
7/8 Lecture Agenda
● Announcements

● Part 3-3: Heaps and Priority Queues

● 10 minute break!

● Part 3-4: Self-Balancing BSTs



Announcements!
● HW2 due this Sunday (Jul 10)

● Pre-HW3 due next Wednesday (Jul 13)

● HW3 out tonight (best case) or tomorrow (worst 
case)

● HW1 solutions out tonight; we'll get it graded as soon 
as we can!



Looking ahead to the midterm
● 85 minutes; two or three multipart problems and some 

"True/False + justify your answer" questions

● Lecture coverage: Units 1, 2, 3, first lecture of Unit 4. HW / Pre-HW 
coverage: Units 1, 2, 3

● You are not responsible for small details (e.g., the Gray code from 
Pre-HW1). Emphasis will be on ideas we've seen and practiced 
multiple times.

● Weds. lecture (before the Friday exam): Midterm Review!
○ I'll walk through each lecture explaining what to focus on.



7/8 Lecture Agenda
● Announcements

● Part 3-3: Heaps and Priority Queues

● 10 minute break!

● Part 3-4: Self-Balancing BSTs



Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Heaps and Priority Queues



First, let's recap trees
● A tree is a connected graph with n nodes and exactly 

n-1 edges.

○ Node is just another word for vertex. But for some 
reason it's more common to call them nodes when 
talking about trees.

● These properties are enough to guarantee an absence 
of cycles!



Not a tree

Correct number of edges, but not connected.



Also not a tree

Connected, but too many edges.
(Even one edge too many is guaranteed to 
create a cycle!)



A tree!

Even though it doesn't branch, a linear 
graph like this is still a perfectly legit tree.



Also a tree!

This is called a "star graph". The term isn't 
important, but this can be a useful worst (or 
at least extreme) case for some algorithms.



Where's the root?



Where's the root?

Technically, any node in a tree can be 
the root!



Two kinds of node

● Leaves are connected to only 1 other 
node.

● The other nodes are sometimes 
called "internal nodes".



Binary trees
● A tree is binary if 

every node is either a 
leaf or has at most two 
children.
○ (By talking about 

children, we imply 
that we have 
designated a root.)



Notice that
● Binary trees are not 

necessarily 
well-balanced

● Internal nodes do not 
necessarily have 2 
children

● There are other 
possible ways to root 
this tree



Trees: Why do we care? 
● Computer programs can 

generally be represented as 
trees. (CS143, Compilers, is a 
tree class!)
○ Same with natural 

language…

● Trees are a good fit for anything 
with a natural hierarchical 
relationship (e.g. directories on 
a computer)



Nodes can have values!
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Traversals
● The only one that's really 

important in CS161 is the 
inorder traversal, which is 
defined recursively:

○ Do an inorder traversal 
of the left child, if any.

○ Give your own value.

○ Do an inorder traversal 
of the right node, if any.

1
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4 5



● Start at the root, 1.
● Traverse the left child:

○ Now the root is 2.
○ Traverse the left child:

■ Now the root is 4.
■ No left child.
■ Print the root, 4.
■ No right child.

○ Print the root, 2.
○ Traverse the right child:

■ Now the root is 5.
■ No left child.
■ Print the root, 5.
■ No right child.

● Print the root, 1.
● Traverse the right child:

○ Now the root is 3.
○ No left child.
○ Print the root, 3.
○ No right child.

1

2 3

4 5

Result: 4, 2, 5, 1, 3.



● Start at the root, 1.
● Traverse the left child:

○ Now the root is 2.
○ Traverse the left child:

■ Now the root is 4.
■ No left child.
■ Print the root, 4.
■ No right child.

○ Print the root, 2.
○ Traverse the right child:

■ Now the root is 5.
■ No left child.
■ Print the root, 5.
■ No right child.

● Print the root, 1.
● Traverse the right child:

○ Now the root is 3.
○ No left child.
○ Print the root, 3.
○ No right child.

1
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4 5

Result: 4, 2, 5, 1, 3.
This matches the 
"left-to-right order".



Inorder traversal: running time
● For each node, we visit it, 

travel to its left child (if any) 
and back, print the node's 
value, and travel to its right 
child (if any) and back.

