1/13 Lecture Agenda

e Announcements

e Part 4-1: Graphs and BFS
e 10 minute break!

e Part 4-2: Dijkstra's Algorithm

Announcements!
. due tonight!

e Pre-HW/ out tonight!

o templates and autograders
o solutions out soon, so you can study...
e HW1 grading continues, but solutions are out

e This is the last lecture in scope for the midterm!

1/13 Lecture Agenda

e Announcements

e Part 4-1: Graphs and BFS
e 10 minute break!

e Part 4-2: Dijkstra's Algorithm

Divide and Conquer
Sorting & Randomization

wo R‘LD @:ﬂ Graph Search

BFS: Steady And Not Slow Dynamic Programing
Greed & Flow

Special Topics

Graph terminology review

e nvertices (AKA nodes)

Q e medges
‘ o There are (n choose 2)

= n(n-1) / 2 pairs of
vertices, so there can
be up to that many
edges as well!

o But there could be as
few as 0 edges...

The exact way a graph is drawn doesn't matter

Try to avoid crossing edges
when you don't have to,
though. It's confusing

Adjacency list representation

0?
o

-

:[3,5]
: [4]
. [1,5]
2]
(1, 3]
;]

and this could itself be an
array with these six lists as
values

O\U‘I.RUJ[\)

Matrix representation (less common)

4
o

O = O = O O

01010
00100
00010
1 0000
01000
0000 0

0(n?) storage space, though
in practice we have good
ways of storing "sparse"
matrices

This graph has three connected components.

o?
o

This graph is "connected” (i.e., has one

connected component).

o

In a connected graph,
there is (at least one)
path between any two
vertices.

This graph has three "distinct” cycles.

1-5-73-1

1-6-/4-5-1
1-6-/4-5--1

(and their reverses)

The exact definition of
cycles, and counting cycles,
generally won't be too
important for us in 161.

So far all our edges have been undirected

o

An undirected edge can be
thought of as two directed
edges.

09 o ¢

Directed edges are
one-way.

They change the
game somewhat!
We'll meet them
next lecture.

We'll usually pretend these don't exist

Allowing multiple edges
between the same two vertices
was important for Karger's
Algorithm, but we generally
don't think about these

"multigraphs" when we talk
about graphs.

@ We also won't be doing this.

(i.e., no "self-loops")

How many steps apart are two vertices?

o

1and 2 are at least three
steps apart. (and there are
two equally short paths)

Let's start with a simpler problem: exploration

o

Can the yellow vertex
reach all other vertices?

Sure, it looks visually
obvious here. But imagine
instead that you have a
1000000-Vvertex graph, as
an adjacency list...

OK, I got stuck, but that's
probably all of them!

OK, I got stuck, but that's
probably all of them!

Q If we just explore wildly,
we might miss something!

We need a plan.

Breadth-First Traversal: The Idea

e Visit all vertices that are directly
connected to the start vertex.

e Then visit all vertices that are directly
connected to those vertices.

e And soon...

Breadth-First Traversal « createaqueueof

vertices to visit.
o Initially, it just has
the starting vertex.

e Repeat the following:
o Pop off the first
value in the queue.

o Follow each of its
edges (in some
order), putting the
vertices you find in
the queue.

Breadth-First Traversal

Start: []
Pop : []

Inspect -: it has edges to 1 and 5.
Say we go in color order.

Add 1: [1]
Add 5: [1, 5]
Done with 7!
Pop 1: [5]

Inspect 1: it has edges to 7, 5, and
6.

Add : [5, 2]... wait a minute

Avoiding Revisits!

e Once we've visited a vertex and followed all its
edges, there is never a reason to go back.
o If we already found it earlier, our new way of
finding it is just a slower way of getting there!

e We can maintain a single Boolean variable per
vertex to indicate whether we've visited it.

Breadth-First Traversal

o

Create a queue of vertices
to visit.

O

Initially, it just has
the starting vertex.

Repeat the following:

O

©)
©)

Pop off the first value
in the queue.

Mark it as VISITED.
Follow each of its
edges (in some
order), putting the
vertices you find in
the queue as long as
they are not VISITED.

Breadth-First Traversal

Start: [7]

Pop :[]

Mark - as VISITED.

Inspect -: it has edges to 1 and 5.
Add 1: [1]

Add 5: (1, 5]

Done with -!

Pop 1: [5]

Mark 1 as VISITED.

Inspect 1: it has edges to , 5, and 6.
Do not add 3, since it is VISITED.

