Lecture 13

More dynamic programming!
Longest Common Subsequences, Knapsack, and
(if time) independent sets in trees.

Announcements

e Exam 3 is livel Please do not ask or discuss exam-
related stuff in chat/Q&A during lecture.

* If you find any errors, typos, or omissions during
the first 24 hours (EOD today Pacific Time), you can
PRIVATELY bring them to the course staff attention
(private Ed post would do). We will publicly clarify
these in a pinned Ed thread.

* We will not answer general clarification questions.
If something is not clear, state your assumptions.

Last time Py,

se programs dynamically
in Mission Impossible 3

—

Last time Pre

* Dynamic programming is an algorithm design
paradigm.

e Basic idea:

* |dentify optimal sub-structure

e Optimum to the big problem is built out of optima of small
sub-problems

» Take advantage of overlapping sub-problems
* Only solve each sub-problem once, then use it again and again

* Keep track of the solutions to sub-problems in a table
as you build to the final solution.

Today

* Examples of dynamic programming:
1. Longest common subsequence

2. Knapsack problem
e Two versions!

3. Independent sets in trees

* If we have time...
* (If not the slides will be there as a reference)

* Yet more examples of DP in CLRS!
e Optimal order of matrix multiplications
e Optimal binary search trees
* Longest paths in DAGs, ...

The goal of this lecture

* For you to get really bored of dynamic programming

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTIAGCTT GACAGCCTACAAGCGTTAGCTTG

* Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

e Subsequence:
is a subsequence of ABCDEFG

* If Xand Y are sequences, a common subsequence
is a sequence which is a subsequence of both.

is a common subsequence of ABCOEFGH and of
ABDFGHI
* A longest common subsequence...
e ...iIsa common subsequence that is longest.

* The longest common subsequence of ABCDE and
lis

We sometimes want to find these

@ B anari — anari@nimbook —...

» =~ cat filel

» ~ cat file2

e The unixcommand diff

» ~ diff filel file2

* Merging in version control
* svn, git, etc...

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

11

Step 1: Optimal substructure

Prefixes:
X Alc|lGcgl|laGc | T
Y AlclGglc|TI|T]|A

Notation: denote this prefix ACGC by Y,

* Qur sub-problems will be finding LCS’s of prefixes to X and Y.

* Let C[i,j] = length_of_LCS(X, Y;)

Examples: C[2,3] =2
Cl4,4] =3

12

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. J

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

13

Goal

* Write C[i,j] in terms of the solutions to smaller sub-
problems

C[i,j] = length_of_LCS(X, Y;)

14

* QOur sub-problems will be finding

TWO cases LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y;)
Case 1: X[i] = Y[j]

These are
A the same
| |
A C| G G A
Xi
j
|
| |
Yj AlclGgl|lc|T|T]|A

Then CJi,j] =1 + C[i-1,j-1].
* because LCS(X,)Y;) = LCS(X, 1,Y; ;) followed by | A

15

* QOur sub-problems will be finding

TWO cases LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y;)
Case 2: X[i] = Y[j]

These are
{ A \/ not the
same
A C| G G T
Xi
j
|
| |
Yj AlclGgl|lc|T|T]|A

 Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
* either LCS(X,Y;) = LCS(X,.1,Y;) and | T| is not involved,
* or LCS(X,Y;) = LCS(X,Y; 1) and |A| is not involved,

* (maybe both are not involved, that’s covered by the “or”),

Recursive formulation
of the optimal solution X, |

Yj A|lC|IG|C|T|T
‘jCaseO
(0 if i=00rj=0
°C[i,j]=<C[i—1,j—1]+1 ifX[i]=Y[j] andi,j>0
\max{ Cli,j —1],Cli —1,j]} ifX[i] #Y][j] andi,j >0 §
Case 1 Case 2
X A|lC|IG|G]|A X A|lC|G|G|T
| [
Y A|lC|IG|C|T|T]|A Y A|lC|IG|C|T]I|T

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

&

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

18

LCS DP

* LCS(X, Y):

e C[i,0]=C[0,j] =0foralli=0,...,m, j=0,...n.
e Fori=1,.,mandj=1,..,n:
o If X[i] = Y[j]:

* C[i,j] =Cli-1,j-1] +1

e Else:

e Return C[m,n]

/

Rup,..
Ming .
* C[i,jl = max{ C[i,j-1], Cli-L,] } Oty ™e:
0 ifi=00rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j > 0

Clijl = 3

Kmax{ Cli,j —1],Cli —1,j]} ifX[i] # Y][j] ands,j > 0

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

So the LCM of X

and Y has length 3.

SEHEBE

0 ifi=0o0rj=0
Cli,jl=<Cli—1,j—-1]+1 if X[i] = Y[j] aqdi,j>0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

22

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] and i, j > 0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[o]o]o]>

* Once we've filled this in,
we can work backwards.

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] and i, j > 0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[a]o]o]>

* Once we've filled this in,
we can work backwards.

That 3 must have come

from the 3 above it.

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[o]a]o]>

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

This 3 came from that 2 — G

we found a match!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] and i, j > 0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

SEHEBE

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

That 2 may as well

have come from
this other 2. G
0 ifi=0o0rj=0
Cli,jl=<{Cli—1,j—1]+1 if X[i] = Y[j] and i,j >0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

SEHEBE

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

>[o]o]o|>

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

A C G

>[o]o]o]>

This is the LCS!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] and i, j > 0
max{ C[i,j — 1],C[i — 1,j1} ifX[i] # Y[j] andi,j >0

Finding an LCS

* Good exercise to write out pseudocode for what we
just saw!

