No left child.
○ Print the root, 3.
○ No right child.

1

2 3

4 5

Result: 4, 2, 5, 1, 3.
This matches the
"left-to-right order".

Inorder traversal: running time
● For each node, we visit it,

travel to its left child (if any)
and back, print the node's
value, and travel to its right
child (if any) and back.

● This is constant work per
node, so: n * O(1) = O(n)

● This argument does not
depend on the topology /
balance of the tree!

1

2 3

4 5

Binary search trees (BSTs)
● These are labeled binary

trees such that:
○ the values of any node's

left child (and all its
descendants) are all no
greater than the node's
own value

○ the values of any node's
right child (and all its
descendants) are all no
smaller than the node's
own value

4

2 5

1 3

Binary search trees (BSTs)
● These are labeled binary

trees such that:
○ the values of any node's

left child (and all its
descendants) are all no
greater than the node's
own value

○ the values of any node's
right child (and all its
descendants) are all no
smaller than the node's
own value

4

2 5

1 3

An inorder traversal of
a BST gives a sorted list
of the values!

Careful:
● Not every labeled

binary tree is a BST.

● BSTs are not
necessarily
well-balanced.
○ More on this in

the second half…

5

4

1

3

2

And now: min-heaps!
● Min-heaps are

special labeled
rooted trees with one
simple property:
Every node's value is
no larger than the
values of all its
children.

3

7 5 3

7 7 4 49

And now: min-heaps!
● Min-heaps are

special labeled
rooted trees with one
simple property:
Every node's value is
no larger than the
values of all its
children.

3

7 5 3

7 7 4 49
There is no requirement that
min-heaps be binary or balanced, but
let's enforce that.

Binary min-heaps!
Let's impose some
requirements:

● Every level is full
except maybe the
bottom one…
○ in which case it is

full up to a point.

3

7

5 3

7

7

4 9

7

What's the point of a min-heap?

● To easily find the minimum of a data set!

So what? That's easy.

What's the point of a min-heap?

● To easily find the minimum of a data set!

So what? That's easy.

● …even as stuff gets deleted or inserted!

Why not just maintain a sorted list?

● If you use an array:

○ Finding where to insert an element is easy
using binary search.

○ Inserting into or deleting from an array can be
awful – you may have to shift a lot of values
over to make room, and/or resize the array.

Why not just maintain a sorted list?
● If you use a linked list:

○ Inserting into or deleting from a (doubly)
linked list is easy. Just rewire a few pointers.

○ Finding where to insert a new element can be
awful – you can't binary search, only traverse
the linked list in order!

Why not just maintain a sorted list?
● If you use a linked list:

○ Inserting into or deleting from a (doubly)
linked list is easy. Just rewire a few pointers.

○ Finding where to insert a new element can be
awful – you can't binary search, only traverse
the linked list in order!

Can you think of a way to augment a linked list
to do this? Look up "skip lists" if you're curious!

How do min-heaps work?
We need to support three
operations:

● Find-Min

● Insertion

● Delete-Min

3

7

5 3

7

7

4 9

7

Find-Min is O(1)
3

7

5 3

7

7

4 9

7

found it!

Insertion

Suppose we want to
insert a new value.

We want to maintain
the shape of the tree…

3

7

5 3

7

7

4 9

7

Insertion

Suppose we want to
insert a new value.

We want to maintain
the shape of the tree…

…so the tree should
have this shape when
we're done.

Insertion

Say our new value is 2.

Let's start by putting it
in the next available
spot.

3

7

5 3

7

7

4 9

7 2

Insertion

Say our new value is 2.

Let's start by putting it
in the next available
spot.

But there's a problem!
The heap property is
violated.

3

7

5 3

7

7

4 9

7 2

Insertion

A fix: As long as the
newly inserted value is
smaller than its parent,
swap it with its parent.

3

7

5 3

7

7

4 9

7 2

Insertion

A fix: As long as the
newly inserted value is
smaller than its parent,
swap it with its parent.

3

7

5 3

77

4 9

7

2

Insertion

A fix: As long as the
newly inserted value is
smaller than its parent,
swap it with its parent.

3

7

3

77

4 9

7

5

2

Insertion

A fix: As long as the
newly inserted value is
smaller than its parent,
swap it with its parent.