Add 5: [5, 5]... wait a minute

Avoiding Duplicates In The Queue!

e One idea: before putting something in the queue,
check to see if it's already there...
o But it would take time linear in the size of the
queue to check!
o OK, then let's make the queue a set.
m But then we lose the order on the vertices!

e Better idea: think of the Boolean as marking a
vertex as INSERTED instead of as VISITED.

Breadth- Fl rSt Tra\le rsal e Create a queue of vertices to

visit.
o Initially, it just has the
starting vertex.
o Mark the starting vertex
as INSERTED.

e Repeat the following:

o Pop off the first value in
the queue.

o Follow each of its edges
(in some order), putting
the vertices you find in
the queue (and marking
them as INSERTED) as
long as they are not
INSERTED.

Breadth-First Traversal aueue: (31

Inserted: [F, F, T, F, F, F]

Currently processing: None

Breadth-First Traversal aueue:)

Inserted: [F, F, T, F, F, F]

Currently processing: 3

Breadth-First Traversal aueue:)

Inserted: [F, F, T, F, F, F]

Currently processing: 3
e Neighbors: 1,5

Breadth-First Traversal

-

Queue: [1]
Inserted: [T, F, T, F, F, F]

Currently processing: 3
e Neighbors: 1,5
e 1isnotinserted, so set it
to inserted and add it to
the queue

Breadth-First Traversal

o

Queue: (1, 5]
Inserted: [T,F, T, F, T, F]

Currently processing: 3

e Neighbors: 1,5

e 1isnotinserted, so set it
to inserted and add it to
the queue

e 5isnotinserted, so set it
to inserted and add it to
the queue

e Done processing 3!

Breadth-First Traversal aqueue: (5]

Inserted: [T,F, T, F, T, F]

Currently processing: 1
e Neighbors: 3,5,6

Breadth-First Traversal

-

Queue: [5]
Inserted: [T,F, T, F, T, F]

Currently processing: 1
e Neighbors: 3,5,6
e 3isinserted, soignore it.
e 5isinserted, soignore it.

Breadth-First Traversal

-

Queue: [5, 6]
Inserted: [T,F, T, F, T, T]

Currently processing: 1

e Neighbors: 3,5,6

e 3isinserted, soignore it.

e 5isinserted, soignore it.

e 6 isnotinserted, so set it
to inserted and add it to
the queue

e Done processing 1!

Breadth-First Traversal aueue: (6]

Inserted: [T,F, T, F, T, T]

Currently processing: 5

Breadth-First Traversal

-

Queue: [6]
Inserted: [T,F, T, F, T, T]

Currently processing: 5
e Neighbors: 1, 3, 4
e 1isinserted, soignore it.
e 3isinserted, soignore it.

Breadth-First Traversal

o

Queue: [6, 4]
Inserted: [T, F, T, T, T, T]

Currently processing: 5

e Neighbors: 1, 3, 4

e 1isinserted, soignore it.

e 3isinserted, soignore it.

e / isnotinserted, so set it
to inserted and add it to
the queue

e Done processing 5!

Breadth-First Traversal aqueue: (4]

Inserted: [T, F, T, T, T, T]

Currently processing: 6

Breadth-First Traversal aqueue: (4]

Inserted: [T, F, T, T, T, T]

Currently processing: 6
Neighbors: 1, 4

1is inserted, so ignore it.
4 is inserted, so ignore it.
Done processing 6!

Breadth-First Traversal aueue:)

Inserted: [T, F, T, T, T, T]

Currently processing: 4
e Neighbors: 2,5, 6

Breadth-First Traversal

o

Queue: [2]
Inserted: [T, T, T, T, T, T]

Currently processing: 4
e Neighbors: 2,5, 6
e 2isnotinserted, so set it
to inserted and add it to
the queue

Breadth-First Traversal aueue: [2]

Inserted: [T, T, T, T, T, T]

Currently processing: 4

e Neighbors: 2,5,6

e 2isnotinserted, so set it
to inserted and add it to
the queue

e 5isinserted, soignore it.

e 6 isinserted, soignore it.

e Done processing 4!

Breadth-First Traversal aueue:)

Inserted: [T, T, T, T, T, T]

Currently processing: 2
e Neighbors: 4
e / isinserted, soignore it.
e Done processing 2!

Breadth-First Traversal

o

Queue: []
Inserted: [T, T, T, T, T, T]
Currently processing: 2
e Neighbors: 4
e / isinserted, soignore it.
e Done processing 2!

Queue is empty, so we stop.

Breadth-First Traversal aueue:)

Inserted:@‘, T, T, T@

Currently processing: 2

e Neighbors: 4

e / isinserted, soignore it.
e Done processing 2!

We reached every
vertex!

