
CS 161 Problem Set 8
Winter 2021 Due: Wed, Mar 10 at 11:59 pm PST

Style guide and expectations: Please see the “Homework” part of the “Resources” section
on the webpage for guidance on what we are looking for in homework solutions. We will
grade according to these standards. You should cite all sources you used outside of the
course material.

What we expect: Make sure to look at the “We are expecting” blocks below each problem
to see what we will be grading for in each problem!

Exercises

We suggest you do these on your own. As with any homework problem, though, you may
ask the course staff for help.

1. DP for recurrences

Consider the recurrence relation defined by

T (n) = 2T (n − 1) + T (n − 2) + 1,

with T (0) = T (1) = 0.

(a) (4 pt.) Write a bottom-up dynamic programming algorithm that computes T (n).
Your algorithm should run in time O(n).

[We are expecting: Pseudocode. No explanation is required.]

(b) (4 pt.) Write a top-down dynamic programming algorithm that computes T (n).
Your algorithm should run in time O(n).

[We are expecting: Pseudocode. No explanation is required.]

1



2. (10 pt.) Another greedy algorithm for bipartiteness?

Recall that in the BFS/DFS lecture we learned how to detect if a graph is bipartite1

using BFS (O(n + m) run time). Your friend comes up with the following greedy
algorithm with the same running time:

Pick an arbitrary vertex v and remove it from the graph. Recurse on the
remaining vertices to obtain two independent sets. If possible, add v to one
of the independent sets (can be either one); otherwise return that the graph
is not bipartite. As a base case, an empty graph is partitioned into two empty
sets, and is considered bipartite.

Determine whether or not your friend’s algorithm works.

[We are expecting: If your friend’s algorithm works, an informal proof of correctness.
If it doesn’t work, a counter example and a short explanation]

1Recall that a graph is bipartite if the vertices can be partitioned into two independent sets, i.e. there are
no edges within each subset (but edges may cross from one set to the other).

2



Problems

You may talk with your fellow CS 161-ers about the problems. However:

• Try the problems on your own before collaborating.

• Write up your answers yourself, in your own words. You should never share your typed-
up solutions with your collaborators.

• If you collaborated, list the names of the students you collaborated with at the beginning
of each problem.

3. k-well-connected graphs

Let G = (V, E) be an undirected, unweighted graph with n vertices and m edges. For a
subset S ⊆ V , define the subgraph induced by S to be the graph G ′ = (S,E ′), where
E ′ ⊆ E, and an edge {u, v} ∈ E is included in E ′ if and only if u ∈ S and v ∈ S.

For any k < n, say that a graph G is k-well-connected if every vertex has degree at
least k .

For example, in the graph G below, the subgraph G ′ induced by S = {a, b, c, d} is
shown on the right. G ′ is 3-well-connected, since every vertex in G ′ has degree at
least 3. However, G is not 3-well-connected since vertex e has degree 2.

a

b

c

d

e

f

G = (V, E)

a

b

c

d

G′ = (S,E′), for S = {a, b, c, d}

(a) (5 pt.) Design a greedy algorithm to find a set S ⊆ V of maximum size so that
the subgraph G ′ = (S,E ′) induced by S is k-well-connected. In the example above,
if k = 3, your algorithm should return {a, b, c, d}, and if k = 4 your algorithm
should return the empty set.

You may assume that your representation of a graph supports the following oper-
ations:

• degree(v): return the degree of a vertex in time O(1)

• remove(v): remove a vertex and all edges connected to that vertex from the
graph, in time O(degree(v)).

3



Your algorithm should run in time O(n2).

[We are expecting: Pseudocode AND an English description of what your algo-
rithm is doing.]

(b) (5 pt.) Prove by induction that your algorithm is correct.

[We are expecting: A formal proof by induction. Be sure to clearly state your
inductive hypothesis, base case, inductive step, and conclusion.]

4



4. Thanksgiving Turkeys

On Thanksgiving day, you arrive on an island with n turkeys. You’ve already had
Thanksgiving dinner so you don’t want to eat the turkeys (and maybe you prefer tofurkey
anyway), but you do want to wish them all a Happy Thanksgiving. However, the turkeys
each have very different sleep schedules. Turkey i is awake only in a single closed
interval [ai , bi ]. Your plan is to stand in the center of the island and say loudly “Happy
Thanksgiving!” at certain times t1, . . . , tm. Any turkey who is awake at one of the
times tj will hear the message. It’s okay if a turkey hears the message more than once,
but you want to be sure that every turkey hears the message at least once.

