
7/15 Lecture Agenda
● Announcements

● Part 4-3: DFS and Topological Sort

● 10 minute break!

● Part 4-4: Kosaraju's Algorithm

Announcements!
● HW3 due Sunday

● HW4 out Sunday, not due until well
after midterm (and not required for
midterm)

● Pre-HW4 due the day after the
midterm (and also not required)

● Next week: no new material! A
chance to catch up!
○ M: Problem Session 4
○ W: Midterm Review
○ F: Midterm

In HW4 Problem 6, you'll help
large gators navigate networks of
sometimes-too-small channels!

7/15 Lecture Agenda
● Announcements

● Part 4-3: DFS and Topological Sort

● 10 minute break!

● Part 4-4: Kosaraju's Algorithm

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

DFS and TopoSort

aside: the actual is great

BFS vs. DFS thinking

Recap: BFS
● Queue-based

○ (In this class, you can
just think of a queue as
being a linked list)

● Visit all nodes 1 step away
from the start, then all
nodes 2 steps away from the
start…

6

1

3 5

2

4
dist 0 1

2
3

But what about: DFS
● Stack-based

● Kinda like in BFS, keep
track of which nodes have
been visited.

● Keep visiting an unvisited
neighbor (breaking ties by,
e.g., node number)

● Backtrack whenever we are
out of options.

6

1

3 5

2

4

6

1

3 5

2

4

● Start at 4.

● Mark 4 as visited (but
not done).

● Check 4's neighbors: 2,
5, 6.

● All are unvisited, so go
with the numerically
earliest.

1 2 3 4 5 6Status:Let's try!

6

1

3 5

2

4

● Now at 2.

● Mark 2 as visited (but
not done).

● Check 2's neighbors: 4.
But 4 is visited.

1 2 3 4 5 6Status:

6

1

3 5

2

4

● Nothing else to do at 2!
Mark it as done.

● Backtrack one step to
4. (Imagine we have a
piece of string leading
back to where we were.
In code terms, this
could be a function call
stack or an explicit
stack.)

1 2 3 4 5 6Status:

A quick tragic tale from Cal
CS61A (like our 106A)

● Recursion is beautiful!
● Do everything with a

bunch of recursive
calls!

A quick tragic tale from Cal
CS61A (like our 106A)

● Recursion is beautiful!
● Do everything with a

bunch of recursive
calls!

CS61B (like our 106B)

● First assignment was a
Photoshop app with floodfill

● Recursive calls cause a stack
overflow

● Oh cool so I guess this is the
real world

A not-ideal way of handling this

A not-ideal way of handling this
It's usually better to rewrite recursive
code to be iterative!

Or at least don't rely too heavily on the
stack of function calls. You can store a
stack representation in the much roomier
heap! (the system part, not the data
structure)

6

1

3 5

2

4

● Nothing else to do at 2!
Mark it as done.

● Backtrack one step to
4. (Imagine we have a
piece of string leading
back to where we were.
In code terms, this
could be a function call
stack or an explicit
stack.)

1 2 3 4 5 6Status:Where were we…

6

1

3 5

2

4

● Now at 4 again.

● Go to the next
highest-numbered
unvisited neighbor:
that's 5!

1 2 3 4 5 6Status:

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Now at 5.

● Mark 5 as visited (but
not done).

● Check 5's neighbors:
1, 3, 4. Go to the
lowest-numbered
unvisited one: 1.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Now at 5.

● Mark 5 as visited (but
not done).

● Check 5's neighbors:
1, 3, 4. Go to the
lowest-numbered
unvisited one: 1.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Now at 1.

● Mark 1 as visited (but
not done).

● Check 1's neighbors:
3, 5. Go to the
lowest-numbered
unvisited one: 3.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Now at 3.

● Mark 3 as visited (but
not done).

● Check 3's neighbors:
1, 5. But both are
visited.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Nothing else to do at 3!
Mark it as done.

● Backtrack one step to 1.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Nothing else to do at 1!
Mark it as done.

● Backtrack one step to
5.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Nothing else to do at 5!
Mark it as done.

● Backtrack one step to
4.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Now at 4 (again).

● Visit the
lowest-numbered
unvisited neighbor:
that's 6.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Now at 6.

● Mark 6 as visited (but
not done).

● Check 6's neighbors: 4.
But 4 is visited.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Nothing else to do at 6,
so mark it done.

● Backtrack 1 step to 4.

6

1

3 5

2

4

1 2 3 4 5 6Status:

● Now at 4 (again!)

● Nothing else to do at 4,
so mark it as done.

● Nowhere to backtrack
to, so we are finished!

6

1

3 5

2

4

Like in BFS, we considered
each edge at most twice –
once on the way "out",
and once on the way
"back".

Also like in BFS, we had to
look at all the neighbors of
each node. (Once we have
done this once, we can
advance through the list
instead of looking again)

So: O(n + m), like BFS.