7

3

77

4 9

7

5

3

2

Insertion

A fix: As long as the
newly inserted value is
smaller than its parent,
swap it with its parent.

All fixed!
7

3

77

4 9

7

5

3

2

Insertion is O(log n)

Assuming we can find
the next position in the
heap in O(1) time…

we only need to go from
a leaf to the root,
swapping nodes. The
height is O(log n), so
this is O(log n).

7

3

77

4 9

7

5

3

2

Aside: implementation

This works nicely as an
array!

The children of node i are
at indices 2i +1 and 2i+2.

We keep a pointer to
the next open slot.

7

3

77

4 9

7

5

3

2

0

1 2

3 4 5 6

7 8 9

Delete-Min

● This kind of heap best
supports deleting the
minimum, not an
arbitrary element.
○ (you can, but we

won't dwell on it)

3

7

5 3

7

7

4 9

7

Delete-Min

● Again, we know what
kind of shape we want
the final result to have.

Delete-Min

● Remove the element in
the last position and
put it in the root.

3

7

5 3

7

7

4 9

7

Delete-Min

● Remove the element in
the last position and
put it in the root.

7

5 3

7

7

4 9

7

Delete-Min

● Remove the element in
the last position and
put it in the root.

● How can we fix the heap
property now? 7

5 3

7

7

4 9

7

Delete-Min

● Remove the element in
the last position and
put it in the root.

● We should swap the
root with one of the
two values below…

7

5 3

7

7

4 9

7

Delete-Min

● Remove the element in
the last position and
put it in the root.

● We should swap the
root with one of the
two values below…
○ If we chose 5, the heap

property would still be
broken.

7

3

7

7

4 9

5

7

Delete-Min

● Remove the element in
the last position and
put it in the root.

● We should swap the
root with one of the
two values below…
○ specifically, the

smallest (if any).

7

5

7

7

4 9

7

3

Delete-Min

● Remove the element in
the last position and
put it in the root.

● We should swap the
root with one of the
two values below…
○ specifically, the

smallest (if any).
○ And so on.

7

5

7

7

9

3

4

7

All fixed!

What if there had
been a tie?

● Then it doesn't matter
which one we pick!
○ There's no way to

make a wrong
choice.

○ (Maybe the clump of 7s is
not great, but the
algorithm can't know this
when it decides…)

7

3.5

7

7

4 9

3.5

7

7

5

7

7

9

3

4

7

All fixed!

Deletion is O(log n)

Basically the same
argument as for
insertion!

Final score
Running times of our
three operations:

● Find-Min: O(1)

● Insertion: O(log n)

● Delete-Min: O(log n)

3

7

5 3

7

7

4 9

7

Unsurprisingly, there are also max heaps

They work the same way!

The default implementation of
heaps (e.g., Python's heapq)
tends to be a min-heap, but
one super-lazy way to make it
a max-heap is to just use the
negative of all the values..

Deletion of non-min elements
● You can do the same sort of thing as when deleting

the root: replace the deleted element with the "last"
element of the heap, then swap either up or down as
needed.

● Or, fake deletion: just leave stale stuff in the heap,
and use a hash table to keep track of which items are
stale. When a new min surfaces, check the hash table
to see whether to delete it. Lazy, but may be OK if
not too much stale stuff builds up!

Hey, we get a free sort: Heapsort!

● To sort a list of size n:

○ Stuff all the elements into the
heap, one by one.

○ Delete-min, one by one – they
come out in sorted order!

n * O(log n)

n * O(log n)

O(n log n)

Hey, we get a free sort: Heapsort!

● To sort a list of size n:

○ Stuff all the elements into the
heap, one by one.

○ Delete-min, one by one – they
come out in sorted order!

n * O(log n)

n * O(log n)

O(n log n)Notice that the n in question is a loose
upper bound here... early insertions / later
deletions are cheaper!

The best part of heaps: Priority queues!

● A priority queue is a data
structure that efficiently
identifies the item with
highest priority.

● A heap is a natural way to
implement a priority queue.

Homework 1, Problem 6 can be solved this way!
● We did not expect you to use priority queues – we

hadn't even gotten to them yet! – but it is possible.

● The idea:
○ Insert all students' (enter, exit) pairs into the heap.
○ When we delete-min, reinsert a pair saying when

the student will exit.
○ When a student exits, increment our total number of

pairs by the number of students in the room.

