
CS 161 Lecture 12: Dynamic Programming: Bellman-Ford and Floyd-Warshall
Winter 2021 Wed, Feb 24

Adapted from Virginia Williams’s lecture notes. Additional credits go to Eric Huang, Anthony
Kim, Mary Wootters and Aviad Rubinstein.

Please direct all typos and mistakes to Moses Charikar and Nima Anari.

1 More on the Bellman-Ford Algorithm

We didn’t quite make it to the Bellman-Ford algorithm in the last lecture, so we’ll re-hash
some of that again today. In the notes for the previous lecture, we introduced Bellman-Ford
in the context of Dijkstra’s algorithm. We’ll see it in this lecture in a different way, so
as to naturally introduce dynamic programming. The Bellman-Ford algorithm is a dynamic
programming algorithm, and dynamic programming is a basic paradigm in algorithm design
used to solve problems by relying on intermediate solutions to smaller subproblems. The
main step for solving a dynamic programming problem is to analyze the problem’s optimal
substructure and overlapping subproblems.

The Bellman-Ford algorithm is pretty simple to state:

Algorithm 1: Bellman-Ford Algorithm (G, s)

d (0)[v ] =∞∀v ∈ V
d (0)[s] = 0

d (k)[v ] = None∀v ∈ V ∀k > 0
for k = 1, . . . , n − 1 do
d (k)[v ]← d (k−1)[v ]
for (u, v) ∈ E do
d (k)[v ]← min{d (k)[v ], d (k−1)[u] + w(u, v)}

// here we can release the memory for d (k−1), we’ll never need it again.

return d (n)[v ],∀ v ∈ V

What’s going on here? The value d (k)[v ] is the cost of the shortest path from s to v with at
most k edges in it. Once we realize this, a proof by induction (similar to the one in Lecture
Notes 11) falls right out, with the inductive hypothesis that “d (k)[v ] is the cost of the shortest
path from s to v with at most k edges in it."

Runtime and Storage. The runtime of the Bellman-Ford algorithm is O(mn); for n itera-
tions, we loop through all the edges. This is slower than Dijkstra’s algorithm. However, it is
simpler to implement, and further as we saw in Lecture Notes 11.5, it can handle negative

1



edge weights. For storage, in the pseudocode above, we keep n different arrays d (k) of length
n. This isn’t necessary: we only need to store two of them at a time. This is noted in the
comment in the pseudocode.

1.1 What’s really going on here?

The thing that makes that Bellman-Ford algorithm work is that that the shortest paths of
length at most k can be computed by leveraging the shortest paths of length at most k − 1.
More specifically, we relied on the following recurrence relation between the intermediate
solutions:

d (k)[v ] = min
u∈V

{
d (k−1)[u] + w(u, v)

}
where dk [v ] is the length of the shortest path from source s to node v using at most k edges,
and w(u, v) is the weight of edge (u, v). (Above, we are assuming w(v , v) = 0).

This idea of using the intermediate solutions is similar to the divide-and-conquer paradigm.
However, a divide-and-conquer algorithm recursively computes intermediate solutions once
for each subproblem, but a dynamic programming algorithm solves the subproblems exactly
once and uses these results multiple times.

2 Dynamic Programming

The idea of dynamic programming is to have a table of solutions of subproblems and fill
it out in a particular order (e.g. left to right and top to bottom) so that the contents of
any particular table cell only depends on the contents of cells before it. For example, in the
Bellman-Ford algorithm, we filled out d (k−1) before we filled out d (k); and in order to fill out
d (k), we just had to look back at d (k−1), rather than compute anything new.

In this lecture, we will discuss dynamic programming more, and also see another example:
the Floyd-Warshall algorithm.

2.1 Dynamic Programming Algorithm Recipe

Here, we give a general recipe for solving problems (usually optimization problems) by dynamic
programming. Dynamic programming is a good candidate paradigm to use for problems with
the following properties:

• Optimal substructure gives a recursive formulation; and

• Overlapping subproblems give a small table, that is, we can store the precomputed
answers such that it doesn’t actually take too long when evaluating a recursive function
multiple times.

What exactly do these things mean? We’ll discuss them a bit more below, with the Bellman-
Ford algorithm in mind as a reference.

2



2.1.1 Optimal Substructure

By this property, we mean that the optimal solution to the problem is composed of optimal
solutions to smaller independent subproblems.

For example, the shortest path from s to t consists of a shortest path P from s to k (for
node k on P ) and a shortest path from k to t. This allows us to write down an expression
for the distance between s and t with respect to the lengths of sub-paths:

d(s, t) = d(s, k) + d(k, t), for all k on a shortest s − t path

We used this in the Bellman-Ford algorithm when we wrote

d (k)[u] = min
v∈V
{d (k−1)[v ] + w(u, v)}.