Running Time

e We have to visit each of the n vertices at least once
to look at its neighbors in the adjacency list.

e We consider each of the m edges at most twice
(once each in its two vertices' adjacency lists)

e Running time: O(n + m)

Running Time

e We have to visit each of the n vertices at least once
to look at its neighbors in the adjacency list.

e We consider each of the m edges at most twice
(once each in its two vertices' adjacency lists)

e Running time: O(n + m)
But m can itself be ©(n?). Why not say O(n?)?

Running Time

e We have to visit each of the n vertices at least once
to look at its neighbors in the adjacency list.

e We consider each of the m edges at most twice
(once each in its two vertices' adjacency lists)

e Running time: O(n + m)

But m can itself be 6(n?). Why not say O(n?)?
True, but this is more informative / flexible the way
it is. What if the graph is a tree with O(n) edges?

Counting connected components

e Proceed through the vertices in order 1, 2, ..., doing
the following:
o If avertex has not been SEEN:
m Perform a breadth-first traversal on it and
mark all encountered nodes as SEEN.
m Increment the count of connected
components.
o Otherwise, do nothing.

Counting connected components

6 1: Mark1, 3, 5 as 4
SEEN.

2. Mark 2, 4 as 4+
SEEN.

3. SKkip (3 is SEEN)

/.. SKip (4 is SEEN)
5. SKip (5 is SEEN)
6. Mark 6 as SEEN. +]

How many steps apart are two vertices?

o

Oh, right, we wanted to
solve this! For each other
vertex, what's the fastest
way to get there from 1?

How should we approach
this?

Shortest Distance

e Do the same BFS traversal, but label each vertex
with a distance, starting from 0 at the start vertex.

e Distance =1 + the distance of the vertex that led us
here.

e What if a vertex already has a distance at the time
we try to set the distance? Can our new value be

better?

Shortest Distance

e Do the same BFS traversal, but label each vertex
with a distance, starting from 0 at the start vertex.

e Distance =1 + the distance of the vertex that led us
here.

e What if a vertex already has a distance at the time
we try to set the distance? Can our new value be
better? No — let's see why.

Generations of the queue

o

Start: 3

After fully processing 3, we
had: 1,5

After fully processing 1, 5,
we had: 6, 4

After fully processing 6, 4,
we had: 2

After fully processing 2: we
were done

Generations of the queue

Start: 3

After fully processing 3, we
had: 1,5

After fully processing 1, 5,
we had: 6, 4

After fully processing 6, 4,
we had: 2

After fully processing 2: we
were done

S h 0 rtESt D |Sta nces e Create a queue with just the starting

vertex.
e Mark the starting vertex as
INSERTED, and set its distance to 0.

e SetroundNum = 1.

Shortest Distances

Create a queue with just the starting
vertex.

Mark the starting vertex as
INSERTED, and set its distance to 0.

Set roundNum = 1.

Repeat the following:
o Create a new empty queue.
o For each value in the old queue,
in order:

m Process it as before, putting
its non-INSERTED
neighbors in the new queue.

m Labelits distance as
roundNum.

o Increment roundNum.
o New queue = old queue.

Now you're equipped for

THE

‘ '
- 1“5'

» P el

The Divergent Hunger Maze!

e You and your partner have been trapped in a maze with two
floors. (Think of them as being superimposed, one atop the
other.)

e You each start in the lower left corner, but on separate floors.
You are each trying to get to the upper right corner of your
floor...

e ..butyou always have to stay within k moves of each other so
you can exchange awkward quips through the floor/ceiling.

e You also want to use as few combined moves as possible.

stay within 2 moves

Floor1, Floor 2

stay within 2 moves

Floor1 .ot Floor 2

stay within 2 moves

FloorT . .occotr Floor 2

stay within 2 moves

FloorT oot Floor 2

stay within 2 moves

Floor T ., oeccotr Floor 2

stay within 2 moves

Floor T 6 ovessor Floor 2

We know how to solve these mazes individually

e Just use BFS!

e But how do we solve them at the same time, given that they
constrain each other?