● This is constant work per 
node, so: n * O(1) = O(n)

● This argument does not 
depend on the topology / 
balance of the tree!
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Binary search trees (BSTs)
● These are labeled binary 

trees such that:
○ the values of any node's 

left child (and all its 
descendants) are all no 
greater than the node's 
own value

○ the values of any node's 
right child (and all its 
descendants) are all no 
smaller than the node's 
own value
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Binary search trees (BSTs)
● These are labeled binary 

trees such that:
○ the values of any node's 

left child (and all its 
descendants) are all no 
greater than the node's 
own value

○ the values of any node's 
right child (and all its 
descendants) are all no 
smaller than the node's 
own value

4

2 5

1 3

An inorder traversal of 
a BST gives a sorted list 
of the values!



Careful:
● Not every labeled 

binary tree is a BST.

● BSTs are not 
necessarily 
well-balanced.
○ More on this in 

the second half…
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And now: min-heaps!
● Min-heaps are 

special labeled 
rooted trees with one 
simple property: 
Every node's value is 
no larger than the 
values of all its 
children.
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And now: min-heaps!
● Min-heaps are 

special labeled 
rooted trees with one 
simple property: 
Every node's value is 
no larger than the 
values of all its 
children.

3

7 5 3

7 7 4 49
There is no requirement that 
min-heaps be binary or balanced, but 
let's enforce that.



Binary min-heaps!
Let's impose some 
requirements:

● Every level is full 
except maybe the 
bottom one…
○ in which case it is 

full up to a point. 
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What's the point of a min-heap?

● To easily find the minimum of a data set!

So what? That's easy.



What's the point of a min-heap?

● To easily find the minimum of a data set!

So what? That's easy.

● …even as stuff gets deleted or inserted!



Why not just maintain a sorted list?

● If you use an array:

○ Finding where to insert an element is easy 
using binary search.

○ Inserting into or deleting from an array can be 
awful – you may have to shift a lot of values 
over to make room, and/or resize the array.



Why not just maintain a sorted list?
● If you use a linked list:

○ Inserting into or deleting from a (doubly) 
linked list is easy. Just rewire a few pointers.

○ Finding where to insert a new element can be 
awful – you can't binary search, only traverse 
the linked list in order!



Why not just maintain a sorted list?
● If you use a linked list:

○ Inserting into or deleting from a (doubly) 
linked list is easy. Just rewire a few pointers.

○ Finding where to insert a new element can be 
awful – you can't binary search, only traverse 
the linked list in order!

Can you think of a way to augment a linked list 
to do this? Look up "skip lists" if you're curious!



How do min-heaps work?
We need to support three 
operations:

● Find-Min

● Insertion

● Delete-Min

3

7

5 3

7

7

4 9

7



Find-Min is O(1)
3

7

5 3

7

7
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7

found it!



Insertion

Suppose we want to 
insert a new value.

We want to maintain 
the shape of the tree…
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Insertion

Suppose we want to 
insert a new value.

We want to maintain 
the shape of the tree…

…so the tree should 
have this shape when 
we're done.



Insertion

Say our new value is 2.

Let's start by putting it 
in the next available 
spot.
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Insertion

Say our new value is 2.

Let's start by putting it 
in the next available 
spot.

But there's a problem! 
The heap property is 
violated.
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Insertion

A fix: As long as the 
newly inserted value is 
smaller than its parent, 
swap it with its parent.
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Insertion

A fix: As long as the 
newly inserted value is 
smaller than its parent, 
swap it with its parent.
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Insertion

A fix: As long as the 
newly inserted value is 
smaller than its parent, 
swap it with its parent.
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Insertion

A fix: As long as the 
newly inserted value is 
smaller than its parent, 
swap it with its parent.
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Insertion

A fix: As long as the 
newly inserted value is 
smaller than its parent, 
swap it with its parent.

All fixed!
7
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Insertion is O(log n)

Assuming we can find 
the next position in the 
heap in O(1) time…

we only need to go from 
a leaf to the root, 
swapping nodes. The 
height is O(log n), so 
this is O(log n).
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Aside: implementation

This works nicely as an 
array!

The children of node i are 
at indices 2i +1 and 2i+2.

