
7/20: Midterm Review!



Divide and Conquer
Sorting & 
Randomization
Data Structures
Graph Search
Dynamic Programming
Greed & Flow

Special Topics

Midterm Review



Format
● 85 minutes

● Work briskly – there's not a lot to write, but there are 
many small separate problems to think about
○ Don't get so hung up on one that you don't attempt others!
○ General Stanford CS advice: don't leave anything blank

● The exam has a lot of opportunities to show depth of 
understanding. It's challenging but not intended to be 
gratuitously so, and I'll take the challenge into 
account grade-wise.



Lecture 1 Key Points
● The point of big-O notation (and big-Ω, and big-ϴ) is 

to suppress multiplicative constants and lower-order 
terms.

● Know how to show something is – or isn't – big-O of 
something else. (like HW1 Question 1)

● Example: Show that nn is not ϴ(n!)



Show: nn is not ϴ(n!)

● f(n) is ϴ(g(n)) if and only if it is both O(g(n)) and Ω
(g(n)). So here it suffices to show that one of these is 
false.

● Compare terms to get an idea:
○ 99 = 9 * 9 * 9 * 9 * 9 * 9 * 9 * 9 * 9
○ 9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

● It sure looks like nn dominates n! term-by-term, and 
is not O(n!), but we need to show this formally…



Show: nn is not O(n!)



Lecture 2 Key Points
● Understand the cases of the Master Theorem (HW1): relationship between 

proliferation of the number of subproblems and shrinking of the size of 
individual subproblems. Does one of these factors win, making the tree 
top-heavy or bottom-heavy? Or do these factors balance out?

● Use the Master Theorem to understand why Karatsuba's and Strassen's (from 
HW1) algorithms are asymptotically faster than naive integer / matrix 
multiplication.



Lecture 2 Key Points
● Understand how MergeSort works, and in particular the Merge step. 

Example: Does this implementation of the Merge step lead to 
MergeSort being stable? (NOTE: you would not have to read a specific 
language on an exam)



A problem – if these two 
elements are tied, it will 
actually take the one from 
right_list! A stable sort 
should keep tied elements 
in their original order.

We'd need to use <= to 
make this stable.



Lecture 3 Key Points
● Understand how k-Select and Partition work, and the 

parts of the recurrence in k-Select.

                T(n) ≤ T(n/5) + T(7n/10) + O(n)
What do these three 
parts come from?



Lecture 3 Key Points
● Understand how k-Select and Partition work, and the 

parts of the recurrence in k-Select.

                T(n) ≤ T(n/5) + T(7n/10) + O(n)
recursive call to 
k-Select to find the 
median of medians

recursive call to 
k-Select on the part 
of the list we know 
has the element we 
want

cost of finding the 
medians of all the 
little groups of 5, and 
of Partitioning 
around the estimated 
median of medians



Lecture 3 Key Points
● Understand how k-Select and Partition work, and the 

parts of the recurrence in k-Select.

                T(n) ≤ T(n/5) + T(7n/10) + O(n)
recursive call to 
k-Select to find the 
median of medians

recursive call to 
k-Select on the part 
of the list we know 
has the element we 
want

cost of finding the 
medians of all the 
little groups of 5, and 
of Partitioning 
around the estimated 
median of mediansKnow how to show this is 

O(n) using the 
substitution method.



Lecture 3 Key Points
● Understand RadixSort well enough to be able to walk through a 

simple example.

● Know that RadixSort isn't really "O(n)" when the number of 
digits d is itself O(log n).
○ e.g., for b = 2, d = 3, the only possible values are 000, 001, 

010, 011, 100, 101, 110, 111. If we sort a list of distinct values, 
then 3 = d = log2n = log223 = 3.

● Understand the idea that a comparison-based sort method 
can't asymptotically beat n log n, because we have O(n!) leaves 
into a tree of decisions (one per sorting order), and the depth 
ends up having to be Ω(n log n).



Lecture 4 Key Points
● When analyzing randomized algorithms, the expectation is over 

the randomness of the algorithm's choices, not the input. We 
assume the worst-case (bad guy) input. (See the (½)100 vs. (½)101 
part of HW3 Problem 3)

● Understand how to use indicator variables, and that (for any 
variables, not just indicators), the expectation of a sum of 
variables (even if they're not independent!) is the sum of the 
expectations of the variables.

● Review the analysis of QuickSort, although you are not responsible 
for reproducing it. Understand the ideas behind its parts.



A kinda bad True/False question that I cut
The probability that QuickSort attains its worst-case O(n2) running 
time is exactly 2n-1 / n!



A kinda bad True/False question that I cut
The probability that QuickSort attains its worst-case Θ(n2) running 
time is exactly 2n-1 / n!

If we want the probability that we always pick the worst-case pivot, then 
we have a 2/n chance on the first pick (i.e., we pick either end), then a 
2/(n-1) chance on the next pick, and so on. So that expression above looks 
right, and giving this justification would have earned a lot of partial 
credit…



A kinda bad True/False question that I cut
The probability that QuickSort attains its worst-case Θ(n2) running 
time is exactly 2n-1 / n!