An Algorithm

e Each state of this process can be described by the positions
of the two people.

e Not all states are legal.
e To find the states reachable from a given state, try moving
each of the people in all possible directions, and also

checking that they don't get too far apart.

e Run BFS on this combined graph.

ef solve(fl, f2, k):
n = len(fl) # dimension of maze
start_state = (n-2, 1, n-2, 1) # each in lower left corner
queue = [start_statel
inserted = set(start_state)
num_moves = 0
while queue:
num_moves += 1
new_queue = []
for curr in queue:
for move in ((1, o, @0, @), (0, 1, 0, 0),
(_1I 01 0; O)I (0l _1; 0, 0),
(0, 2, 1, 9), (0, 0, 0, 1),

(0, 0, -1, 0), (0, 0, 9, -1)): FL = [Onmme
new_state = tuple([curr[i] + movel[i] for i in range(4)]) Mﬁ’
if new_state in inserted: W oW

continue # Seen this before. W i,
rl, cl, r2, c2 = new_state "W *]
if (r1, c1) = (1, n-2) and (r2, c2) == (1, n-2): : ,

return num_moves # Done! F2 = [.M.’
if fi1[ri] [cl] = ‘W' or T2[r2] [c2] = *W': W W

continue # Moved into a wall. WW. . LW,
if abs(rl - r2) + abs(cl - c2) > k: Wioo MY,

continue # Too far apart. Wil *]
new_queue.append(new_state) K =2

inserted.add(new_state)
queue = new_queue print(solve(F1, F2, K))
return "IMPOSSIBLE"

(base) Ians-MacBook-Air:Desktop iantullis$ python maze.py
16

(base) Ians-MacBook-Air:Desktop iantullis$ yay![]

More graph terminology!

e A graph is bipartite if it
can be divided into
exactly two groups, such
that every edge goes
between the groups (i.e.,
no edges within groups).

e This here graph is
bipartite!

(Why do we care about bipartiteness?)

e This is the basis of
matching problems. E.g.,
suppose that the vertices
on the top are people, and
the vertices on the
bottom are jobs, and
edges show who can do

what. Can we give
everyone exactly one job?

e We'll return to this in
Unit 6 (Greed & Flow).

(Why do we care about bipartiteness?)

e This is the basis of
matching problems. E.g.,
suppose that the vertices
on the top are people, and
the vertices on the
bottom are jobs, and
edges show who can do
what. Can we give
everyone exactly one job?

e We'll return to this in
Unit 6 (Greed & Flow).

(Why do we care about bipartiteness?)

e This is also the basis of
problems like: You know
of a bunch of pairs of
people who won't work
together. Can you split
them into two groups
while honoring all of their
requests?

3388

(Why do we care about bipartiteness?)

When is a graph not bipartite?

e This graph looks like it is
not bipartite.

o How do we know?
What if we just picked
the wrong groups? Can
we shift stuff around?

When is a graph not bipartite?

e This graph looks like it is
not bipartite.

o How do we know?
What if we just picked
the wrong groups? Can
we shift stuff around?

When is a graph not bipartite?

e This graph looks like it is
not bipartite.

o How do we know?
What if we just picked
the wrong groups? Can
we shift stuff around?

When is a graph not bipartite?

e This graph looks like it is
not bipartite.

o How do we know? What
if we just picked the
wrong groups? Can we
shift stuff around? No!

e Observe that it has a cycle
of odd length. No amount
of rearranging can change
that!

A graph is bipartite if and only if it has no odd
cycles.

?ﬁ doomed!

A graph is bipartite if and only if it has no odd
cycles.

|s this graph bipartite?

Directly looking for odd
cycles seems pretty
inefficient!

|s this graph bipartite?

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

|s this graph bipartite?

(arbitrary starting point
and color)

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

|s this graph bipartite?

Its neighbors are forced to
be blue.

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

|s this graph bipartite?

And neighbors of those vertices are
forced to be red...

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

|s this graph bipartite? No!

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

|s this graph bipartite? No!

Another way to check:
Try to color each
vertex red or blue,
such that no two
edges share a color.

We didn't even make any choices except where
to start! And that doesn't matter...

|s this graph bipartite? No!

The culprit: a subtle odd
cycle...

1/13 Lecture Agenda

e Announcements

e Part 4-1: Graphs and BFS
e 10 minute break!

e Part 4-2: Dijkstra's Algorithm

1/13 Lecture Agenda

e Announcements

e Part 4-1: Graphs and BFS
e 10 minute break!

e Part 4-2: Dijkstra's Algorithm

Divide and Conquer
Sorting & Randomization

wo R‘LD @28 Graph Search

Dynamic Programming
Greed & Flow

Thei, j, k In Dijkstra Are In Order

Special Topics

What if edges have weights?

We'll give the vertices
letters instead just so
there aren't so many
numbers flying
around...

What's the lowest-cost path from C to D?

It's not necessarily the
path with the fewest
steps...

What's the lowest-cost path from C to D?

It's not necessarily the
path with the fewest
steps...

...this path with more
steps is actually cheaper
overall!

Can we adapt BFS to work?

Can we adapt BFS to work?

When the weights are
very small positive
integers, one hacky

solution is to add fake
nodes!

Can we adapt BFS to work? Kind of...

Now our BFS method
for finding shortest
distances works!

