
7/13 Lecture Agenda
● Announcements

● Part 4-1: Graphs and BFS

● 10 minute break!

● Part 4-2: Dijkstra's Algorithm

Announcements!
● Pre-HW3 due tonight!

● Pre-HW4 out tonight!

● HW3 templates and autograders

● HW2 solutions out soon, so you can study…

● HW1 grading continues, but solutions are out

● This is the last lecture in scope for the midterm!

7/13 Lecture Agenda
● Announcements

● Part 4-1: Graphs and BFS

● 10 minute break!

● Part 4-2: Dijkstra's Algorithm

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

BFS: Steady And Not Slow

Graph terminology review
● n vertices (AKA nodes)

● m edges

○ There are (n choose 2)
= n(n-1) / 2 pairs of
vertices, so there can
be up to that many
edges as well!

○ But there could be as
few as 0 edges…

The exact way a graph is drawn doesn't matter

Try to avoid crossing edges
when you don't have to,
though. It's confusing

=

Adjacency list representation

1

3 5

6
2

4

:

1: [3, 5]
2: [4]
3: [1, 5]
4: [2]
5: [1, 3]
6: []

and this could itself be an
array with these six lists as
values

Matrix representation (less common)

1

3 5

6
2

4

:

O(n2) storage space, though
in practice we have good
ways of storing "sparse"
matrices

This graph has three connected components.

1

3 5

6
2

4

This graph is "connected" (i.e., has one
connected component).

In a connected graph,
there is (at least one)
path between any two
vertices.

6

1

3 5

2

4

This graph has three "distinct" cycles.
1-5-3-1

1-6-4-5-1
1-6-4-5-3-1

(and their reverses)

The exact definition of
cycles, and counting cycles,
generally won't be too
important for us in 161.

6

1

3 5

2

4

So far all our edges have been undirected

1 2

● Directed edges are
one-way.

● They change the
game somewhat!
We'll meet them
next lecture.

1 2

1 2

An undirected edge can be
thought of as two directed
edges.

We'll usually pretend these don't exist

1 2
Allowing multiple edges
between the same two vertices
was important for Karger's
Algorithm, but we generally
don't think about these
"multigraphs" when we talk
about graphs.

1 We also won't be doing this.
(i.e., no "self-loops")

How many steps apart are two vertices?

1 and 2 are at least three
steps apart. (and there are
two equally short paths)

6

1

3 5

2

4

Let's start with a simpler problem: exploration

Can the yellow vertex 3
reach all other vertices?

Sure, it looks visually
obvious here. But imagine
instead that you have a
1000000-vertex graph, as
an adjacency list…

6

1

3 5

2

4

1

6

3 5

2

4

1

6

3 5

2

4

OK, I got stuck, but that's
probably all of them!

If we just explore wildly,
we might miss something!
We need a plan.

1

6

3 5

2

4

OK, I got stuck, but that's
probably all of them!

Breadth-First Traversal: The Idea
● Visit all vertices that are directly

connected to the start vertex.

● Then visit all vertices that are directly
connected to those vertices.

● And so on…

Breadth-First Traversal ● Create a queue of
vertices to visit.
○ Initially, it just has

the starting vertex.

● Repeat the following:
○ Pop off the first

value in the queue.
○ Follow each of its

edges (in some
order), putting the
vertices you find in
the queue.

6

1

3 5

2

4

Breadth-First Traversal
6

Start: [3]

Pop 3: []

Inspect 3: it has edges to 1 and 5.
Say we go in color order.

Add 1: [1]

Add 5: [1, 5]

Done with 3!

Pop 1: [5]

Inspect 1: it has edges to 3, 5, and
6.

Add 3: [5, 3]... wait a minute

1

3 5

2

4

Avoiding Revisits!
● Once we've visited a vertex and followed all its

edges, there is never a reason to go back.
○ If we already found it earlier, our new way of

finding it is just a slower way of getting there!

