
CS 161 Problem Set 3
Winter 2021 Due: Wed, Feb 3 at 11:59 pm PST

Style guide and expectations: Please see the “Homework” part of the “Resources” section
on the webpage for guidance on what we are looking for in homework solutions. We will
grade according to these standards. You should cite all sources you used outside of the
course material.

What we expect: Make sure to look at the “We are expecting” blocks below each problem
to see what we will be grading for in each problem!

Exercises

We suggest you do these on your own. As with any homework problem, though, you may
ask the course staff for help.

[NOTE: These exercise questions will not be graded for this homework only, but we strongly
recommend doing them as it will be good practice for the upcoming exam.]

1. [OPTIONAL] [Majority Element] Suppose we are given an array A of length n with the
promise that there exists a majority element (i.e an element that appears > n

2
times).

Additionally, we are only allowed to check whether two elements are equal (no > or
< comparisons). Design an O(n log n) algorithm to find the majority element, using
divide and conquer. Informally, explain the correctness and runtime of your algorithm.

[We are expecting: pseudocode, an english description of the main idea of the algo-
rithm, as well as an informal explanation of correctness and runtime]

2. [OPTIONAL] [Median of Two] Given two arrays of length n, find the median of all
elements of the two arrays.

(a) If the arrays are unsorted, what is the best you can do?

[We are expecting: A runtime and a brief description of your algorithm.]

(b) If the arrays are sorted, can you do better?

[We are expecting: A short English description, Pseudocode, runtime analysis.]
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Problems

You may talk with your fellow CS 161-ers about the problems. However:

• Try the problems on your own before collaborating.

• Write up your answers yourself, in your own words. You should never share your typed-
up solutions with your collaborators.

• If you collaborated, list the names of the students you collaborated with at the beginning
of each problem.

[NOTE: The following questions will be graded.]

3. (12 pt.) In this exercise, we’ll explore different types of randomized algorithms. We
say that a randomized algorithm is a Las Vegas algorithm if it is always correct (that
is, it returns the right answer with probability 1), but the running time is a random
variable. We say that a randomized algorithm is a Monte Carlo algorithm if there is
some probability that it is incorrect. For example, QuickSort (with a random pivot) is
a Las Vegas algorithm, since it always returns a sorted array, but it might be slow if we
get very unlucky.

We will revisit the Majority Element problem to get more insight on randomized algo-
rithms.

Algorithm Monte Carlo or
Las Vegas?

Expected
running
time

Worst-case
running
time

Probability of return-
ing a majority element

Algorithm 1
Algorithm 2
Algorithm 3

[We are expecting: Your filled in-table, and a short justification for each entry of the
table. You may use asymptotic notation for the running times; for the probability of
returning a majority element, give the tightest bound that you can given the information
provided. Fill in the table below, and justify your answers.]
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Algorithm 1: findMajorityElement1
Input: A population P of n elements
while true do

Choose a random p ∈ P ;
if isMajority(P , p) then

return p;

Algorithm 2: findMajorityElement2
Input: A population P of n elements
for 100 iterations do

Choose a random p ∈ P ;
if isMajority(P , p) then

return p;

return P [0];

Algorithm 3: findMajorityElement3
Input: A population P of n elements
Put the elements in P in a random order.;
/* Assume it takes time Θ(n) to put the n elements in a random order

*/
for p ∈ P do

if isMajority(P , p) then
return p;

Algorithm 4: isMajority
Input: A population P of n elements and a element p ∈ P
Output: True if p is a member of a majority species
count ← 0;
for q ∈ P do

if p = q then
count ++;

if count > n/2 then
return True;

else
return False;
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4. (10 pt.) [Counting Inversions] Given an array A of n elements, we call (i , j) an
inversion if 0 ≤ i < j < n and A[i ] > A[j ].

(a) (3 pt.) Describe an O(n2) algorithm to count the number of inversions in a given
array.

[We are expecting: Pseudocode, and a short English description explaining the
main idea of the algorithm. No justification of the correctness or running time is
required.]

(b) (7 pt.) Describe an O(n log n) algorithm to count the number of inversions in
a given array. [Hint: Think about how you can modify MergeSort to solve this
problem.]

[We are expecting: Pseudocode, and a short English description explaining the
main idea of the algorithm.We are also Expecting an informal justification of cor-
rectness and of the running time.]
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5. (10 pt.) [Untitled Duck Problem] Suppose that the n ducks are standing in a line.

Each duck has a favorite activity: honking, eating, or simply doing nothing (idling).
And since they are ducks, they do whatever they like to do all day long. You’d like to
sort the ducks so that all the honking ducks are on the left, the eating ducks are on the
right, and the idling ducks are in the middle.1 You can only do two types of operations
on the ducks:

Operation Result
ask(j) Ask the duck in position j about its favorite activity

swap(i,j) Swap the duck in position j with the duck in position i

You want to sort the ducks as soon as possible, but each of the above operations takes
a constant time to execute. Also, you didn’t bring a piece of paper or a pencil, so you
can’t write anything down and have to rely on your memory. Like many humans, you
can remember up to seven integers2 between 0 and n − 1 at a time.

(a) (7 pt.) Design an algorithm to sort the ducks which takes O(n) seconds, and
requires you to remember no more than seven integers3 between 0 and n− 1 at a
time.

[We are expecting: Pseudocode AND a short English description of your algo-
rithm.]

(b) (3 pt.) Justify why your algorithm is correct, why it takes only O(n) seconds, and
why it requires you to remember no more than seven integers at a time.

[We are expecting: Informal justifications of the correctness, runtime, and mem-
ory usage of your algorithm that are both clear and convincing to the grader. If
it’s easier for you to be clear, you can give a formal proof of correctness, but you
do not have to. It is okay to appeal to the correctness of an algorithm that we
have seen in class, as long as you clearly explain the relationship between the two
algorithms.]

1Having honking and eating ducks close would be disastrous. Don’t ask why.
2see, e.g., https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
3You don’t need to use all seven storage spots, but you can if you want to. Can you do it with only two?
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