
7/13 Lecture Agenda
● Announcements

● Part 4-1: Graphs and BFS

● 10 minute break!

● Part 4-2: Dijkstra's Algorithm



Announcements!
● Pre-HW3 due tonight!

● Pre-HW4 out tonight!

● HW3 templates and autograders

● HW2 solutions out soon, so you can study…

● HW1 grading continues, but solutions are out

● This is the last lecture in scope for the midterm!



7/13 Lecture Agenda
● Announcements

● Part 4-1: Graphs and BFS

● 10 minute break!

● Part 4-2: Dijkstra's Algorithm



Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

BFS: Steady And Not Slow



Graph terminology review
● n vertices (AKA nodes)

● m edges

○ There are (n choose 2) 
= n(n-1) / 2 pairs of 
vertices, so there can 
be up to that many 
edges as well!

○ But there could be as 
few as 0 edges…



The exact way a graph is drawn doesn't matter

Try to avoid crossing edges 
when you don't have to, 
though. It's confusing

=



Adjacency list representation

1

3 5

6
2

4

:

1: [3, 5]
2: [4]
3: [1, 5]
4: [2]
5: [1, 3]
6: []

and this could itself be an 
array with these six lists as 
values



Matrix representation (less common)
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:

O(n2) storage space, though 
in practice we have good 
ways of storing "sparse" 
matrices



This graph has three connected components.
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This graph is "connected" (i.e., has one 
connected component).

In a connected graph, 
there is (at least one) 
path between any two 
vertices.
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This graph has three "distinct" cycles.
1-5-3-1

1-6-4-5-1
1-6-4-5-3-1

(and their reverses)

The exact definition of 
cycles, and counting cycles, 
generally won't be too 
important for us in 161.
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So far all our edges have been undirected

1 2

● Directed edges are 
one-way.

● They change the 
game somewhat! 
We'll meet them 
next lecture.

1 2

1 2

An undirected edge can be 
thought of as two directed 
edges.



We'll usually pretend these don't exist

1 2
Allowing multiple edges 
between the same two vertices 
was important for Karger's 
Algorithm, but we generally 
don't think about these 
"multigraphs" when we talk 
about graphs.

1 We also won't be doing this. 
(i.e., no "self-loops")



How many steps apart are two vertices?

1 and 2 are at least three 
steps apart. (and there are 
two equally short paths)
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Let's start with a simpler problem: exploration

Can the yellow vertex 3 
reach all other vertices?

Sure, it looks visually 
obvious here. But imagine 
instead that you have a 
1000000-vertex graph, as 
an adjacency list…
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OK, I got stuck, but that's 
probably all of them!



If we just explore wildly, 
we might miss something!
We need a plan.
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OK, I got stuck, but that's 
probably all of them!



Breadth-First Traversal: The Idea
● Visit all vertices that are directly 

connected to the start vertex.

● Then visit all vertices that are directly 
connected to those vertices.

● And so on…



Breadth-First Traversal ● Create a queue of 
vertices to visit.
○ Initially, it just has 

the starting vertex.

● Repeat the following:
○ Pop off the first 

value in the queue.
○ Follow each of its 

edges (in some 
order), putting the 
vertices you find in 
the queue.
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Breadth-First Traversal
6

Start: [3]

Pop 3: []

Inspect 3: it has edges to 1 and 5. 
Say we go in color order.

Add 1: [1]

Add 5: [1, 5]

Done with 3!

Pop 1: [5]

Inspect 1: it has edges to 3, 5, and 
6.

Add 3: [5, 3]... wait a minute

1

3 5

2

4



Avoiding Revisits!
● Once we've visited a vertex and followed all its 

edges, there is never a reason to go back.
○ If we already found it earlier, our new way of 

finding it is just a slower way of getting there!

● We can maintain a single Boolean variable per 
vertex to indicate whether we've visited it. 