If we want the probability that we always pick the worst-case pivot, then 
we have a 2/n chance on the first pick (i.e., we pick either end), then a 
2/(n-1) chance on the next pick, and so on. So that expression above looks 
right, and giving this justification would have earned a lot of partial 
credit…

But the premise is wrong! The algorithm doesn't have to make the very 
worst decisions to have an Θ(n2) runtime. So the real probability is higher.



A kinda bad True/False question that I cut
The probability that QuickSort attains its worst-case Θ(n2) running 
time is exactly 2n-1 / n!

If we want the probability that we always pick the worst-case pivot, then 
we have a 2/n chance on the first pick (i.e., we pick either end), then a 
2/(n-1) chance on the next pick, and so on. So that expression above looks 
right, and giving this justification would have earned a lot of partial 
credit…

But the premise is wrong! The algorithm doesn't have to make the very 
worst decisions to have an Θ(n2) runtime. So the real probability is higher. 
This felt too sneaky, and also, it's a little vague to say when an individual 
runtime crosses over from the n log n to the n2 mark, so to speak.



Lecture 4 Key Points
● Understand what Karger's algorithm does (and the 

central idea of edge contractions), and also be familiar 
with the analysis (it's not as bad as the one for 
QuickSort, and it's on the exam reference page).



Lecture 5 Key Points
● Understand how to use hash tables as accessories that help solve problems like 2-SUM.

● Understand the chaining implementation of hash tables.

● Make sure you're totally clear on what the parts of the definition of universal hashing 
mean…



Lecture 5 Key Points
Example: Suppose that there exists a pair of values x, y in the universe 
for which any two hash functions in a family H hash x and y to 
different buckets. Is H  universal?



Lecture 5 Key Points
Example: Suppose that there exists a pair of values x, y in the universe 
for which any hash function in a family H hashes x and y to different 
buckets. Is H  universal? Not necessarily! We need to demonstrate that 
the collision probability is low for any such pair.



Lecture 5 Key Points
● You do not need to know modular arithmetic for the midterm, but 

there could still be a universal hashing question that isn't about 
that.

● Understand how Bloom filters work, e.g., in the basic scenario in 
HW3 Problem 2 (not the more complicated one with multiple 
filters). In what sense do they "fill up"?



Lecture 6 Key Points
● Be able to walk through inserting into (and deleting the minimum 

from) min-heaps implemented as arrays, as seen in class. Create 
and practice with some examples.

● Understand the basic properties of trees, what makes a binary 
search tree special, and what makes a balanced binary search tree 
special.

● Be able to use the rules for red-black trees (given on the exam) to 
talk about legal and illegal trees. You don't need to worry about 
the mechanics of inserting or deleting, since we didn't cover the 
rotation rules, but know the time bounds.



Lecture 6 Key Points
Example: In the implementation of min-heaps we saw, they are 
restricted to having certain tree shapes (all complete binary trees except 
perhaps for the last level). Is it always possible for these same shapes to 
have their nodes colored to be valid red-black trees?



Lecture 6 Key Points
Yes – the idea of the 
implementation of min-heaps is 
to keep them balanced, which is 
also what red-black trees are 
trying to do. It turns out to be easy 
to do this coloring – make every 
node black, unless there is an 
incomplete bottom level, in which 
case we make all of those nodes 
red. Then all of the rules are 
satisfied.

all root-to-NIL 
paths have 
exactly 3 black 
nodes



Lecture 7 Key Points
● Know how you would implement BFS to solve problems like searching 

for a node, finding shortest path lengths, counting connected 
components, and even finding shortest total distances in graphs with 
small weights.

● Understand Dijkstra's Algorithm well enough to work through an 
example, and know where the n log n in its running time comes from. 
Know why we use a special heap and what it is good at (decrease-key).
○ You do not need to know the proof of correctness of Dijkstra's or 

the details of Fibonacci heaps.

● No need to know amortization for the midterm. Also, all graphs on the 
midterm are undirected.



Lecture 7 Key Points
Example: Why would it be inefficient to use Dijkstra's Algorithm if 
you knew your graph was a weighted tree?



Lecture 7 Key Points
Example: Why would it be inefficient to use Dijkstra's Algorithm if 
you knew your graph was a weighted tree?

The power of Dijkstra's is to find a shortest path out of many 
possible paths, but in a tree, there is exactly one path between any 
two nodes. We might as well use BFS to find this path and then 
calculate the total cost of its parts – we would not need to use the 
heap of Dijkstra's algorithm, so we would dodge the O(n log n) part 
of the cost.

We didn't talk in class about how we would modify BFS to find 
actual paths, but it's not hard (each node stores the node from 
which it was discovered)



Final Thoughts
● Remember, don't spend too much time writing out 

unnecessarily complex answers. Even a bulleted list is 
fine as long as it's clear that you have the key ideas.

● Work at a good pace and don't get hung up for too long 
on anything. Most questions are of similar point value, 
so focus on getting as many as you can.

● Try not to worry about what score corresponds to what 
overall grade, etc., and just do your best! You're gonna 
crush it!