..but not always

999999999

Example

e Network routing

e | send information
over the internet,
from my computer
to to all over the
world.

e Each path has a cost
which depends on
link length, traffic,
other costs, etc..

e« How should we send
packets?

UUNET’s North America Internet network

) LIMONTO
D -
- - wasearoas

"':83 :’,
gL
DN@a22a0e3:~ mary$ traceroute -a www.ethz.ch
traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
[ASQ] 10.34.160.2 (10.34.160.2) 38.168 ms 31.272 ms 28.841 ms
[AS@] cwa-vrtr.sunet (10.21.196.28) 33.769 ms 28.245 ms 24.373 ms
[AS32] 171.66.2.229 (171.66.2.229) 24.468 ms 20.115 ms 23.223 ms
[AS32] hpr-svl-rtr-vlan8.sunet (171.64.255.235) 24.644 ms 24.962 ms 1
[AS2152] hpr-svl-hpr2--stan-ge.cenic.net (137.164.27.161) 22.129 ms 4.
[AS2152] hpr-lax-hpr3--svl-hpr3-100ge.cenic.net (137.164.25.73) 12.125
[AS2152] hpr-i2--lax-hpr2-r&e.cenic.net (137.164.26.201) 40.174 ms 38.
[ASQ] .4079.sdn-sw.lasv.net.internet2.edu (162.252.70.28) 46.57
[ASQ] .4079.rtsw.salt.net.internet2.edu (162.252.70.31) 30.424
[ASQ] .4079.sdn-sw.denv.net.internet2.edu (162.252.70.8) 47.454
[ASQ] .4079.rtsw.kans.net.internet2.edu (162.252.70.11) 70.825
[ASQ] .4070.rtsw.chic.net.internet2.edu (198.71.47.206) 77.937
[ASQ] .4079.sdn-sw.ashb.net.internet2.edu (162.252.70.60) 77.68
[ASQ] .4079.rtsw.wash.net.internet2.edu (162.252.70.65) 71.565
[AS21320] internet2-gw.mxl.lon.uk.geant.net (62.40.124.44) 154.926 ms
[AS21320] ae@.mx1l.lon2.uk.geant.net (62.40.98.79) 146.565 ms 146.604 m
[AS21320] ae@.mxl.par.fr.geant.net (62.40.98.77) 153.289 ms 184.995 ms
[AS21320] ae2.mxl.gen.ch.geant.net (62.40.98.153) 160.283 ms 160.104 m
[AS21320] swicel-100ge-0-3-0-1.switch.ch (62.40.124.22) 162.068 ms 160
[AS559] swizhl-100ge-0-1-0-1.switch.ch (130.59.36.94) 165.824 ms 164.2
[AS559] swiez3-100ge-0-1-0-4.switch.ch (130.59.38.109) 164.26%;ms 164.
[AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 164.082 ms 1

Example

“what is the shortest
path from Palo Alto
to [anywhere else]”
using BART, Caltrain,
lightrail, MUNI, bus,
Amtrak, bike,
walking, uber/Iyft.

Edge weights have
something to do with
time, money, hassle.

fED0DCS® P

—_— |
Stations and Transfe
Metro/Subway Staton
Transter Stavon

Trarster Zoe
coqures lasvrg station 10 Yarste

Terminal Station - Metro
B Moo e ruamee

New Rail, Service
and Extensions
High Speed Rail
R San Francses - San Jove - Los hagn

Motro (BART & Commuter Rail)
Rechmond - San lose Deridon.

B
£

oef Cesces
gER
FEe
£ 3%
i
i H

Dowstows.
Baby Ballt - etond 1o Iramsday T
Local Line - etond o Trasbay ferm
0 East By via 2 Tramsby Tobe
Light Rail

teaded s F Statn - Embarcaders
reevated to Daly City - Embarcadest
Lombard - Bayshore

ertended o Eastridge - Santa Torws.
extendd 1 Vasoea lusction - Dows

eoeesso0cs
fr Esreangr
{
i
H
i
i

Bus Rapid Transit (BRT)
Meastain View - Exstridgs Mall

re
B
f

Backaiey Mariea
108 Stroet 460 & Towaseod - Chart
Gaaey: Point Lobss - Tramsbay Term
Von Ness:Fishorman's Wharf - &
Van Ness. Fort Mason - Cty College

68668606686
L3
i
4
£

4411

Rapid Bus (Local/Express)

copyright ©2012 Brian Stokle

SRS S

Dijkstra’s algorithm

o Finds shortest paths from
Gates to everywhere else.