● We can maintain a single Boolean variable per
vertex to indicate whether we've visited it.

Breadth-First Traversal ● Create a queue of vertices
to visit.
○ Initially, it just has

the starting vertex.

● Repeat the following:
○ Pop off the first value

in the queue.
○ Mark it as VISITED.
○ Follow each of its

edges (in some
order), putting the
vertices you find in
the queue as long as
they are not VISITED.

6

1

3 5

2

4

Breadth-First Traversal
6

Start: [3]

Pop 3: []

Mark 3 as VISITED.

Inspect 3: it has edges to 1 and 5.

Add 1: [1]

Add 5: [1, 5]

Done with 3!

Pop 1: [5]

Mark 1 as VISITED.

Inspect 1: it has edges to 3, 5, and 6.

Do not add 3, since it is VISITED.

Add 5: [5, 5]… wait a minute

1

3 5

2

4

Avoiding Duplicates In The Queue!
● One idea: before putting something in the queue,

check to see if it's already there…
○ But it would take time linear in the size of the

queue to check!
○ OK, then let's make the queue a set.

■ But then we lose the order on the vertices!

● Better idea: think of the Boolean as marking a
vertex as INSERTED instead of as VISITED.

Breadth-First Traversal ● Create a queue of vertices to
visit.
○ Initially, it just has the

starting vertex.
○ Mark the starting vertex

as INSERTED.

● Repeat the following:
○ Pop off the first value in

the queue.
○ Follow each of its edges

(in some order), putting
the vertices you find in
the queue (and marking
them as INSERTED) as
long as they are not
INSERTED.

6

1

3 5

2

4

Breadth-First Traversal Queue: [3]

Inserted: [F, F, T, F, F, F]

Currently processing: None
6

1

3 5

2

4

Breadth-First Traversal Queue: []

Inserted: [F, F, T, F, F, F]

Currently processing: 3
6

1

3 5

2

4

Breadth-First Traversal Queue: []

Inserted: [F, F, T, F, F, F]

Currently processing: 3
● Neighbors: 1, 5

6

1

3 5

2

4

Breadth-First Traversal Queue: [1]

Inserted: [T, F, T, F, F, F]

Currently processing: 3
● Neighbors: 1, 5
● 1 is not inserted, so set it

to inserted and add it to
the queue

6

1

3 5

2

4

Breadth-First Traversal Queue: [1, 5]

Inserted: [T, F, T, F, T, F]

Currently processing: 3
● Neighbors: 1, 5
● 1 is not inserted, so set it

to inserted and add it to
the queue

● 5 is not inserted, so set it
to inserted and add it to
the queue

● Done processing 3!

6

1

3 5

2

4

Breadth-First Traversal Queue: [5]

Inserted: [T, F, T, F, T, F]

Currently processing: 1
● Neighbors: 3, 5, 6

6

1

3 5

2

4

Breadth-First Traversal Queue: [5]

Inserted: [T, F, T, F, T, F]

Currently processing: 1
● Neighbors: 3, 5, 6
● 3 is inserted, so ignore it.
● 5 is inserted, so ignore it.

6

1

3 5

2

4

Breadth-First Traversal Queue: [5, 6]

Inserted: [T, F, T, F, T, T]

Currently processing: 1
● Neighbors: 3, 5, 6
● 3 is inserted, so ignore it.
● 5 is inserted, so ignore it.
● 6 is not inserted, so set it

to inserted and add it to
the queue

● Done processing 1!

6

1

3 5

2

4

Breadth-First Traversal Queue: [6]

Inserted: [T, F, T, F, T, T]

Currently processing: 5
6

1

3 5

2

4

Breadth-First Traversal Queue: [6]

Inserted: [T, F, T, F, T, T]

Currently processing: 5
● Neighbors: 1, 3, 4
● 1 is inserted, so ignore it.
● 3 is inserted, so ignore it.