2.1.2 Overlapping subproblems

The goal of dynamic programming is to construct a table of entries, where early entries in
the table can be used to compute later entries. Ideally, the optimal solutions of subproblems
can be reused multiple times to compute the optimal solutions of larger problems.

For our shortest paths example, d(s, k) can used to compute d(s, t) for any t where the
shortest s − t path contains k . To save time, we can compute d(s, k) once and just look it
up each time, instead of recomputing it.

More concretely in the Bellman-Ford example, suppose that (v , u) and (v , u′) are both in E.
When we go to compute d (k)[u], we’ll need d (k−1)[v ]. Then when we go to compute d (k)[u′],
we’ll need dk−1[v ] again. If we just set this up as a divide-and-conquer algorithm, this would
be extremely wasteful, and we’d be re-doing lots of work. By storing this value in a table and
looking it up when we need it, we are taking advantage of the fact that these subproblems
overlap.

2.1.3 Implementations

The above two properties lead to two different ways to implement dynamic programming
algorithms. In each, we will store a table T with optimal solutions to subproblems; the two
variants differ in how we decide to fill up the table:

1. Bottom-up: Here, we will fill in the table starting with the smallest subproblems. Then,
assuming that we have computed the optimal solution to small subproblems, we can
compute the answers for larger subproblems using our recursive optimal substructure.

2. Top-down: In this approach, we will compute the optimal solution to the entire problem
recursively. At each recursive call, we will end up looking up the answer or filling in the
table if the entry has not been computed yet.

In fact, these two methods are completely equivalent. Any dynamic programming algorithm
can be formulated as an iterative table-filling algorithm or a recursive algorithm with look-ups.

3



3 Floyd-Warshall Algorithm

The Floyd-Warshall Algorithm solves the All Pairs Shortest Path (APSP) problem: given a
graph G, find the shortest path distances d(s, t) for all s, t ∈ V , and, for the purpose of
storing the shortest paths, the predecessor π(s, t) which is the node right before t on the
s-t shortest path.

Let’s speculate about APSP for a moment. Consider the case when the edge weights are
nonnegative. We know we can compute APSP by running Dijkstra’s algorithm on each node
v ∈ V and obtain a total runtime of O(mn + n2 log n). The runtime of the Floyd-Warshall
algorithm, on the other hand, is O(n3). We know that in the worst case m = O(n2), and
thus, the Floyd-Warshall algorithm can be at least as bad as running Dijkstra’s algorithm n
times! Then why do we care to explore this algorithm? The reason is that the Floyd-Warshall
algorithm is very easy to implement compared to Dijkstra’s algorithm. The benefit of using
simple algorithms is that they can often be extended and in practice can run relatively faster
compared to algorithms that may have a huge overhead.

An added benefit of the Floyd-Warshall algorithm is that it also supports negative edge
weights, whereas Dijkstra’s algorithm does not. 1

As mentioned, the optimum substructure with overlapping subproblems for shortest paths
is that for all node k on an s-t shortest path, d(s, t) = d(s, k) + d(k, t). We refine this
observation as follows. Suppose that the nodes of the graph are identified with the integers
from 1 to n. Then, if k is the maximum node on an s-t shortest path, then d(s, t) =
d(s, k) + d(k, t) and moreover, the subpaths from s to k and from k to t only use nodes up
to k − 1 internally.

We hence get independent subproblems in which we compute dk(s, t) for all s, t that are the
smallest weight of an s-t path that only uses nodes 1, . . . , k internally. This motivates the
Floyd-Warshall algorithm, Algorithm 2 below (please note that we will refer to the nodes of
G by the names 1, . . . , n).

Algorithm 2: Floyd-Warshall Algorithm (G)
dk(u, u) = 0,∀u ∈ V, k ∈ {0, . . . , n}
dk(u, v) =∞,∀u, v ∈ V, u ̸= v , k ∈ {1, . . . , n}
d0(u, v) = c(u, v),∀(u, v) ∈ E
d0(u, v) =∞,∀(u, v) ̸∈ E
for k = 1, . . . , n do

for (u, v) ∈ V do
dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)} // update the estimate of
d(u, v)

return dn(u, v),∀ u, v ∈ V

1Although, one can still use Dijkstra’s algorithm n times, if one preprocesses the edge weights initially via
something called the Johnson’s trick.

4



Correctness when there are no negative cycles In the k-th iteration of the Floyd-Warshall
algorithm, dk(u, v) is the minimum weight of a u → v path that uses as intermediate nodes
only nodes from {1, . . . , k}. What does the recurrence relation represent? If P is a shortest
path from u to v using 1, . . . , k as intermediate nodes, there are two cases. Assume that P
is a simple path, since shortest paths are simple when there are no negative cycles:

• Case 1 : P contains k : In this case, we know that neither the path from u to k nor
the path from k to v contains any nodes that are greater than k − 1. In this case, we
can simply use dk(u, v) = dk−1(u, k) + dk−1(k, v).