Running time

6

1

3 5

2

4

Sure, let's try it!

Now what if we want to find distances?

0

6

1

3 5

2

4

Sure, let's try it!

Now what if we want to find distances?

0

1

6

1

3 5

2

4

Sure, let's try it!

Now what if we want to find distances?

0

1

1

6

1

3 5

2

4

Sure, let's try it!

Now what if we want to find distances?

0

1

1

2

This is looking great!
Call the investors.

6

1

3 5

2

4

Uh oh - this is wrong!

0

1

1

2

Keep the investors busy
and call my private jet!

3

6

1

3 5

2

4

What happened?

0

1

1

2

3

DFS charges ahead! It
might never take the
true shortest path to
(one or more) nodes.

It is not suitable for
finding shortest paths.

DFS looks broken! Why not just BFS?
● DFS can traverse / find all

nodes and connected
components, but so can BFS!

● DFS can solve mazes, but so
can BFS!
○ though BFS will do better

on some mazes than DFS,
and vice versa…

1

1
Suppose nodes to the right beat nodes above in ties.
Which method is worse on each of these mazes?

9

1

7

2 3

6

4

5
8

1 2 3 4

5

DFS
is
worse

BFS
is
worse

5

1

3

2 4

5

1

3

2 4 6

8
7

BFS DFS

Strengths of DFS
● We often want to traverse trees in a depth-first way. For

example, an inorder traversal of a binary search tree is a
DFS with some extra printing.

● Some algorithms, like topological sort (coming in the
second half!), rely on DFS and its stack-based operation.

● DFS is also one way to solve a classic problem called
2-SAT (possibly coming on HW4)

It's Time For…

One Direction

It's Time For…

Directed Edges

New phenomena!

6

1

3 5

2

4

7

8

Node 7 is a source since
it has no incoming
edges.
● Note: does not imply

it can reach every
other node.

Node 6 is a sink since it
has no outgoing edges.
● Note: does not imply

every other node can
reach it.

(Node 8 is trivially a
source and a sink.)

Similar representations

6

1

3 5

2

4

7

8

1: [5, 6]

2: [4]

3: [1]

4: [2, 5]

5: [3]

6: []

7: [2]

8: []

The
adjacency
list is not
symmetric
now!

Similar representations

6

1

3 5

2

4

7

8

The adjacency
matrix is not
symmetric now!

Now cycles are directed

6

1

3 5

2

4

7

8

A dag is a directed acyclic graph.

6

1

3 5

2

4

7

8

A dag is a directed acyclic graph.

6

1

3 5

2

4

7

8 Wait, isn't this a
cycle?

A dag is a directed acyclic graph.

6

1

3 5

2

4

7

8 Wait, isn't this a
cycle?

Nope, it's not a
directed cycle, so it
doesn't count as
one in directed
graph land!

This had better be a
DAG!!!

What order do we
install these in?

What order do we
install these in?

Answer: use a
 package manager

Indy's schedule advice
● Take CS229 ASAP
● Side hustle
● Drop out
● FIRE (Financial

Independence, Retire
Early)

● Possibly realize – say,
while on the toilet one
day in your mansion in
Atherton – that your life
is empty

Let's pretend
people take the
prereqs
seriously.
In what order
should we take
these classes?

229

106B

109 Math
51

103

106A

161

221

229

106B

109 Math
51

103

106A

161

221

CS229 is not actually a
prereq for itself, but it
can feel that way!

229

106B

109 Math
51

103

106A

161

221
Hopefully this is
actually a DAG!

● I think there's like
a 10% chance that
there is a cycle
among the AI
classes at
Stanford…

229

106B

109 Math
51

103

106A

161

221
What order should we
take the classes in?

Let's do a DFS, but keep
track of when we start
and finish each node.
("Visited" and "Done"
in our old terminology)

229

106B

109 Math
51

103

106A

161

221
We'll pick an arbitrary
start point for our
search.

(That does NOT
necessarily mean we
are taking this class
first!)

229

106B

109 Math
51

103

106A

161

221

1

light blue =
started

229

106B

109 Math
51

103

106A

161

221

1

light blue =
started

2

229

106B

109 Math
51

103

106A

161

221

1

light blue =
started

dark blue =
done

2 3

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

Restart
somewhere
arbitrary that
isn't done. (We
might have a
tiebreaker rule,
or maybe not) 5

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6

Let's say we
break ties by
course
number
(though it
turns out not
to matter)

7

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6
7

8

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6
7

8

9

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6
7

8

9 10

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6
7

8 11

9 10

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6
7 12

8 11

9 10

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5

6 13
7 12

8 11

9 10

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5 14

6 13
7 12

8 11

9 10

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5 14

6 13
7 12

8 11

9 10

15

229

106B

109 Math
51

103

106A

161

221

1 4

light blue =
started

dark blue =
done

2 3

5 14

6 13
7 12

8 11

9 10

15 16

229

106B

109 Math
51

103

106A

161

221

1 4

How can we use these
numbers to find a valid order
in which to take the classes?