A quick word on the triangle inequality

For pathfinding in the real world, it might seem like we can
also use the triangle inequality:

a+b=c

b

A quick word on the triangle inequality

For pathfinding in the real world, it might seem like we can
also use the triangle inequality:

a+b=c

b

This would be true in a flat plane,

but what if path c has a big hill in

the middle that a and b avoid? Or
c what if one path is muddy?

Even the same path might take
different amounts of time in
different directions!

Dijkstra
intuition

YOINK!

Dijkstra
intuition

YOINK!

Dijkstra FOLIN!
intuition "

T yoINK!

Dijkstra
intuition

< YOINK!

Dijkstra
intuition

This creates a tree!

!

The shortest paths '."
are the lengths i
along this tree. i
!

Motion sickness warning

I used one of Mary's examples but
had some trouble copying it in a
nice way.

The blame for any shifting around,
small size changes, cut-off edges,
etc. rests entirely upon me!

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Initialize d[v] = o0
for all non-starting vertices v,
and d[Gates] =0

e Pick the NOT-SuUre node u with the
smallest estimate d[u].

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Q Current node u

e Pick the NOT-SUTre node u with the

smallest estimate d[u].
o Update all u’s neighbors v:

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-SUIre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as sure.
Repeat

Dijkstra by example es [

How far is a node from Gates?

O y cs161
0 notsune yet Packard has three "/
5 neighbors. Whaf happens
‘ I'm sure when we update them? 1

x = d[v] is my best over-estimate

X " Packard
1

Q Current node u

Pick the NOT-SUre node u with the
smallest estimate d[u]. 25
Update all u’s neighbors v:

o d[v] =min(d[v], d[u] + edgeWeight(u,v)) 20
Mark u as sSure. o
Repeat 25

22 -~

Union

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
. I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-SUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as Sure.
Repeat

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-SUIre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-SUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-SUIre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Packard

Current node u

Pick the NOT-SUIre node u with the

smallest estimate d[u].

Update all u’s neighbors v:
o d[v] = min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.

Repeat

23

Dijkstra by example

How far is a node from Gates?

Q I’m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Pick the NOT-SUIre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
o d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.

Repeat

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-SUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as Sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet
‘ I’'m sure

X x = d[v] is my best over-estimate

Current node u

Pick the NOT-SUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:

Mark u as Sure.
Repeat

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet
‘ I’'m sure

x = d[v] is my best over-estimate

..................

e Pick the NOT-suUre node u with the

smallest estimate d[u].
o Update all u’s neighbors v:

e Markuas Sure.

e Repeat

After all nodes are sure, say that d(Gates, v) = d[v] for all v

Dijkstra’s algorithm

Dijkstra(G,s):

o Set all vertices to
dlvl]=o0 forallvinV

e d[s]=0
o While there are nodes:
e Pick the node u with the smallest estimate d[u].

e Forvin u.neighbors:

e Mark u as sure.
Now d(s, v) = d[v]

Lots of implementation details left un-explained.
We'll get to that!

How can we be sure this works?

We'll prove it together on
Homework 4!

(Note: that means you're
not responsible for the
details for the Midterm)

We need a data structure that:

Just the inner loop:

« Stores unsure vertices v o Pick the node u with the
smallest estimate d[u].

e Update all u’s neighbors v:

e Can find u with minimum d[u] e d[v] < min(d[v], d[u] +

s FandMan¢y =002 | | FEEFTEEOUMMR
e« Mark u as sure.
e Can remove that u

o Keeps track of d[v]

* removeMin(u)
o Can update (decrease) d[v]

We need a data structure that:

Just the inner loop:

e Stores unsure vertices v e Pick the node u with the
smallest estimate d[u].

« Update all u’s neighbors v:

e Can find u with minimum d[u] e d[v] < min(d[v], d[u] +

» Keeps track of d[v]

wfamdMamdy 090909090909 | . EreFRTERERAR
e Mark u as sure.
e Can remove that u

* removeMin(u)
o Can update (decrease) d[v]

* updateKey(v..d) Total running time is big-O of:

ZuEV T(findMin) + [Z T(updateKey)] + T(removeMin)

UEu.neighbors

=n(T(£indMin) + T(removeMin)) + m T(updateKey)

What about heaps?

Operation find-max | delete-max ~ insert | increase-key meld
Binary!8! e(1) A(log n) O(log n) | O(log n) A(n)
Leftist e(1) ©(log n) ©(log n) O(log n) O(log n)
Binomial(®l[®] o(1) ©(log n) (1)l ©(log n) O(log n)i
Fibonaccil®l'0 | o(1) O(log n)i®! | ©(1) o(1)Mb! o(1)
Pairing!'"! o(1) O(log n)l°1 | ©(1) o(log n)Plldl | o(1)
Brodall'4l€] e(1) O(log n) o(1) e(1) o(1)
Rank-pairing('®! | ©(1) O(log n)i! | ©(1) (1) o(1)
Strict Fibonaccil'”l ©(1) O(log n) e(1) e(1) o(1)
2-3 heap!'®! O(log n) | O(log n)[®] | O(log n)[®1 | ©(1) 2

This (well, decrease-key) is

What abOUt heapS? something we need to do a

lot in Dijkstra's!