6

1

3 5

2

4

Breadth-First Traversal Queue: [6, 4]

Inserted: [T, F, T, T, T, T]

Currently processing: 5
● Neighbors: 1, 3, 4
● 1 is inserted, so ignore it.
● 3 is inserted, so ignore it.
● 4 is not inserted, so set it

to inserted and add it to
the queue

● Done processing 5!

6

1

3 5

2

4

Breadth-First Traversal Queue: [4]

Inserted: [T, F, T, T, T, T]

Currently processing: 6
6

1

3 5

2

4

Breadth-First Traversal Queue: [4]

Inserted: [T, F, T, T, T, T]

Currently processing: 6
● Neighbors: 1, 4
● 1 is inserted, so ignore it.
● 4 is inserted, so ignore it.
● Done processing 6!

6

1

3 5

2

4

Breadth-First Traversal Queue: []

Inserted: [T, F, T, T, T, T]

Currently processing: 4
● Neighbors: 2, 5, 6

6

1

3 5

2

4

Breadth-First Traversal Queue: [2]

Inserted: [T, T, T, T, T, T]

Currently processing: 4
● Neighbors: 2, 5, 6
● 2 is not inserted, so set it

to inserted and add it to
the queue

6

1

3 5

2

4

Breadth-First Traversal Queue: [2]

Inserted: [T, T, T, T, T, T]

Currently processing: 4
● Neighbors: 2, 5, 6
● 2 is not inserted, so set it

to inserted and add it to
the queue

● 5 is inserted, so ignore it.
● 6 is inserted, so ignore it.
● Done processing 4!

6

1

3 5

2

4

Breadth-First Traversal Queue: []

Inserted: [T, T, T, T, T, T]

Currently processing: 2
● Neighbors: 4
● 4 is inserted, so ignore it.
● Done processing 2!

6

1

3 5

2

4

Breadth-First Traversal Queue: []

Inserted: [T, T, T, T, T, T]

Currently processing: 2
● Neighbors: 4
● 4 is inserted, so ignore it.
● Done processing 2!

Queue is empty, so we stop.

6

1

3 5

2

4

Breadth-First Traversal Queue: []

Inserted: [T, T, T, T, T, T]

Currently processing: 2
● Neighbors: 4
● 4 is inserted, so ignore it.
● Done processing 2!

6

1

3 5

2

4
We reached every
vertex!

Running Time
● We have to visit each of the n vertices at least once

to look at its neighbors in the adjacency list.

● We consider each of the m edges at most twice
(once each in its two vertices' adjacency lists)

● Running time: O(n + m)

Running Time
● We have to visit each of the n vertices at least once

to look at its neighbors in the adjacency list.

● We consider each of the m edges at most twice
(once each in its two vertices' adjacency lists)

● Running time: O(n + m)
But m can itself be ϴ(n2). Why not say O(n2)?

Running Time
● We have to visit each of the n vertices at least once

to look at its neighbors in the adjacency list.

● We consider each of the m edges at most twice
(once each in its two vertices' adjacency lists)

● Running time: O(n + m)
But m can itself be ϴ(n2). Why not say O(n2)?
True, but this is more informative / flexible the way
it is. What if the graph is a tree with O(n) edges?

Counting connected components
● Proceed through the vertices in order 1, 2, …, doing

the following:
○ If a vertex has not been SEEN:

■ Perform a breadth-first traversal on it and
mark all encountered nodes as SEEN.

■ Increment the count of connected
components.

○ Otherwise, do nothing.

Counting connected components
6

1

3 5

2

4

1: Mark 1, 3, 5 as
SEEN.
2. Mark 2, 4 as
SEEN.
3. Skip (3 is SEEN)
4. Skip (4 is SEEN)
5. Skip (5 is SEEN)
6. Mark 6 as SEEN.

+1
+1

+1

How many steps apart are two vertices?

Oh, right, we wanted to
solve this! For each other
vertex, what's the fastest
way to get there from 1?

How should we approach
this?

