
CS 161 Problem Set 5
Winter 2021 Due: Thurs, Feb 18 at 11:59 pm PST

Style guide and expectations: Please see the “Homework” part of the “Resources” section
on the webpage for guidance on what we are looking for in homework solutions. We will
grade according to these standards. You should cite all sources you used outside of the
course material.

What we expect: Make sure to look at the “We are expecting” blocks below each problem
to see what we will be grading for in each problem!

Exercises

We suggest you do these on your own. As with any homework problem, though, you may
ask the course staff for help.

1. [OPTIONAL] Suppose that h : U → {0, . . . , n − 1} is a uniformly random function.
That is, for each x ∈ U , h(x) is distributed uniformly at random in the set {0, . . . , n−1}
and the values {h(x) : x ∈ U} are independent. Prove that for any x 6= y ∈ U ,

Ph{h(x) = h(y)} =
1

n
.

Above, notice that x and y are fixed and the probability is over the choice of h.

[We are expecting: A short but rigorous proof.]

Solution

The only way for h(x) = h(y) is for there to be some value i ∈ {0, . . . , n− 1} so
that h(x) = i and h(y) = i . Thus:

Ph{h(x) = h(y)} =
n−1∑
i=0

Ph{h(x) = i ∧ h(y) = i}.

Then by independence, we have that Ph{h(x) = i ∧ h(y) = i} = Ph{h(y) =
i}·Ph{h(x) = i}. Putting all this together, along with the fact that, by uniformity,

1

Ph{h(y) = i} = 1/n, we have:

Ph{h(x) = h(y)}

=

n−1∑
i=0

Ph{h(y) = i ∧ h(x) = i}

=

n−1∑
i=0

Ph{h(y) = i}Ph{h(x) = i}

=

n−1∑
i=0

1

n
·
1

n

=
1

n
.

2. [OPTIONAL] Let U = {000, 001, 002, . . . , 999} (aka, all of the numbers between 0
and 999, padded so that they are three digits long) and let n = 10. For each of the
following hash families H consisting of functions h : U → {0, . . . , n−1}, decide whether
H is universal or not, and justify your result with a formal proof.

(a) For i = 1, 2, 3, let hi(x) be the i ’th least-significant digit of x . (For example,
h3(456) = 4). Define H = {h1, h2, h3}. Is H a universal hash family?

(b) For a ∈ {1, . . . , 9}, let ha(x) be the least-significant digit of ax . (For example,
h2(123) is the least-significant digit of 2 × 123 = 246, which is 6). Define H =
{hi : i = 1, . . . , 9}. Is H a universal hash family?

Hint:To show that something is not a universal hash family, you could find two distinct
elements x, y ∈ U so that the probability that h(x) = h(y) is larger than it’s supposed
to be.

[We are expecting: For each part, a yes/no answer and a rigorous proof using the
definition of a universal hash family.]

Solution

(a) This is not a universal hash family. To see this, consider x = 111 and
y = 112. Now, when we choose h ∈ H at random, the probability that
h(x) = h(y) is 2/3, because h2(x) = h2(y) = 1 and h3(x) = h3(y) = 1.
But for H to be a universal hash family we would need P (h(x) = h(y)) ≤
1/10. Since this is not the case, H is not a universal hash family.

(b) This is not a universal hash family. To see this, consider x = 000 and

2

y = 010. For any a ∈ {1, . . . , 9}, we have ax = 0 and ay = 10 · a. Thus,
the least significant digit of both ax and ay is 0. That means that for any
a, h(x) = h(y) = 0, so Ph∈H(h(x) = h(y)) = 1, which is definitely larger
than 1/10.

3. (6 pt.) Consider the following directed acyclic graph (DAG):

A

B

C

D E

In class, we saw how to use DFS to find a topological ordering of the the vertices; in
the graph above, the unique topological ordering is A,B, C,D,E. We saw an example
where we happened to start DFS from the first vertex in the topological order. In this
exercise we’ll see what happens when we start at a different vertex. Recall that when
you run DFS, if it has reached everything it can but hasn’t yet explored the graph, it
will start again at an unexplored vertex.

(a) Run DFS starting at vertex C, breaking any ties by alphabetical order.1

i. What do you get when you order the vertices by ascending start time?

ii. What do you get when you order the vertices by descending finish time?

(b) Run DFS starting at vertex C, breaking any ties by reverse alphabetical order.2

i. What do you get when you order the vertices by ascending start time?

ii. What do you get when you order the vertices by descending finish time?