Breadth-First Traversal ● Create a queue of vertices 
to visit.
○ Initially, it just has 

the starting vertex.

● Repeat the following:
○ Pop off the first value 

in the queue.
○ Mark it as VISITED.
○ Follow each of its 

edges (in some 
order), putting the 
vertices you find in 
the queue as long as 
they are not VISITED.
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Breadth-First Traversal
6

Start: [3]

Pop 3: []

Mark 3 as VISITED.

Inspect 3: it has edges to 1 and 5. 

Add 1: [1]

Add 5: [1, 5]

Done with 3!

Pop 1: [5]

Mark 1 as VISITED.

Inspect 1: it has edges to 3, 5, and 6.

Do not add 3, since it is VISITED.

Add 5: [5, 5]… wait a minute

1

3 5

2

4



Avoiding Duplicates In The Queue!
● One idea: before putting something in the queue, 

check to see if it's already there…
○ But it would take time linear in the size of the 

queue to check!
○ OK, then let's make the queue a set.

■ But then we lose the order on the vertices!

● Better idea: think of the Boolean as marking a 
vertex as INSERTED instead of as VISITED.



Breadth-First Traversal ● Create a queue of vertices to 
visit.
○ Initially, it just has the 

starting vertex.
○ Mark the starting vertex 

as INSERTED.

● Repeat the following:
○ Pop off the first value in 

the queue.
○ Follow each of its edges 

(in some order), putting 
the vertices you find in 
the queue (and marking 
them as INSERTED) as 
long as they are not 
INSERTED.
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Breadth-First Traversal Queue: [3]

Inserted: [F, F, T, F, F, F]

Currently processing: None
6
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Breadth-First Traversal Queue: []

Inserted: [F, F, T, F, F, F]

Currently processing: 3
6
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Breadth-First Traversal Queue: []

Inserted: [F, F, T, F, F, F]

Currently processing: 3
● Neighbors: 1, 5
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Breadth-First Traversal Queue: [1]

Inserted: [T, F, T, F, F, F]

Currently processing: 3
● Neighbors: 1, 5
● 1 is not inserted, so set it 

to inserted and add it to 
the queue
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Breadth-First Traversal Queue: [1, 5]

Inserted: [T, F, T, F, T, F]

Currently processing: 3
● Neighbors: 1, 5
● 1 is not inserted, so set it 

to inserted and add it to 
the queue

● 5 is not inserted, so set it 
to inserted and add it to 
the queue

● Done processing 3!
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Breadth-First Traversal Queue: [5]

Inserted: [T, F, T, F, T, F]

Currently processing: 1
● Neighbors: 3, 5, 6
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Breadth-First Traversal Queue: [5]

Inserted: [T, F, T, F, T, F]

Currently processing: 1
● Neighbors: 3, 5, 6
● 3 is inserted, so ignore it.
● 5 is inserted, so ignore it.
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Breadth-First Traversal Queue: [5, 6]

Inserted: [T, F, T, F, T, T]

Currently processing: 1
● Neighbors: 3, 5, 6
● 3 is inserted, so ignore it.
● 5 is inserted, so ignore it.
● 6 is not inserted, so set it 

to inserted and add it to 
the queue

● Done processing 1!
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Breadth-First Traversal Queue: [6]

Inserted: [T, F, T, F, T, T]

Currently processing: 5
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Breadth-First Traversal Queue: [6]

Inserted: [T, F, T, F, T, T]

Currently processing: 5
● Neighbors: 1, 3, 4
● 1 is inserted, so ignore it.
● 3 is inserted, so ignore it.
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Breadth-First Traversal Queue: [6, 4]

Inserted: [T, F, T, T, T, T]

Currently processing: 5
● Neighbors: 1, 3, 4
● 1 is inserted, so ignore it.
● 3 is inserted, so ignore it.
● 4 is not inserted, so set it 

to inserted and add it to 
the queue

● Done processing 5!
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Breadth-First Traversal Queue: [4]