• Case 2 : P does not contain k : We can say that dk(u, v) = dk−1(u, v)

We initialize each d0(u, v) as the edge weight c(u, v) if (u, v) ∈ E, else we set it to ∞ in
the bottom-most row in our dynamic programming table. Now, as we increment k to 1, we
effectively find the minimum distance path between u, v ∈ V that go through node 1, and
populate the table with the results. We continue this process to find the shortest paths that
go through nodes 1 and 2, then 1, 2, and 3 and so on until we find the shortest path through
all n nodes.

Negative cycles. The Floyd-Warshall algorithm can be used to detect negative cycles:
examine whether dn(u, u) < 0 for any u ∈ V . If there exists u such that dn(u, u) < 0, there
is a negative cycle, and if not, then there isn’t. The reason for this is that if there is a simple
path P from u to u of negative weight (i.e., a negative cycle containing u), then dn(u, u) will
be at most its weight, and hence, will be negative. Otherwise, no path can cause dn(u, u) to
be negative.

Runtime. The runtime of the Floyd-Warshall algorithm is proportional to the size of the
table {di(u, v)}i ,u,v since filling each entry of the table only depends on at most two other
entries filled in before it. Thus, the runtime is O(n3).

Space usage. Note that for both the algorithms we covered today, the Floyd-Warshall and
Bellman-Ford algorithms, we can choose to store only two rows of the table instead of the
complete table in order to save space. This is because the row being populated always depends
only on the row right below it. This space saving optimization is not a general property of
tables formed as a result of the dynamic programming method, and the slot dependencies
in some dynamic programming problems may lie on arbitrary positions on the table thereby
forcing us to store the complete table.

A Note on the Longest Path Problem

We discussed the shortest path problem in detail and provided algorithms for a number of
variants of the problem. We might equally be interested in computing the longest simple
path in a graph. A first approach is to formulate a dynamic programming algorithm. Indeed,
consider any path, even the longest, between two nodes s and t. Its length ℓ(s, t) equals the

5



sum ℓ(s, k) + ℓ(k, t) for any node k on the path. However, this does not yield an optimal
substructure: in general, neither subpath s → k , k → t would be a longest path, and even
if one is a longest path, the other one cannot use any nodes that appear on the first since
the longest path is required to be simple. Hence the two subproblems ℓ(s, k) and ℓ(k, t) are
not even independent! It turns out that finding the longest path does not seem to have any
optimal substructure, which makes it difficult to avoid exhaustive search through dynamic
programming. The longest path problem is actually a very difficult problem to solve and is
NP-hard. The best known algorithm for it runs in exponential time.

4 Why is it called dynamic programming?

The name doesn’t immediately make a lot of sense. “Dynamic programming" sounds like the
type of coding that action heroes do in late-90’s hacker movies. However, “progamming"
here refers to a program, like a plan (for example, the path you are trying to optimize), not
to programming a computer. “Dynamic" refers to the fact that we update the table over
time: this is a dynamic process. But the fact that it makes you (or at least me) think about
action movies isn’t an accident. As Richard Bellman, who coined the term, writes in his
autobiography:

An interesting question is, "Where did the name, dynamic programming, come
from?" The 1950s were not good years for mathematical research. We had a
very interesting gentleman in Washington named Wilson. He was Secretary of
Defense, and he actually had a pathological fear and hatred of the word, research.
Im not using the term lightly; Im using it precisely. His face would suffuse, he
would turn red, and he would get violent if people used the term, research, in his
presence. You can imagine how he felt, then, about the term, mathematical. The
RAND Corporation was employed by the Air Force, and the Air Force had Wilson
as its boss, essentially. Hence, I felt I had to do something to shield Wilson and
the Air Force from the fact that I was really doing mathematics inside the RAND
Corporation. What title, what name, could I choose? In the first place, I was
interested in planning, in decision-making, in thinking. But planning, is not a good
word for various reasons. I decided therefore to use the word, "programming". I
wanted to get across the idea that this was dynamic, this was multistage, this
was time-varying- I thought, let’s kill two birds with one stone. Let’s take a
word which has an absolutely precise meaning, namely dynamic, in the classical
physical sense. It also has a very interesting property as an adjective, and that is
it’s impossible to use the word, dynamic, in the pejorative sense. Try thinking of
some combination which will possibly give it a pejorative meaning. It’s impossible.
Thus, I thought dynamic programming was a good name. It was something not
even a Congressman could object to. So I used it as an umbrella for my activities.

6


	More on the Bellman-Ford Algorithm
	What's really going on here?

	Dynamic Programming
	Dynamic Programming Algorithm Recipe
	Optimal Substructure
	Overlapping subproblems
	Implementations


	Floyd-Warshall Algorithm
	Why is it called dynamic programming?