We keep a pointer to
the next open slot.
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Delete-Min

● This kind of heap best 
supports deleting the 
minimum, not an 
arbitrary element.
○ (you can, but we 

won't dwell on it)
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Delete-Min

● Again, we know what 
kind of shape we want 
the final result to have.



Delete-Min

● Remove the element in 
the last position and 
put it in the root.
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Delete-Min

● Remove the element in 
the last position and 
put it in the root.
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Delete-Min

● Remove the element in 
the last position and 
put it in the root.

● How can we fix the heap 
property now? 7

5 3
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Delete-Min

● Remove the element in 
the last position and 
put it in the root.

● We should swap the 
root with one of the 
two values below…
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Delete-Min

● Remove the element in 
the last position and 
put it in the root.

● We should swap the 
root with one of the 
two values below…
○ If we chose 5, the heap 

property would still be 
broken.
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Delete-Min

● Remove the element in 
the last position and 
put it in the root.

● We should swap the 
root with one of the 
two values below…
○ specifically, the 

smallest (if any).
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Delete-Min

● Remove the element in 
the last position and 
put it in the root.

● We should swap the 
root with one of the 
two values below…
○ specifically, the 

smallest (if any).
○ And so on.

7
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7

7
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7

All fixed!



What if there had 
been a tie?

● Then it doesn't matter 
which one we pick!
○ There's no way to 

make a wrong 
choice.

○ (Maybe the clump of 7s is 
not great, but the 
algorithm can't know this 
when it decides…)

7

3.5

7

7

4 9
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7

5

7

7

9

3

4

7

All fixed!

Deletion is O(log n)

Basically the same 
argument as for 
insertion!



Final score
Running times of our 
three operations:

● Find-Min: O(1)

● Insertion: O(log n)

● Delete-Min: O(log n)
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Unsurprisingly, there are also max heaps

They work the same way!

The default implementation of 
heaps (e.g., Python's heapq) 
tends to be a min-heap, but 
one super-lazy way to make it 
a max-heap is to just use the 
negative of all the values..



Deletion of non-min elements
● You can do the same sort of thing as when deleting 

the root: replace the deleted element with the "last" 
element of the heap, then swap either up or down as 
needed.

● Or, fake deletion: just leave stale stuff in the heap, 
and use a hash table to keep track of which items are 
stale. When a new min surfaces, check the hash table 
to see whether to delete it. Lazy, but may be OK if 
not too much stale stuff builds up!



Hey, we get a free sort: Heapsort!

● To sort a list of size n:

○ Stuff all the elements into the 
heap, one by one.

○ Delete-min, one by one – they 
come out in sorted order!

n * O(log n)

n * O(log n)

O(n log n)



Hey, we get a free sort: Heapsort!

● To sort a list of size n:

○ Stuff all the elements into the 
heap, one by one.

○ Delete-min, one by one – they 
come out in sorted order!

n * O(log n)

n * O(log n)

O(n log n)Notice that the n in question is a loose 
upper bound here... early insertions  / later 
deletions are cheaper!



The best part of heaps: Priority queues!

● A priority queue is a data 
structure that efficiently 
identifies the item with 
highest priority.

● A heap is a natural way to 
implement a priority queue.



Homework 1, Problem 6 can be solved this way!
● We did not expect you to use priority queues – we 

hadn't even gotten to them yet! – but it is possible.

● The idea:
○ Insert all students' (enter, exit) pairs into the heap.
○ When we delete-min, reinsert a pair saying when 

the student will exit.
○ When a student exits, increment our total number of 

pairs by the number of students in the room.



(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)



Insert (1, 3)

1, 3

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)



Insert (5, 6)

1, 3

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)



Insert (3, 7)

1, 3

5, 6 3, 7

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)



Insert (2, 4)

now the heap 
is sad!

1, 3

5, 6 3, 7

2, 4

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)



Insert (2, 4)

fixed!