6

1

3 5

2

4

Shortest Distance
● Do the same BFS traversal, but label each vertex

with a distance, starting from 0 at the start vertex.

● Distance = 1 + the distance of the vertex that led us
here.

● What if a vertex already has a distance at the time
we try to set the distance? Can our new value be
better?

Shortest Distance
● Do the same BFS traversal, but label each vertex

with a distance, starting from 0 at the start vertex.

● Distance = 1 + the distance of the vertex that led us
here.

● What if a vertex already has a distance at the time
we try to set the distance? Can our new value be
better? No – let's see why.

Generations of the queue
6

1

3 5

2

4

Start: 3

After fully processing 3, we
had: 1, 5

After fully processing 1, 5,
we had: 6, 4

After fully processing 6, 4,
we had: 2

After fully processing 2: we
were done

Generations of the queue Start: 3

After fully processing 3, we
had: 1, 5

After fully processing 1, 5,
we had: 6, 4

After fully processing 6, 4,
we had: 2

After fully processing 2: we
were done

6

1

3 5

2

4
dist 0 1

2
3

Shortest Distances ● Create a queue with just the starting
vertex.

● Mark the starting vertex as
INSERTED, and set its distance to 0.

● Set roundNum = 1.
6

1

3 5

2

4

Shortest Distances ● Create a queue with just the starting
vertex.

● Mark the starting vertex as
INSERTED, and set its distance to 0.

● Set roundNum = 1.

● Repeat the following:
○ Create a new empty queue.
○ For each value in the old queue,

in order:
■ Process it as before, putting

its non-INSERTED
neighbors in the new queue.

■ Label its distance as
roundNum.

○ Increment roundNum.
○ New queue = old queue.

6

1

3 5

2

4
dist 0 1

2
3

Now you're equipped for

The Divergent Hunger Maze!
● You and your partner have been trapped in a maze with two

floors. (Think of them as being superimposed, one atop the
other.)

● You each start in the lower left corner, but on separate floors.
You are each trying to get to the upper right corner of your
floor…

● …but you always have to stay within k moves of each other so
you can exchange awkward quips through the floor/ceiling.

● You also want to use as few combined moves as possible.

Floor 1 Floor 2
stay within 2 moves

0 moves so far

Floor 1 Floor 2
stay within 2 moves

4 moves so far

Floor 1 Floor 2
stay within 2 moves

5 moves so far

Floor 1 Floor 2
stay within 2 moves

9 moves so far

Floor 1 Floor 2
stay within 2 moves

14 moves so far

Floor 1 Floor 2
stay within 2 moves

16 moves so far

We know how to solve these mazes individually
● Just use BFS!

● But how do we solve them at the same time, given that they
constrain each other?

An Algorithm
● Each state of this process can be described by the positions

of the two people.

● Not all states are legal.

● To find the states reachable from a given state, try moving
each of the people in all possible directions, and also
checking that they don't get too far apart.

● Run BFS on this combined graph.

More graph terminology!
● A graph is bipartite if it

can be divided into
exactly two groups, such
that every edge goes
between the groups (i.e.,
no edges within groups).

● This here graph is
bipartite!

(Why do we care about bipartiteness?)
● This is the basis of

matching problems. E.g.,
suppose that the vertices
on the top are people, and
the vertices on the
bottom are jobs, and
edges show who can do
what. Can we give
everyone exactly one job?

● We'll return to this in
Unit 6 (Greed & Flow).

(Why do we care about bipartiteness?)
● This is the basis of

matching problems. E.g.,
suppose that the vertices
on the top are people, and
the vertices on the
bottom are jobs, and
edges show who can do
what. Can we give
everyone exactly one job?

● We'll return to this in
Unit 6 (Greed & Flow).

(Why do we care about bipartiteness?)

1 3

4

6

● This is also the basis of
problems like: You know
of a bunch of pairs of
people who won't work
together. Can you split
them into two groups
while honoring all of their
requests?