[We are expecting: For all four questions, an ordering of vertices. No justification is
required.]

1For example, if DFS has a choice between B or C, it will always choose B. This includes when DFS is
starting a new tree in the DFS forest.

2For example, when DFS has a choice between B or C, it will always choose C. This includes when DFS is
starting a new tree in the DFS forest.

3

Problems

You may talk with your fellow CS 161-ers about the problems. However:

• Try the problems on your own before collaborating.

• Write up your answers yourself, in your own words. You should never share your typed-
up solutions with your collaborators.

• If you collaborated, list the names of the students you collaborated with at the beginning
of each problem.

4. Badger badger badger. A family of badgers lives in a network of tunnels; the network
is modeled by a connected, undirected graph G with n vertices and m edges (see below).
Each of the tunnels have different widths, and a badger of width x can only pass through
tunnels of width ≥ x .

For example, in the graph below, a badger with width x = 2 could get from v0 to v4
(either by v0 → v1 → v4 or by v0 → v3 → v4). However, a badger of width 3 could
not get from v0 to v4.

v0 v13.1415

v2 v3 v4

21.1 2

3.3 2.1

x

The graph is stored in the adjacency-list format we discussed in class. More precisely, G
has vertices v0, . . . , vn−1 and is stored as an array V of length n, so that V [i] is a pointer
to the head of a linked list Ni which stores integers. An integer j ∈ {0, . . . , n− 1} is in
Ni if and only if there is an edge between the vertices vi and vj in G.

You have access to a function tunnelWidth which runs in time O(1) so that if {vi , vj}
is an edge in G, then tunnelWidth(i,j) returns the width of the tunnel between vi
and vj . (Notice that tunnelWidth(i,j)=tunnelWidth(j,i) since the graph G is
undirected). If {vi , vj} is not an edge in G, then you have no guarantee about what
tunnelWidth(i,j) returns.

4

(a) (6 pt.) Design a deterministic algorithm which takes as input G in the format
above, integers s, t ∈ {0, . . . , n − 1}, and a desired badger width x > 0; the
algorithm should return True if there is a path from vs to vt that a badger of
width x could fit through, or False if no such path exists.

(For example, in the example above we have s = 0 and t = 4. Your algorithm
should return True if 0 < x ≤ 2 and False if x > 2).

Your algorithm should run in time O(n+m). You may use any algorithm we have
seen in class as a subroutine.

Note: In your pseudocode, make sure you use the adjacency-list format for G
described above. For example, your pseudocode should not say something like
“iterate over all edges in the graph.” Instead it should more explicitly show how
to do that with the format described. (We will not be so pedantic about this in
the future, but one point of this problem is to make sure you understand how the
adjacency-list format works).

[We are expecting: Pseudocode AND an English description of your algorithm,
and a short justification of the running time. You should make sure to use the
adjacency-list representation of G described above in your pseudocode. You can
use any algorithms we have seen from class as a subroutine, but if you significantly
modify them make sure to be precise about how this interacts with the adjacency-
list representation.]

(b) (6 pt.) Design a deterministic algorithm which takes as input G in the format
above and integers s, t ∈ {0, . . . , n − 1}; the algorithm should return the largest
real number x so that there exists a path from vs to vt which accomodates a
badger of width x . Your algorithm should run in time O((n + m) log(m)). You
may use any algorithm we have seen in class as a subroutine. (Hint: use part (a)).

Note: Don’t assume that you know anything about the tunnel widths ahead of
time. (e.g., they are not necessarily bounded integers).

Note: The same note about pseudocode holds as in part (a).

[We are expecting: Pseudocode AND and English description of your algorithm,
and a short justification of the running time. You should make sure to use the
adjacency-list representation of G described above in your pseudocode. You can
use any algorithms we have seen from class as a subroutine, but if you significantly
modify them make sure to be precise about how this interacts with the adjacency-
list representation.]

5

5. [OPTIONAL] Painted Penguins. Much to Plucky’s delight, a large flock of T painted
penguins will be waddling past the Stanford campus next week as part of their annual
migration from Monterey Bay Aquarium to the Sausalito Cetacean Institute. Painted
Penguins (not to be confused with pedantic penguins) are an interesting species. They
can come in a huge number of colors—say, M colors—but each flock only has m colors
represented, where m < T . The penguins will waddle by one at a time, and after they
have waddled by they won’t come back again. You’d like to design a randomized data
structure to keep track of the penguin colors so that, after all the penguins have gone,
you’ll be able to answer queries about what colors of penguins appeared in the flock;
you’d like your answers to these queries to probably be correct.