1, 3

2, 4 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)



Insert (1, 2)

1, 3

2, 4 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

1, 2



Insert (1, 2)

1, 3

1, 2 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

2, 4



Insert (1, 2)

1, 2

1, 3 3, 7

5, 6

(1, 3), (5, 6), (3, 7), (2, 4), (1, 2)

2, 4



1, 2

1, 3 3, 7

5, 6 2, 4

Students in room: 0 Total pairs: 0



Delete (1, 2)

Insert (2, ∞) 1, 2

1, 3 3, 7

5, 6 2, 4

Students in room: 0 Total pairs: 0



Delete (1, 2)

Insert (2, ∞)

1, 3 3, 7

5, 6

Students in room: 1 Total pairs: 0

2, 4



Delete (1, 2)

Insert (2, ∞)

3, 7

5, 6

Students in room: 1 Total pairs: 0

1, 3

2, 4



Delete (1, 2)

Insert (2, ∞)

3, 7

5, 6

Students in room: 1 Total pairs: 0

1, 3

2, 4

2, ∞



Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 1 Total pairs: 0

1, 3

2, 4

2, ∞



Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞



Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞



Delete (1, 3)

Insert (3, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞

3, ∞



Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 0

2, 4

2, ∞

3, ∞



Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞



Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞



Delete (2, 4)

Insert (4, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞

4, ∞



Delete (2, ∞)

3, 7

5, 6

Students in room: 3 Total pairs: 0

2, ∞

3, ∞

4, ∞



Delete (2, ∞)

3, 7

5, 6

Students in room: 2 Total pairs: 2

3, ∞

4, ∞



Delete (2, ∞)

5, 6

Students in room: 2 Total pairs: 2

3, ∞

3, 7

4, ∞

we swap with 
the smallest 
child



5, 6

Students in room: 2 Total pairs: 2

3, ∞

3, 7

4, ∞

Delete (3, 7)

Insert (7, ∞)



Students in room: 3 Total pairs: 2

3, ∞ 4, ∞

Delete (3, 7)

Insert (7, ∞)
5, 6



Students in room: 3 Total pairs: 2

4, ∞

Delete (3, 7)

Insert (7, ∞)

5, 6

3, ∞



Students in room: 3 Total pairs: 2

4, ∞

Delete (3, 7)

Insert (7, ∞)

5, 6

3, ∞

7, ∞



Students in room: 3 Total pairs: 2

4, ∞

Delete (3, ∞)

5, 6

3, ∞

7, ∞



Students in room: 2 Total pairs: 4

4, ∞

Delete (3, ∞)

5, 6

7, ∞



Students in room: 2 Total pairs: 4

Delete (3, ∞)

5, 6

4, ∞

7, ∞



Students in room: 2 Total pairs: 4

Delete (4, ∞)

5, 6

4, ∞

7, ∞



Students in room: 1 Total pairs: 5

Delete (4, ∞)

5, 6

7, ∞



Students in room: 1 Total pairs: 5

Delete (4, ∞)

7, ∞

5, 6



Students in room: 1 Total pairs: 5

7, ∞

5, 6
Delete (5, 6)

Insert (6, ∞)



Students in room: 2 Total pairs: 5

Delete (5, 6)

Insert (6, ∞)
7, ∞



Students in room: 2 Total pairs: 5

Delete (5, 6)

Insert (6, ∞)
7, ∞

6, ∞



Students in room: 2 Total pairs: 5

Delete (5, 6)

Insert (6, ∞)
6, ∞

7, ∞



Students in room: 2 Total pairs: 5

Delete (6, ∞)
6, ∞

7, ∞



Students in room: 1 Total pairs: 6

Delete (6, ∞)
7, ∞



Students in room: 1 Total pairs: 6

Delete (7, ∞)
7, ∞



Students in room: 0 Total pairs: 6

Delete (7, ∞)



We never explicitly sorted the list!

But we got an O(n log n) solution – the same as 
with MergeSort.



Another classic priority queue scenario
● You have a piece of abstract art made up of rectangles.

● Each rectangle has one of its sides overlapping the 
x-axis.

● Given the locations and sizes of the rectangles, find the 
total area of the shape.





We want this total 
area.



Brute force: Check 
every 2 rectangles for 
their overlap. Sum all 
areas, subtract off all 
overlaps.

Then need to consider 
overlaps of overlaps…



How would you 
approach this
using priority
queues?



Let's start with just the stuff above the line.



Let's start with just the stuff above the line.
Looking left to right: red is initially most 
important, then blue, then yellow, then blue



Let's start with just the stuff above the line.
Looking left to right: red is initially most 
important, then blue, then yellow, then blue



Stuff like this is annoying. We can't forget about the 
blue rectangle is there since it becomes important 
again later (twice!)