Inserted: [T, F, T, T, T, T]

Currently processing: 6
6
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Breadth-First Traversal Queue: [4]

Inserted: [T, F, T, T, T, T]

Currently processing: 6
● Neighbors: 1, 4
● 1 is inserted, so ignore it.
● 4 is inserted, so ignore it.
● Done processing 6!
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Breadth-First Traversal Queue: []

Inserted: [T, F, T, T, T, T]

Currently processing: 4
● Neighbors: 2, 5, 6
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Breadth-First Traversal Queue: [2]

Inserted: [T, T, T, T, T, T]

Currently processing: 4
● Neighbors: 2, 5, 6
● 2 is not inserted, so set it 

to inserted and add it to 
the queue
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Breadth-First Traversal Queue: [2]

Inserted: [T, T, T, T, T, T]

Currently processing: 4
● Neighbors: 2, 5, 6
● 2 is not inserted, so set it 

to inserted and add it to 
the queue

● 5 is inserted, so ignore it.
● 6 is inserted, so ignore it.
● Done processing 4!
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Breadth-First Traversal Queue: []

Inserted: [T, T, T, T, T, T]

Currently processing: 2
● Neighbors: 4
● 4 is inserted, so ignore it.
● Done processing 2!
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Breadth-First Traversal Queue: []

Inserted: [T, T, T, T, T, T]

Currently processing: 2
● Neighbors: 4
● 4 is inserted, so ignore it.
● Done processing 2!

Queue is empty, so we stop.
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Breadth-First Traversal Queue: []

Inserted: [T, T, T, T, T, T]

Currently processing: 2
● Neighbors: 4
● 4 is inserted, so ignore it.
● Done processing 2!
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3 5

2

4
We reached every 
vertex!



Running Time
● We have to visit each of the n vertices at least once 

to look at its neighbors in the adjacency list.

● We consider each of the m edges at most twice 
(once each in its two vertices' adjacency lists)

● Running time: O(n + m)



Running Time
● We have to visit each of the n vertices at least once 

to look at its neighbors in the adjacency list.

● We consider each of the m edges at most twice 
(once each in its two vertices' adjacency lists)

● Running time: O(n + m)
But m can itself be ϴ(n2).  Why not say O(n2)?



Running Time
● We have to visit each of the n vertices at least once 

to look at its neighbors in the adjacency list.

● We consider each of the m edges at most twice 
(once each in its two vertices' adjacency lists)

● Running time: O(n + m)
But m can itself be ϴ(n2).  Why not say O(n2)? 
True, but this is more informative / flexible the way 
it is. What if the graph is a tree with O(n) edges?



Counting connected components
● Proceed through the vertices in order 1, 2, …, doing 

the following:
○ If a vertex has not been SEEN:

■ Perform a breadth-first traversal on it and 
mark all encountered nodes as SEEN.

■ Increment the count of connected 
components.

○ Otherwise, do nothing.



Counting connected components
6

1

3 5

2

4

1: Mark 1, 3, 5 as 
SEEN.
2. Mark 2, 4 as 
SEEN.
3. Skip (3 is SEEN)
4. Skip (4 is SEEN)
5. Skip (5 is SEEN)
6. Mark 6 as SEEN.

+1
+1

+1



How many steps apart are two vertices?

Oh, right, we wanted to 
solve this! For each other 
vertex, what's the fastest 
way to get there from 1?

How should we approach 
this?
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Shortest Distance
● Do the same BFS traversal, but label each vertex 

with a distance, starting from 0 at the start vertex.

● Distance = 1 + the distance of the vertex that led us 
here.

● What if a vertex already has a distance at the time 
we try to set the distance? Can our new value be 
better?



Shortest Distance
● Do the same BFS traversal, but label each vertex 

with a distance, starting from 0 at the start vertex.

● Distance = 1 + the distance of the vertex that led us 
here.