For example, if T = 7, M = 100000 and m = 3, then a flock of T painted penguins
might look like:

seabreeze, seabreeze, indigo, ultraviolet, indigo, ultraviolet, seabreeze

You’ll see this sequence in order, and only once. After the penguins have gone, you’ll be
asked questions like “How many indigo penguins were there?" (Answer: 2), or “How
many neon orange penguins were there?" (Answer: 0).

You know m,M and T in advance, and you have access to a universal hash family H,
so that each function h ∈ H maps the set of M colors into the set {0, . . . , n − 1}, for
some integer n. For example, one function h ∈ H might have h(seabreeze) = 5.

(a) Suppose that n = 10m. Suppose also that you only have space to store:

• An array B of length n, consisting of numbers in the set {0, . . . , T}, and

• one function h from H.

Use the universal hash family H to create a randomized data structure that fits
in this space and that supports the following operations in time O(1) in the worst
case, assuming that you can evaluate h ∈ H in time O(1).

• Update(color): Update the data structure when you see a penguin with color
color.

• Query(color): Return the number of penguins of color color that you have
seen so far. For each query, your query should be correct with probability at

6

least 9/10. That is, for all colors color,

P{Query(color) = the true number of penguins with color color } ≥
9

10
.

To describe your data structure:

i. Describe how the array B and the function h are initialized.

ii. Give pseudocode for Query.

iii. Give pseudocode for Update.

[We are expecting: A description following the outline above (including pseu-
docode), and a short but rigorous proof that your data structure meets the re-
quirements. Make sure you clearly indicate where you are using the property of
universal hash families.]

(b) Suppose that you now have k times the space you had in part (a). That is, you
can store k arrays B1, . . . , Bk and k functions h1, . . . , hk from H. Adapt your data
structure from part (a) so that all operations run in time O(k), and the Query
operation is correct with probability at least 1− 1

10k
.

[We are expecting: As in part (a), a description following the outline above
(except say how all arrays Bi and functions hi are initialized), and a short but
rigorous proof that your data structure meets the requirements. Make sure you
clearly indicate where you are using the property of universal hash families.]

Solution

(a) Here is the description of our data structure:
• Our data structure stores an array B of length n, where each bucket
stores a number in {0, . . . , T} and is initialized to zero. Before the
flock waddles by, we choose a random h ∈ H and store that too. Here
is pseudocode for Query and Update:

• Update(color): B[h(color)] ++
• Query(color): Return B[h(color)].

Each of these operations takes time O(1). The probability that a single
Query option fails is the probability that any of the m (or m − 1 other)
colors which did appear collided with the color that was queried. That is,
we want

P{there is a color x which appeared, not the same as color,
so that h(x) = h(color) }

7

to be small. By the universal hash family property, we have for each color
x ,

P{h(x) = h(color)} ≤
1

n
.

Thus, by the union bound, the probability that there exists an x which
appeared that collides with color is at most

P{there is a color x which appeared, not the same as color,
so that h(x) = h(color) }

≤ m · P{h(x) = h(color)} ≤
m

n
=
1

10
.

(b) We will basically just keep k copies of our data structure from part (a).
More precisely, our data structure stores:

• k arrays B1, . . . , Bk , initialized to zero.
• k hash functions h1, . . . hk ∈ H, chosen uniformly at random and in-
dependently. (With replacement).

Then our update strategy is:

Update(color):
for i = 1,...,k:

B_i[h_i(color)] ++

Query(color):
return min_{i = 1,...,k} B_i[h_i(color)]

Both of these operations take time O(k), since they both loop over k things.
To compute the success probability of Query, notice that this returns the
correct value as long as the color color is isolated in any of the k tables.
Since each of these k hash functions are independent, we have:

P{for all i , there is a color x which appeared, not the same as color,
so that hi (x) = hi (color) }

=
(
P{there is a color x which appeared, not the same as color,

so that hi (x) = hi (color) }
)k

≤ (m · P{h(x) = h(color)})k

≤
(m
n

)k
=
1

10k
.

Thus, with probability at least 1 − 1/10k , there is at least one i so that
Bi [hi(color)]] is equal to the number of times that that color appeared, and
Query(color) returns the right thing.

8

6. [OPTIONAL, ANONYMOUS] Mid-Quarter Survey. We’d like to hear your thoughts
on how the course is going! Go to https://forms.gle/G3XVvcQtDbYkcWJ46 to give
us feedback.

9