Operation find-max | delete-max | insert
Binary!8! e(1) A(log n) O(log n)
Leftist e(1) O©(log n) O(log n)
Binomial(®l[®] o(1) ©(log n) (1)l
Fibonaccil®l'0 | o(1) O(log n)i®! | ©(1)
Pairing!'"! o(1) O(log n)l°1 | ©(1)
Brodall4l€] e(1) O(log n) e(1)
Rank-pairingl'®l | ©(1) O(log n)i! | ©(1)
Strict Fibonaccil'”l ©(1) O(log n) e(1)
2-3 heap!'@! O(log n) | O(log n)[®] | O(log n)

What about heaps?

Operation find-max delete-max

Binary!8! e(1)
Leftist e(1)
Binomial!®!®! o(1)

This (well, decrease-key) is
something we need to do a
lot in Dijkstra's!

insert | increase-key meld
O(log n) O(log n) e(n)
©(log n) | O(log n) O(log n)

Fibonaccil®l'0 | o(1)

Hmm... Pairing
Brodall'4le] o(1)
Rank-pairing!'®! | ©(1)
Strict Fibonaccil'”l | ©(1)

2-3 heap!'@ O(log n)

O(log n)!!

(
(
Q| O(log n) O(log n)(!
(
(

O(log n)l®!

O(log n)!°!

o(1) o(1)M®! o(1)

o6 W
o(1) o(1) o(1)

o(1) o(1)! o(1)

o(1) o(1) o(1)

O(log)il ©(1) 7

Fibonacci heaps!

Actually pretty simple! Here's how they work:

Fibonacci heaps!

Actually pretty simple! Here's how they work:

Fibonacci heaps!
Aetually-prettysimplel Here'show-theywetk: j/k they're horrid

Operation extract minimum (same as delete minimum) operates in three phases. First we take the root containing the minimum element and remove
it. Its children will become roots of new trees. If the number of children was d, it takes time O(d) to process all new roots and the potential increases by
d-1. Therefore, the amortized running time of this phase is O(d) = O(log n).

However to complete the extract minimum operation, we need to update the pointer to the root with minimum key. Unfortunately there may be up to n
roots we need to check. In the second phase we therefore decrease the number of roots by successively linking together roots of the same degree.
When two roots u and v have the same degree, we make one of them a child of the other so that the one with the smaller key remains the root. Its
degree will increase by one. This is repeated until every root has a different degree. To find trees of the same degree efficiently we use an array of
length O(log n) in which we keep a pointer to one root of each degree. When a second root is found of the same degree, the two are linked and the
array is updated. The actual running time is O(log n + m) where m is the number of roots at the beginning of the second phase. At the end we will have
at most O(log n) roots (because each has a different degree). Therefore, the difference in the potential function from before this phase to after it is:
O(log n) — m, and the amortized running time is then at most O(log n + m) + ¢(O(log n) — m). With a sufficiently large choice of c, this simplifies to O(log
n).

For this class, you
® : ® @ E ... don't need to know
® oJolog how they work, just
OO the time

Figure 3. Fibonacci &

Figure 2. Fibonacci heap &~ heap from Figure 1 Figure 4. Fibonacci heap from Figure 1~ =7

from Figure 1 after first phase after extract minimum after decreasing key of node 9 to 0. This g u a ra n te e S. ..
of extract minimum. Node is completed. First, node as well as its two marked ancestors

with key 1 (the minimum) was nodes 3 and 6 are are cut from the tree rooted at 1 and placed

deleted and its children were linked together. Then as new roots.

added as separate trees. the result is linked with

tree rooted at node 2.
Finally, the new
minimum is found.

Say we use a Fibonacci Heap

« T(findMin) = O(1) (amortized time*)
e T(removeMin) = O(log(n)) (amortized time*)
 T(updateKey) = O(1) (amortized time*)

e See CS166 for more!

e Running time of Dijkstra
= O(n(T(findMin) + T(removeMin)) + m T(updateKey))

But a few of the d may take longer than O(log(n)) and some may take less time..

A quick note on amortized analysis

e Accounting sense: this washing machine costs
S700 but we'll get to use it for 20 years, so $35/vyr!