● What if a vertex already has a distance at the time 
we try to set the distance? Can our new value be 
better? No – let's see why.



Generations of the queue
6

1

3 5

2

4

Start: 3

After fully processing 3, we 
had: 1, 5

After fully processing 1, 5, 
we had: 6, 4

After fully processing 6, 4, 
we had: 2

After fully processing 2: we 
were done



Generations of the queue Start: 3

After fully processing 3, we 
had: 1, 5

After fully processing 1, 5, 
we had: 6, 4

After fully processing 6, 4, 
we had: 2

After fully processing 2: we 
were done
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dist 0 1

2
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Shortest Distances ● Create a queue with just the starting 
vertex.

● Mark the starting vertex as 
INSERTED, and set its distance to 0.

● Set roundNum = 1.
6
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Shortest Distances ● Create a queue with just the starting 
vertex.

● Mark the starting vertex as 
INSERTED, and set its distance to 0.

● Set roundNum = 1.

● Repeat the following:
○ Create a new empty queue.
○ For each value in the old queue, 

in order:
■ Process it as before, putting 

its non-INSERTED 
neighbors in the new queue.

■ Label its distance as 
roundNum.

○ Increment roundNum.
○ New queue = old queue.
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Now you're equipped for



The Divergent Hunger Maze!
● You and your partner have been trapped in a maze with two 

floors. (Think of them as being superimposed, one atop the 
other.)

● You each start in the lower left corner, but on separate floors. 
You are each trying to get to the upper right corner of your 
floor…

● …but you always have to stay within k moves of each other so 
you can exchange awkward quips through the floor/ceiling. 

● You also want to use as few combined moves as possible.



Floor 1 Floor 2
stay within 2 moves

0 moves so far



Floor 1 Floor 2
stay within 2 moves

4 moves so far



Floor 1 Floor 2
stay within 2 moves

5 moves so far



Floor 1 Floor 2
stay within 2 moves

9 moves so far



Floor 1 Floor 2
stay within 2 moves

14 moves so far



Floor 1 Floor 2
stay within 2 moves

16 moves so far



We know how to solve these mazes individually
● Just use BFS!

● But how do we solve them at the same time, given that they 
constrain each other?



An Algorithm
● Each state of this process can be described by the positions 

of the two people.

● Not all states are legal.

● To find the states reachable from a given state, try moving 
each of the people in all possible directions, and also 
checking that they don't get too far apart.

● Run BFS on this combined graph.





More graph terminology!
● A graph is bipartite if it 

can be divided into 
exactly two groups, such 
that every edge goes 
between the groups (i.e., 
no edges within groups).

● This here graph is 
bipartite!



(Why do we care about bipartiteness?)
● This is the basis of 

matching problems. E.g., 
suppose that the vertices 
on the top are people, and 
the vertices on the 
bottom are jobs, and 
edges show who can do 
what. Can we give 
everyone exactly one job?

● We'll return to this in 
Unit 6 (Greed & Flow).



(Why do we care about bipartiteness?)
● This is the basis of 

matching problems. E.g., 
suppose that the vertices 
on the top are people, and 
the vertices on the 
bottom are jobs, and 
edges show who can do 
what. Can we give 
everyone exactly one job?

● We'll return to this in 
Unit 6 (Greed & Flow).



(Why do we care about bipartiteness?)

1 3

4

6

● This is also the basis of 
problems like: You know 
of a bunch of pairs of 
people who won't work 
together. Can you split 
them into two groups 
while honoring all of their 
requests?

2

5

2

4



(Why do we care about bipartiteness?)

1 3

4

6

2

5

2

4

1

3

2

4 6

5

Success!



When is a graph not bipartite?
● This graph looks like it is 

not bipartite.
○ How do we know? 

What if we just picked 
the wrong groups? Can 
we shift stuff around?
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When is a graph not bipartite?
● This graph looks like it is 

not bipartite.
○ How do we know? 