2

5

2

4

(Why do we care about bipartiteness?)

1 3

4

6

2

5

2

4

1

3

2

4 6

5

Success!

When is a graph not bipartite?
● This graph looks like it is

not bipartite.
○ How do we know?

What if we just picked
the wrong groups? Can
we shift stuff around?

When is a graph not bipartite?
● This graph looks like it is

not bipartite.
○ How do we know?

What if we just picked
the wrong groups? Can
we shift stuff around?

When is a graph not bipartite?
● This graph looks like it is

not bipartite.
○ How do we know?

What if we just picked
the wrong groups? Can
we shift stuff around?

When is a graph not bipartite?
● This graph looks like it is

not bipartite.
○ How do we know? What

if we just picked the
wrong groups? Can we
shift stuff around? No!

● Observe that it has a cycle
of odd length. No amount
of rearranging can change
that!

A graph is bipartite if and only if it has no odd
cycles.

doomed!

A graph is bipartite if and only if it has no odd
cycles.

Is this graph bipartite?

Directly looking for odd
cycles seems pretty
inefficient!

Is this graph bipartite?

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

Is this graph bipartite?

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

(arbitrary starting point
and color)

Is this graph bipartite?

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

Its neighbors are forced to
be blue.

Is this graph bipartite?

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

And neighbors of those vertices are
forced to be red…

Is this graph bipartite? No!

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

Oh no!

Is this graph bipartite? No!

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

We didn't even make any choices except where
to start! And that doesn't matter…

Is this graph bipartite? No!

The culprit: a subtle odd
cycle…

7/13 Lecture Agenda
● Announcements

● Part 4-1: Graphs and BFS

● 10 minute break!

● Part 4-2: Dijkstra's Algorithm

7/13 Lecture Agenda
● Announcements

● Part 4-1: Graphs and BFS

● 10 minute break!

● Part 4-2: Dijkstra's Algorithm

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

The i, j, k In Dijkstra Are In Order

What if edges have weights?

We'll give the vertices
letters instead just so
there aren't so many
numbers flying
around…

F

A

C E

B

D

1

2

1

2

2
3

2

What's the lowest-cost path from C to D?

F

A

C E

B

D

1

2

1

2

2
3

2

It's not necessarily the
path with the fewest
steps…

What's the lowest-cost path from C to D?

F

A

C E

B

D

1

2

1

2

2
3

2

It's not necessarily the
path with the fewest
steps…

…this path with more
steps is actually cheaper
overall!

Can we adapt BFS to work?

F

A

C E

B

D

1

2

1

2

2
3

2

Can we adapt BFS to work?

When the weights are
very small positive
integers, one hacky
solution is to add fake
nodes!

F

A

C E

B

D

1

2

1

2

2
3

2

Can we adapt BFS to work? Kind of…

Now our BFS method
for finding shortest
distances works!

F

A

C E

B

D

…but not always

F

A

C E

B

D

999999999

43

1.234
0.0000001

1
77

2

A quick word on the triangle inequality
For pathfinding in the real world, it might seem like we can
also use the triangle inequality:

a

b

c

a + b ≥ c

A quick word on the triangle inequality
For pathfinding in the real world, it might seem like we can
also use the triangle inequality:

a

b

c

a + b ≥ c

This would be true in a flat plane,
but what if path c has a big hill in
the middle that a and b avoid? Or
what if one path is muddy?

Even the same path might take
different amounts of time in
different directions!

Motion sickness warning

I used one of Mary's examples but
had some trouble copying it in a
nice way.

The blame for any shifting around,
small size changes, cut-off edges,
etc. rests entirely upon me!

How can we be sure this works?

We'll prove it together on
Homework 4!

(Note: that means you're
not responsible for the
details for the Midterm)

What about heaps?

What about heaps?
This (well, decrease-key) is
something we need to do a
lot in Dijkstra's!

What about heaps?
This (well, decrease-key) is
something we need to do a
lot in Dijkstra's!