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

Insert (1, 3)

1, 3

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

Insert (5, 6)

1, 3

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

Insert (3, 7)

1, 3

5, 6 3, 7

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

Insert (2, 4)

now the heap
is sad!

1, 3

5, 6 3, 7

2, 4

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

Insert (2, 4)

fixed!

1, 3

2, 4 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

Insert (1, 2)

1, 3

2, 4 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

1, 2

Insert (1, 2)

1, 3

1, 2 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

2, 4

Insert (1, 2)

1, 2

1, 3 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

2, 4

1, 2

1, 3 3, 7

5, 6 2, 4

Students in room: 0 Total pairs: 0

Delete (1, 2)

Insert (2, ∞) 1, 2

1, 3 3, 7

5, 6 2, 4

Students in room: 0 Total pairs: 0

Delete (1, 2)

Insert (2, ∞)

1, 3 3, 7

5, 6

Students in room: 1 Total pairs: 0

2, 4

Delete (1, 2)

Insert (2, ∞)

3, 7

5, 6

Students in room: 1 Total pairs: 0

1, 3

2, 4

Delete (1, 2)

Insert (2, ∞)

3, 7

5, 6

Students in room: 1 Total pairs: 0

1, 3

2, 4

2, ∞

Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 1 Total pairs: 0

1, 3

2, 4

2, ∞

Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞

Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞

Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞

3, ∞

Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞

3, ∞

Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞

Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞

Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞

4, ∞

Delete (2, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞

4, ∞

Delete (2, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 2

3, ∞

4, ∞

Delete (2, ∞)

5, 6

Students in room: 2 Total pairs: 2

3, ∞

3, 7

4, ∞

we swap with
the smallest
child

5, 6

Students in room: 2 Total pairs: 2

3, ∞

3, 7

4, ∞

Delete (3, 7)

Insert (7, ∞)

Students in room: 3 Total pairs: 2

3, ∞ 4, ∞

Delete (3, 7)

Insert (7, ∞)
5, 6

Students in room: 3 Total pairs: 2

4, ∞

Delete (3, 7)

Insert (7, ∞)

5, 6

3, ∞

Students in room: 3 Total pairs: 2

4, ∞

Delete (3, 7)

Insert (7, ∞)

5, 6

3, ∞

7, ∞

Students in room: 3 Total pairs: 2

4, ∞

Delete (3, ∞)

5, 6

3, ∞

7, ∞

Students in room: 2 Total pairs: 4

4, ∞

Delete (3, ∞)

5, 6

7, ∞

Students in room: 2 Total pairs: 4

Delete (3, ∞)

5, 6

4, ∞

7, ∞

Students in room: 2 Total pairs: 4

Delete (4, ∞)

5, 6

4, ∞

7, ∞

Students in room: 1 Total pairs: 5

Delete (4, ∞)

5, 6

7, ∞

Students in room: 1 Total pairs: 5

Delete (4, ∞)

7, ∞

5, 6

Students in room: 1 Total pairs: 5

7, ∞

5, 6
Delete (5, 6)

Insert (6, ∞)

Students in room: 2 Total pairs: 5

Delete (5, 6)

Insert (6, ∞)
7, ∞

Students in room: 2 Total pairs: 5

Delete (5, 6)

Insert (6, ∞)
7, ∞

6, ∞

Students in room: 2 Total pairs: 5

Delete (5, 6)

Insert (6, ∞)
6, ∞

7, ∞

Students in room: 2 Total pairs: 5

Delete (6, ∞)
6, ∞

7, ∞

Students in room: 1 Total pairs: 6

Delete (6, ∞)
7, ∞

Students in room: 1 Total pairs: 6

Delete (7, ∞)
7, ∞

Students in room: 0 Total pairs: 6

Delete (7, ∞)

We never explicitly sorted the list!

But we got an O(n log n) solution – the same as
with MergeSort.

Another classic priority queue scenario
● You have a piece of abstract art made up of rectangles.

● Each rectangle has one of its sides overlapping the
x-axis.

● Given the locations and sizes of the rectangles, find the
total area of the shape.

We want this total
area.

Brute force: Check
every 2 rectangles for
their overlap. Sum all
areas, subtract off all
overlaps.

Then need to consider
overlaps of overlaps…

How would you
approach this
using priority
queues?