What if we just picked 
the wrong groups? Can 
we shift stuff around?



When is a graph not bipartite?
● This graph looks like it is 

not bipartite.
○ How do we know? What 

if we just picked the 
wrong groups?  Can we 
shift stuff around? No!

● Observe that it has a cycle 
of odd length. No amount 
of rearranging can change 
that!



A graph is bipartite if and only if it has no odd 
cycles.

doomed!



A graph is bipartite if and only if it has no odd 
cycles.



Is this graph bipartite?

Directly looking for odd 
cycles seems pretty 
inefficient!



Is this graph bipartite?

Another way to check: 
Try to color each 
vertex red or blue, 
such that no two 
edges share a color.



Is this graph bipartite?

Another way to check: 
Try to color each 
vertex red or blue, 
such that no two 
edges share a color.

(arbitrary starting point 
and color)



Is this graph bipartite?

Another way to check: 
Try to color each 
vertex red or blue, 
such that no two 
edges share a color.

Its neighbors are forced to 
be blue.



Is this graph bipartite?

Another way to check: 
Try to color each 
vertex red or blue, 
such that no two 
edges share a color.

And neighbors of those vertices are 
forced to be red…



Is this graph bipartite? No!

Another way to check: 
Try to color each 
vertex red or blue, 
such that no two 
edges share a color.

Oh no!



Is this graph bipartite? No!

Another way to check: 
Try to color each 
vertex red or blue, 
such that no two 
edges share a color.

We didn't even make any choices except where 
to start! And that doesn't matter…



Is this graph bipartite? No!

The culprit: a subtle odd 
cycle…
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7/13 Lecture Agenda
● Announcements

● Part 4-1: Graphs and BFS

● 10 minute break!

● Part 4-2: Dijkstra's Algorithm



Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

The i, j, k In Dijkstra Are In Order



What if edges have weights?

We'll give the vertices 
letters instead just so 
there aren't so many 
numbers flying 
around…
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D
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What's the lowest-cost path from C to D? 
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2

1
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3

2

It's not necessarily the 
path with the fewest 
steps…



What's the lowest-cost path from C to D? 

F

A

C E

B

D

1

2

1

2

2
3

2

It's not necessarily the 
path with the fewest 
steps…

…this path with more 
steps is actually cheaper 
overall!



Can we adapt BFS to work?
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Can we adapt BFS to work?

When the weights are 
very small positive 
integers, one hacky 
solution is to add fake 
nodes!
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Can we adapt BFS to work? Kind of…

Now our BFS method 
for finding shortest 
distances works!

F

A

C E

B

D



…but not always

F

A

C E

B

D

999999999

43

1.234
0.0000001

1
77

2









A quick word on the triangle inequality
For pathfinding in the real world, it might seem like we can 
also use the triangle inequality:

a

b

c

a + b ≥ c



A quick word on the triangle inequality
For pathfinding in the real world, it might seem like we can 
also use the triangle inequality:

a

b

c

a + b ≥ c

This would be true in a flat plane, 
but what if path c has a big hill in 
the middle that a and b avoid? Or 
what if one path is muddy?

Even the same path might take 
different amounts of time in 
different directions!













Motion sickness warning

I used one of Mary's examples but 
had some trouble copying it in a 
nice way.

The blame for any shifting around, 
small size changes, cut-off edges, 
etc. rests entirely upon me!

































How can we be sure this works?

We'll prove it together on 
Homework 4!

(Note: that means you're 
not responsible for the 
details for the Midterm)







What about heaps?



What about heaps?
This (well, decrease-key) is 
something we need to do a 
lot in Dijkstra's! 



What about heaps?
This (well, decrease-key) is 
something we need to do a 
lot in Dijkstra's! 