● This is similar to the office hours problem, 
but with some extra info!

● The PQ keeps track of events: a rectangle 
starts, or a rectangle ends.



● The PQ keeps track of events: a rectangle starts, or a 
rectangle ends.

● Maintain separate variables for current max height, 
and total area so far.

● Upon each event, add area seen since last event.



Handle this with two PQs: one 
for the top, one for the bottom.

(Or, with just one!)



Priority Queues recap
● This is my favorite data structure!

○ It is common in tech interview questions 
(and got me a job!)

● There are lots of flavors of these, but you are 
only responsible for understanding the 
binary-heap one and its array-based 
implementation.



Priority Queues recap
● Heaps are good at one thing, and so they are really 

good at it.

● More specialized priority queues do stuff like: 
support decreasing the value of an entry efficiently 
(rather than deleting it and adding it again)

● There's not one single optimal data structure. (Not 
even the mighty hash table!) It really depends on your 
needs.
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7/8 Lecture Agenda
● Announcements

● Part 3-3: Heaps and Priority Queues

● 10 minute break!

● Part 3-4: Self-Balancing BSTs



Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Self-Balancing BSTs



Back to Binary Search Trees (BSTs)
● We need to support at least two operations:

○ Insert an element into the tree.
○ Search the tree to see if it has an element.

● We might also want to support deletion.



But don't hash tables do this?
● We need to support at least two operations:

○ Insert an element into the tree.
○ Search the tree to see if it has an element.

● We might also want to support deletion.

Why would 
we need a 
BST?



BSTs can do some things 
hash tables can't!
● Inorder traversal of a BST 

produces a sorted list.
○ Hash tables do not retain 

any ordering information, 
so you can't do this 
efficiently.

● If you search a BST for 
something that isn't there, you 
can at least find which values 
are closest to it. Hash tables 
have no idea, though.

4

2 5

1 3



A problem: bad insertion 
patterns can cause BSTs to 
become imbalanced.
● This is the result of inserting 

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5



A problem: bad insertion 
patterns can cause BSTs to 
become imbalanced.
● This is the result of inserting 

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5

4



A problem: bad insertion 
patterns can cause BSTs to 
become imbalanced.
● This is the result of inserting 

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...
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A problem: bad insertion 
patterns can cause BSTs to 
become imbalanced.
● This is the result of inserting 

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...
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A problem: bad insertion 
patterns can cause BSTs to 
become imbalanced.
● This is the result of inserting 

5, 4, 3, 2, 1.

● Each insertion is O(n)...

● Searching is also O(n)...

5

4

1

3

2



We could go in and 
rebalance the tree every so 
often…

How would we know when? 
And that's a lot of work! Can 
the tree please just 
rebalance itself?



Good news, everyone!
● There are lots of self-balancing binary search 

trees out there!
○ 2-3-(4) trees
○ AVL trees
○ B-trees
○ Red-black trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!



Terrible news, everyone!
● These are all complicated, 

because this is a hard 
problem.

● Lots of fussy details and 
casework…

○ 2-3-(4) 
trees

○ AVL trees
○ B-trees
○ Red-black 

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!



Good news, everyone!
● We'll just focus on one of 

these…

○ 2-3-(4) 
trees

○ AVL trees
○ B-trees
○ Red-black 

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!



Terrible news, everyone!
● This is one of the fussiest 

and caseworky of all 
self-balancing BSTs!

○ 2-3-(4) 
trees

○ AVL trees
○ B-trees
○ Red-black 

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!



Good news, everyone!
● This is one of the fussiest 

and caseworky of all 
self-balancing BSTs!

○ I want you to understand 
the high-level idea of why 
they work, but you are not 
responsible for the 
details.

○ 2-3-(4) 
trees

○ AVL trees
○ B-trees
○ Red-black 

trees
○ Splay trees
○ Tango trees
○ Treaps
○ …and more!



A small part of the Wikipedia article

you do not 
need to 
understand 
this! It's just 
to gawk at













Why red and black?
Maybe 
something 
about ink? I 
have never 
found a 
definitive 
answer



















A red/black tree simulator!
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

You'll use this on HW3!

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