Hmm…

Fibonacci heaps!
Actually pretty simple! Here's how they work:

Fibonacci heaps!
Actually pretty simple! Here's how they work:

Fibonacci heaps!
Actually pretty simple! Here's how they work: j/k they're horrid

For this class, you
don't need to know
how they work, just
the time
guarantees…

A quick note on amortized analysis
● Accounting sense: this washing machine costs

$700 but we'll get to use it for 20 years, so $35/yr!

● CS sense: If we say something is O(1) amortized,
then at any point, the average cost so far per
operation is O(1). We can't take out a loan!

Example: inserting into an array and resizing
● Say that an array holds n elements.

● Insertion is O(1) since we know where the end of the array
is.

● But when we run out of room, we have to create a new
array with capacity 2n, and move all the existing elements
there before inserting…

● Isn't this "exponential"? How could it be O(1) in any
sense?

Initial size: 2
Insertion # Cost Average cost so far

1 1 1/1 = 1

2 1 2/2 = 1

3 4 (make new) + 2 (move) + 1 9/3 = 3

4 1 10/4 = 2.5

5 8 (make new) + 4 (move) + 1 23/5 = 4.6

6 1 24/6 = 4

7 1 25/7 = 3.6

8 1 26/8 = 3.3

9 16 (make new) + 8 (move) + 1 51/9 = 5.7

Insertion # Cost Average cost so far

1 1 1/1 = 1 <= 7

2 1 2/2 = 1 <= 7

3 4 (make new) + 2 (move) + 1 9/3 = 3 <= 7

4 1 10/4 = 2.5 <= 7

5 8 (make new) + 4 (move) + 1 23/5 = 4.6 <= 7

6 1 24/6 = 4 <= 7

7 1 25/7 = 3.6 <= 7

8 1 26/8 = 3.3 <= 7

9 16 (make new) + 8 (move) + 1 51/9 = 5.7 <= 7

65537 131072 (make new) + 65536 (move) + 1 458747/65537 = 6.9998 <= 7

No matter how long this goes on, it turns out the average can never exceed 7. So insertion is O(1) amortized.

A little more rigor
Total cost after n inserts:

n * 1 + (2ceil(log n) + 2ceil(log n) - 1 + …) + (2ceil(log n) - 1 + 2ceil(log n)- 2 +
…)

≤ n + 2ceil(log n) + 1 + 2ceil(log n) ≤ n + 4n + 2n = 7n

On average, this is ≤ 7n / n = 7

Amortization takeaway
● "O(1) amortized" does not mean that every instance of

the operation is O(1).

● But it does mean – at any point in the process – that
the average cost of all such operations so far is O(1).

● Again: no taking out loans! We can't start with one
O(n) instance and then pay for it with a bunch of O(1)
instances.

"I'll get the money, I swear!"

What's wrong with negative edge weights?

A

C E

B

D

9

9

-17

1
1

9

For one thing, we
may stop too early,
with an answer that
is too big!

(Here we get 2, but
the answer is 1)

What's wrong with negative edge weights?

A

C E

B

D

9+17

9+17

-17
+17

1+17
1+17

9+17

A possible fix:

● Add the most negative
weight to every edge.

● Run the algorithm.
● Subtract off the added

weights at the end.

What's wrong with negative edge weights?

A

C E

B

D

9+17

9+17

-17
+17

1+17
1+17

9+17

A possible fix:

● Add the most negative
weight to every edge.

● Run the algorithm.
● Subtract off the added

weights at the end.

Does this work? No! We still
end up picking the bad path
because it has fewer steps.

total 36

total 52

What's wrong with negative edge weights?

A

C E

B

D

-3

1

1

1
1

1

Even worse: negative
cycles

Now the answer can
be arbitrarily
negative – we just go
around CAEC… over
and over! So the
"shortest path"
problem doesn't
even make sense.

Next time:

● What if graphs can have
directed edges?

● And what if we go deep
rather than broad?