DETECT LANGUAGE FRENCH ENGLI v Pimg ENGLISH FRENCH

a mort X to death &

Y 0 6/ 5,000 v o)

e CS sense: If we say something is O(1) amortized,
then at any point, the average cost so far per
operation is O(1). We can't take out a loan!

Example: inserting into an array and resizing

e Say that an array holds n elements.

e Insertion is O(1) since we know where the end of the array
is.

e But when we run out of room, we have to create a new
array with capacity 2n, and move all the existing elements
there before inserting...

e Isn't this "exponential"? How could it be O(1) in any
sense?

Initial size: 2

Insertion #

Cost

Average cost so far

—

1

1/1=1

T

2/2=1

4 (make new) + 2 (move) + 1

9/3=3

T

10/4 = 2.5

8 (make new) + 4 (move) + 1

23/5=4.6

T

24/6 = 4

T

25/7 = 3.6

T

26/8 =3.3

O 0| N o O DWW

16 (make new) + 8 (move) + 1

o1/9 =5.7

Insertion # | Cost Average cost so far
1 T 1/1=1<=7

2 T 2/2=1<=7

3 4 (maoke new) + 2 (move) + 1 ?/3=3<=7

4 T 10/4=25<=7

S 8 (make new) + 4 (move) + 1 23/5=4.6<=7

6 1 24/6=4<=7

7 T 25/7=3.6<=7

8 T 26/8=33<=7

9 16 (make new) + 8 (move) + 1 o1/9=5.7<=7

65537 131072 (make new) + 65536 (move) + 1 458747/65537 = 69998 <=7

No matter how long this goes on, it turns out the average can never exceed 7. So insertion is O(1) amortized.

A little more rigor

Total cost after n inserts:

n*1i+ (zceil(log n) 4 2cei1(log n)-1 4) + (2ceil(log n)-1 4 2ceil(log n)-2 4

)

<n-+ zceil(log n)+1 4 zceil(log n) <n-+ 4n + 2N = 7N

On average, thisis<7n/n=7

Amortization takeaway

e "O(1) amortized" does not mean that every instance of
the operation is O(1).

e But it does mean — at any point in the process — that
the average cost of all such operations so far is O(1).

e Again: no taking out loans! We can't start with one
O(n) instance and then pay for it with a bunch of O(1)

instances.
"I'll get the money, I swear!"

Say we use a Fibonacci Heap

« T(findMin) = O(1) (amortized time*)
e T(removeMin) = O(log(n)) (amortized time*)
 T(updateKey) = O(1) (amortized time*)

e See CS166 for more!

e Running time of Dijkstra
= O(n(T(findMin) + T(removeMin)) + m T(updateKey))

But a few of the d may take longer than O(log(n)) and some may take less time..

Time(ms)

In practice

Shortest paths on a graph with n vertices and about 5n edges Dijkstra using a Python

BFS P list to keep track of
140 1 .. Dijkstra with an array /./' = vertices has quadratic
120 - Dijkstra with a heap 7 runtime.
»F
100 - 7
. d
m p ‘/ .o .
g Dijkstra using a heap
60 - /-/ looks a bit more linear
o (actually nlog(n))
40 1 ~
>
I
20 1 i ;
" BFS is really fast by
el s el . 3
0 -—““’ ' ' ' ' ' ' i comparison! But it
0 200 400 600 800 1000 1200 1400 1600 doesn’t work on

n weighted graphs.

Dijkstra is used in practice

o eg, OSPF (Open Shortest Path First), a routing
protocol for IP networks, uses Dijkstra.

But there are
some things it’s
not so good at.

Dijkstra Drawbacks

 Needs non-negative edge weights.

e If the weights change, we need to re-run the
whole thing.
« in OSPF, a vertex broadcasts any changes to the

network, and then every vertex re-runs Dijkstra’s
algorithm from scratch.

What's wrong with negative edge weights?

For one thing, we
may stop too early,
with an answer that
is too big!

(Here we get 2, but
the answer is 1)

What's wrong with negative edge weights?

A possible fix:

e Add the most negative
weight to every edge.

e Run the algorithm.

e Subtract off the added
weights at the end.

What's wrong with negative edge weights?

A possible fix:

e Add the most negative
weight to every edge.

e Run the algorithm.

e Subtract off the added
weights at the end.

Does this work? No! We still

end up picking the bad path
because it has fewer steps.

What's wrong with negative edge weights?

Even worse: negative
cycles

Now the answer can
be arbitrarily
negative — we just go
around CAEC... over
and over! So the
""'shortest path"
problem doesn't
even make sense.

Next time:

o What if graphs can have
directed edges?

e And what if we go deep
rather than broad?