(a) (5 pt.) Design a greedy algorithm which takes as input the list of intervals [ai , bi ]
and outputs a list of times t1, . . . , tm so that m is as small as possible and so that
every turkey hears the message at least once. Your algorithm should run in time
O(n log(n)).

[We are expecting: Pseudocode and an English description of the main idea of
your algorithm, as well as a short justification of the running time.]

(b) (5 pt.) Prove by induction that your algorithm is correct.

[We are expecting: A formal proof by induction. Be sure to clearly state your
inductive hypothesis, base case, inductive step, and conclusion.]

5



5. [Optional] Continuous Knapsack

In this exercise we’ll look at a continuous variant of the knapsack problem that we saw
in class. You have a knapsack with a capacity of Q ounces and there are n items; the
difference between this exercise and the version that we saw in class is that you can
take a fractional amount of each item. For example, perhaps one item is 3.6 ounces of
brightly colored sand; you can choose to take 2.5235 ounces of sand for your knapsack
if that’s how much you want.

Each item i has a value per ounce vi > 0 (measured in units of dollars per ounce) and
a quantity qi > 0 (measured in ounces). There are qi ounces of item i available to you,
and for any real number x ∈ [0, qi ], the total value that you derive from x ounces of
item i is x · vi .

Your goal is to choose an amount xi ≥ 0 to take for each item i in order to maximize
the value

∑
i xivi that you receive while satisfying:

(1) you don’t overfill the knapsack (that is,
∑
i xi ≤ Q), and

(2) you don’t take more of an item than is available (that is, 0 ≤ xi ≤ qi for all i).

Assume that
∑
i qi ≥ Q, so there always is some way to fill the knapsack.

(a) Design a greedy algorithm which takes as input Q along the tuples (i , vi , qi) for
i = 0, . . . , n− 1, and outputs tuples (i , xi) so that (1) and (2) hold and

∑
i xivi is

as large as possible. Your algorithm should take time O(n log(n)).

[We are expecting:

• Pseudocode AND an English explanation of what it is doing.

• A justification of the running time.

]

(b) Fill in the inductive step below to prove that your algorithm is correct.

• Inductive hypothesis: After making the t’th greedy choice, there is an opti-
mal solution that extends the solution that the algorithm has constructed so
far.

• Base case: Any optimal solution extends the empty solution, so the inductive
hypothesis holds for t = 0.

• Inductive step: (you fill in)

• Conclusion: At the end of the algorithm, the algorithm returns a set S∗ of
tuples (i , xi) so that

∑
i xi = Q. Thus, there is no solution extending S∗ other

than S∗ itself. Thus, the inductive hypothesis implies that S∗ is optimal.

[We are expecting: A proof of the inductive step: assuming the inductive hy-
pothesis holds for t − 1, prove that it holds for t.]

6



6. [Optional] Fish Stops

Plucky the Pedantic Penguin is walking t miles across Antarctica. He needs to eat
along the way, but he can only eat when there’s a fishing hole for him to catch fish.
He can walk at most m miles between meals, and he knows how n fishing holes are laid
out along his route.

Plucky is given an array F so that F [i ] gives the distance from the start of his journey to
the i ’th fishing hole. There are n fishing holes along the way, including at the beginning
and the end: F [0] = 0, F [n − 1] = t. For example, the array F = [0, 3, 4, 6, 10, 12],
with t = 12 corresponds to the setup below:

0 3 4 6 10 12

Plucky wants to stop as few times as possible, given that he can walk at most m miles
without eating. (It is okay if he walks exactly m miles between meals). He starts out
hungry, so he will always fish at 0 miles; he will also always fish at his destination (at t
miles), whether or not he’s hungry.

In the example above, if m = 4, then Plucky should stop 5 times (including his stops
at the beginning and the end), for example at 0, 4, 6, 10, 12 miles.

(a) Design a greedy algorithm for Plucky to use. The algorithm should have the
following properties:

• Your algorithm should take as input the array F , as well as the parameters m
and t. You may assume that F is sorted.

• Your algorithm should output a list fishStops which contains a shortest list
of places that Plucky could stop for fish. In the example above, the algorithm
could output [0, 4, 6, 10, 12]. If Plucky cannot make it to his destination t
miles away, then your algorithm should return Stay Home.

• Your algorithm should run in time O(n).

[We are expecting: Pseudocode AND an English description of what it is doing.
You do not need to justify the running time.]

(b) Prove by induction that your algorithm is correct. You may assume that there is
a way for Plucky to make it t miles (aka, the algorithm won’t return Stay Home)
if it’s easier.

[We are expecting: A formal proof by induction. Be sure to clearly state your
inductive hypothesis, base case, inductive step, and conclusion.]

7