Let's start with just the stuff above the line.

Let's start with just the stuff above the line.
Looking left to right: red is initially most
important, then blue, then yellow, then blue

Let's start with just the stuff above the line.
Looking left to right: red is initially most
important, then blue, then yellow, then blue

Stuff like this is annoying. We can't forget about the
blue rectangle is there since it becomes important
again later (twice!)

● This is similar to the office hours problem,
but with some extra info!

● The PQ keeps track of events: a rectangle
starts, or a rectangle ends.

● The PQ keeps track of events: a rectangle starts, or a
rectangle ends.

● Maintain separate variables for current max height,
and total area so far.

● Upon each event, add area seen since last event.

Handle this with two PQs: one
for the top, one for the bottom.

(Or, with just one!)

Priority Queues recap
● This is my favorite data structure!

○ It is common in tech interview questions
(and got me a job!)

● There are lots of flavors of these, but you are
only responsible for understanding the
binary-heap one and its array-based
implementation.

Priority Queues recap
● Heaps are good at one thing, and so they are really

good at it.

● More specialized priority queues do stuff like:
support decreasing the value of an entry efficiently
(rather than deleting it and adding it again)

● There's not one single optimal data structure. (Not
even the mighty hash table!) It really depends on your
needs.

7/8 Lecture Agenda
● Announcements

● Part 3-3: Heaps and Priority Queues

● 10 minute break!

● Part 3-4: Self-Balancing BSTs

7/8 Lecture Agenda
● Announcements

● Part 3-3: Heaps and Priority Queues

● 10 minute break!

● Part 3-4: Self-Balancing BSTs

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Self-Balancing BSTs

Back to Binary Search Trees (BSTs)
● We need to support at least two operations:

○ Insert an element into the tree.
○ Search the tree to see if it has an element.

● We might also want to support deletion.

But don't hash tables do this?
● We need to support at least two operations:

○ Insert an element into the tree.
○ Search the tree to see if it has an element.

● We might also want to support deletion.

Why would
we need a
BST?

BSTs can do some things
hash tables can't!
● Inorder traversal of a BST

produces a sorted list.
○ Hash tables do not retain

any ordering information,
so you can't do this
efficiently.

● If you search a BST for
something that isn't there, you
can at least find which values
are closest to it. Hash tables
have no idea, though.

4

2 5

1 3

A problem: bad insertion
patterns can cause BSTs to
become imbalanced.
● This is the result of inserting

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5

A problem: bad insertion
patterns can cause BSTs to
become imbalanced.
● This is the result of inserting

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5

4

A problem: bad insertion
patterns can cause BSTs to
become imbalanced.
● This is the result of inserting

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5

4

3

A problem: bad insertion
patterns can cause BSTs to
become imbalanced.
● This is the result of inserting

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5

4

3

2

A problem: bad insertion
patterns can cause BSTs to
become imbalanced.
● This is the result of inserting

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5

4

1

3

2

We could go in and
rebalance the tree every so
often…

How would we know when?
And that's a lot of work! Can
the tree please just
rebalance itself?

Good news, everyone!
● There are lots of self-balancing binary search

trees out there!
○ 2-3-(4) trees
○ AVL trees
○ B-trees
○ Red-black trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!

Terrible news, everyone!
● These are all complicated,

because this is a hard
problem.

● Lots of fussy details and
casework…

○ 2-3-(4)
trees

○ AVL trees
○ B-trees
○ Red-black

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!

Good news, everyone!
● We'll just focus on one of

these…

○ 2-3-(4)
trees

○ AVL trees
○ B-trees
○ Red-black

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!

Terrible news, everyone!
● This is one of the fussiest

and caseworky of all
self-balancing BSTs!

○ 2-3-(4)
trees

○ AVL trees
○ B-trees
○ Red-black

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!

Good news, everyone!
● This is one of the fussiest

and caseworky of all
self-balancing BSTs!

○ I want you to understand
the high-level idea of why
they work, but you are not
responsible for the
details.

○ 2-3-(4)
trees

○ AVL trees
○ B-trees
○ Red-black

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!

A small part of the Wikipedia article

you do not
need to
understand
this! It's just
to gawk at

Why red and black?
Maybe
something
about ink? I
have never
found a
definitive
answer

A red/black tree simulator!
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

You'll use this on HW3!

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