Hmm…



Fibonacci heaps!
Actually pretty simple! Here's how they work:



Fibonacci heaps!
Actually pretty simple! Here's how they work:



Fibonacci heaps!
Actually pretty simple! Here's how they work: j/k they're horrid



For this class, you 
don't need to know 
how they work, just 
the time 
guarantees…





A quick note on amortized analysis
● Accounting sense: this washing machine costs 

$700 but we'll get to use it for 20 years, so $35/yr!

● CS sense: If we say something is O(1) amortized, 
then at any point, the average cost so far per 
operation is O(1). We can't take out a loan!



Example: inserting into an array and resizing
● Say that an array holds n elements.

● Insertion is O(1) since we know where the end of the array 
is.

● But when we run out of room, we have to create a new 
array with capacity 2n, and move all the existing elements 
there before inserting…

● Isn't this "exponential"? How could it be O(1) in any 
sense?



Initial size: 2
Insertion # Cost Average cost so far

1 1 1/1 = 1

2 1 2/2 = 1

3 4 (make new) + 2 (move) + 1 9/3 = 3

4 1 10/4 = 2.5

5 8 (make new) + 4 (move) + 1 23/5 = 4.6

6 1 24/6 = 4

7 1 25/7 = 3.6

8 1 26/8 = 3.3

9 16 (make new) + 8 (move) + 1 51/9 = 5.7



Insertion # Cost Average cost so far

1 1 1/1 = 1 <= 7

2 1 2/2 = 1 <= 7

3 4 (make new) + 2 (move) + 1 9/3 = 3 <= 7

4 1 10/4 = 2.5 <= 7

5 8 (make new) + 4 (move) + 1 23/5 = 4.6 <= 7

6 1 24/6 = 4 <= 7

7 1 25/7 = 3.6 <= 7

8 1 26/8 = 3.3 <= 7

9 16 (make new) + 8 (move) + 1 51/9 = 5.7 <= 7

65537 131072 (make new) + 65536 (move) + 1 458747/65537 = 6.9998 <= 7

No matter how long this goes on, it turns out the average can never exceed 7. So insertion is O(1) amortized.



A little more rigor
Total cost after n inserts:

n * 1 + (2ceil(log n) + 2ceil(log n) - 1 + …) + (2ceil(log n) - 1 + 2ceil(log n)- 2 + 
…)

≤ n + 2ceil(log n) + 1 + 2ceil(log n) ≤ n + 4n + 2n = 7n

On average, this is ≤ 7n / n = 7 



Amortization takeaway
● "O(1) amortized" does not mean that every instance of 

the operation is O(1).

● But it does mean – at any point in the process – that 
the average cost of all such operations so far is O(1).

● Again: no taking out loans! We can't start with one 
O(n) instance and then pay for it with a bunch of O(1) 
instances.

"I'll get the money, I swear!"











What's wrong with negative edge weights?

A

C E

B

D

9

9

-17

1
1

9

For one thing, we 
may stop too early, 
with an answer that 
is too big!

(Here we get 2, but 
the answer is 1)



What's wrong with negative edge weights?

A

C E

B

D

9+17

9+17

-17
+17

1+17
1+17

9+17

A possible fix:

● Add the most negative 
weight to every edge.

● Run the algorithm.
● Subtract off the added 

weights at the end.



What's wrong with negative edge weights?

A

C E

B

D

9+17

9+17

-17
+17

1+17
1+17

9+17

A possible fix:

● Add the most negative 
weight to every edge.

● Run the algorithm.
● Subtract off the added 

weights at the end.

Does this work? No! We still 
end up picking the bad path 
because it has fewer steps.

total 36

total 52



What's wrong with negative edge weights?

A

C E

B

D

-3

1

1

1
1

1

Even worse: negative 
cycles

Now the answer can 
be arbitrarily 
negative – we just go 
around CAEC… over 
and over! So the 
"shortest path" 
problem doesn't 
even make sense.



Next time:

● What if graphs can have 
directed edges?

● And what if we go deep 
rather than broad?