2 3

5 14

6 13
7 12

8 11

9 10

15 16

229

106B

109 Math
51

103

106A

161

221

1 4

2 3

5 14

6 13
7 12

8 11

9 10

15 16

Topological sort!
● First, do a DFS.
● Then take the

finishing times in
reverse order.

229

106B

109 Math
51

103

106A

161

221

1 4

2 3

5 14

6 13
7 12

8 11

9 10

15 16

Topological sort!
● First, do a DFS.
● Take the finishing

times in reverse
order.

229

106B
109

Math
51

103

106A

161

221

Topological sort!
When arranged in this
left-right order, no
arrow goes
backwards!

229

106B

109 Math
51

103

106A

161

221

1 4

2 3

5 14

6 13
7 12

8 11

9 10

15 16

Topological sort!
There might be more
than one topological
sort of a DAG.

(e.g., we could take
106A before Math 51)

229

106B

109 Math
51

103

106A

161

221

1 4

2 3

5 14

6 13
7 12

8 11

9 10

15 16

Why does this work?
If node A finishes before
node B, there cannot be
a path from A to B.

(We don't say a node is
done until we've fully
explored all its
descendants.)

229

106B

109 Math
51

103

106A

161

221

1 4

2 3

5 14

6 13
7 12

8 11

9 10

15 16

Why does this work?
Suppose we had 221
before 109 in our final
order (of reversed finish
times).

But then 109 finished
before 221…

But 109 had to fully
explore 221 first!

229

106B

109 Math
51

103

106A

161

221

1

What if we'd
made different
choices?

Here I'll do different
random starts, and
break ties in reverse
order

229

106B

109 Math
51

103

106A

161

221

1 8

What if we'd
made different
choices?

2 3

4 5

6 7

9 10

11 14

12 13

15 16

229

106B

109 Math
51

103

106A

161

221

1 8

Try 1: Math 51, 106A, 106B,
103, 109, 229, 161, 221

Try 2: 106A, 106B, 103, Math
51, 109, 161, 221, 229

2 3

4 5

6 7

9 10

11 14

12 13

15 16

Topological sort debrief
● Only makes sense for directed acyclic graphs

(DAGs)

● Same running time as DFS: O(n + m)
○ We don't need to sort the list of finishing times at the

end. We can just record nodes as they finish.

● Sensitive to start location and tiebreak rules, but
can never give a wrong answer (e.g. where you take a
class before its prereq)

7/15 Lecture Agenda
● Announcements

● Part 4-3: DFS and Topological Sort

● 10 minute break!

● Part 4-4: Kosaraju's Algorithm

7/15 Lecture Agenda
● Announcements

● Part 4-3: DFS and Topological Sort

● 10 minute break!

● Part 4-4: Kosaraju's Algorithm

Divide and Conquer
Sorting & Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Kosaraju's Marvelous SCC-finder

What do connected components even mean now?

6

1

3 5

2

4

7

8

Weakly connected components

6

1

3 5

2

4

7

Pretend the edges are
undirected, then use our
previous definition of
"connected
component".

This isn't really important
for us – it's just so the
next name makes sense…

8

6

1

3 5

2

4

7

8

Strongly connected components (SCC)
An SCC is a set of nodes
in a directed graph, each
of which is reachable
from all of the others in
the SCC.

How many distinct
SCCs are there here?

6

1

3 5

2

4

7

8

Strongly connected components (SCC)
An SCC is a maximal set
of nodes in a directed
graph, each of which is
reachable from all of the
others.

How many distinct
SCCs are there here?
Five!

6

1

3 5

2

4

7

Strongly connected components (SCC)
An SCC is a set of nodes
in a directed graph, each
of which is reachable
from all of the others.

How about now?

8

6

1

3 5

2

4

7

Strongly connected components (SCC)
An SCC is a set of nodes
in a directed graph, each
of which is reachable
from all of the others.

How about now?
Two!

8

6

1

3 5

2

4

7

Strongly connected components (SCC)
An SCC is a set of nodes
in a directed graph, each
of which is reachable
from all of the others.

How about now?
Two!

To ponder: is a cycle required to
demonstrate this?

8

Why care about SCCs?
● They break a graph down into little self-contained

universes. This matters a lot in, e.g., social networks.

6
1

3 5

2

4

7

8

1 3 5

2 4

7

68

Why care about SCCs?
● They break a graph down into little self-contained

universes. This matters a lot in, e.g., social networks.

6
1

3 5

2

4

7

8

1 3 5

2 4

7

68

These can't be
collapsed further
into SCCs.

How do we find SCCs?
● One idea is to do one DFS starting from every node, then

do something with those results…

Too much work! There
has to be a better way…

Kosaraju's Algorithm

● Named for S. Rao
Kosaraju, a prof at Johns
Hopkins

● Finds SCCs in a directed
graph O(n+m) time

● That's not a typo!