* Oryou can find it in lecture notes.
* Takes time O(mn) to fill the table

* Takes time O(n + m) on top of that to recover the LCS
 We walk up and left in an n-by-m array
* We can only do that for n + m steps.

» Altogether, we can find LCS(X,Y) in time O(mn).

32

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable ,
person.

33

Our approach actually isn’t so bad

* If we are only interested in the length of the LCS we
can do a bit better on space:
* Since we go across the table one-row-at-a-time, we can only
keep two rows if we want.

* If we want to recover the LCS, we need to keep the
whole table.

than O(mn) time?
* A bit better.
* By alog factor or so.

e But doing much better (polynomially better) is an open
problem!

34

What have we |learned?

* We can find LCS(X,Y) in time O(nm)
e if |Y|[=n, |X]=m

* We went through the steps of coming up with a
dynamic programming algorithm.
* We kept a 2-dimensional table, breaking down the
problem by decrementing the length of X and Y.

35

Example 2: Knapsack Problem

* We have n items with weights and values:

& @ &

ltem:
Weight: 6 2 4 3 11
Value: 20 S 14 13 35

* And we have a knapsack:
* it can only carry so much weight:

oA Capacity: 10

36

Weight: 6 2

§ Capacity: 10 Value: 20 8 14

ltem: h L~ b/ ij g

* Unbounded Knapsack:
e Suppose | have infinite copies of all items.
 What’s the most valuable way to fill the knapsack?

ii i Total weight: 10
/ / = & Total value: 42

* 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What’s the most valuable way to fill the knapsack?

7 Total weight: 9
-~ b/ i” Total value: 35

37

Some notation

Welght W1 W2 W3 XK Wn

Value: V4 V5 V3 VvV

Capacity: W

38

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

39

Optimal substructure

e Sub-problemes:
* Unbounded Knapsack with a smaller knapsack.
e K[x] = value you can fit in a knapsack of capaci

First solve the

problem for Then larger Then larger

small knapsacks knapsacks knapsacks

Optimal substructure h tem

e Suppose this is an optimal solution for capacity x:

©
one €O Weight w;
Value v;

Caacityx
* Then this is optimal for capacity x - w;: valuev

iy
T i

1 minute think g e
' Capacity x — w;
| Value V - v, "

(wait) 1 minute share

item i

Optimal substructure

e Suppose this is an optimal solution for capacity x:

©
one €O Weight w;
Value v;

Capacity x
* Then this is optimal for capacity x - w;: valuev

D
R

o
£ ¥
If | could do better than the second solution,

then adding a turtle to that improvement
would improve the first solution.

Capacity x — w;,

Value V - v, "

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

43

Recursive relationship

* Let K[x] be the optimal value for capacity x.

K[x] = max; {

B oV
7 o P
S .

The maximum is over

, Optimal way to The value of
all i so that w; < x.

fill the smaller item i.
knapsack

K[x] = max. { K[x —w] + v }

* (And K[x] = 0 if the maximum is empty).

* Thatis, if therearenoisothatw; < x
44

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution. {

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

45

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x]|,K[x —w;]| + v; }
e return K[W]

Running time: O(nW)

(Bd
KIx] =max { M8

= max; { K[x —w;] +v;} 46

Can we do better?

* Writing down W takes log(W) bits.
e Writing down all n weights takes at most nlog(W) bits.

* Input size: nlog(W).
 Maybe we could have an algorithm that runs in time
O(nlog(W)) instead of O(nW)?

* Open problem!
e (But probably the answer is no...otherwise P = NP)

47

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. [

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

48

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x]|,K[x —w;]| + v; }
e return K[W]

i
K[x] = max; { H&e%

= max; { K[x —w;] + v;}

49

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
e K[0] =0 ’
o ITEMS[O0] = @
e forx=1, .. W:
e K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] = max{ K|x],K[x —w;]| + v; }

* If K[x] was updated: ’
* ITEMS|[x] = ITEMS[x —w;] U {item i}

e return ITEMS[W]

(B
K[X] = max; { ,\

= max; { K[x —w;] +v;} 50

~

ITEMS

e UnboundedKnapsack(W, n, weights, values):
« K[0]=0
« ITEMS[0] = @
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem:

Weight:
Value:

Capacity: 4

~

ITEMS

TEMS[1] = ITEMS[O] + il

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

Capacity: 4

~

ITEMS

TEMS[2] = ITEMS[1] + ¥l

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

Capacity: 4

~

ITEMS

ITEMS[2] = ITEMS[0] +

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

‘l; ‘ o ; i
Capacity: 4

~

ITEMS

TEMS[3] = ITEMS[2] + ¥l

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
* If K[x] was updated:
« ITEMS[X] = ITEMS[x — w;] U {item i }
* return ITEMS[W]

ltem:

Weight:
Value:

Capacity: 4

~

ITEMS

e UnboundedKnapsack(W, n, weights, values):

« K[0]=0

« ITEMS[0] = ©

e forx=1,.. W:
« K[x]=0

e fori=1,..n:
° Ile < x:
K[x] = max{ K[x],K[x —w;] + v; }

4 .

* return ITEMS[W]

ltem:

Value:

ITEMS[3] = ITEMS[0] + €l

Weight:

If K[x] was updated:

 ITEMS[x] = ITEMS[x — w;] U { item i }

Capacity: 4

~

ITEMS

ITEMS[4] = ITEMS|[3] .

UnboundedKnapsack(W, n, weights, values):
« K[0]=0
« ITEMS[0] = @
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:
* Klx] =max{K[x],K[x —w;| +v;}
¢ If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem:

Weight:
Value:

Capacity: 4

~

ITEMS

ITEMS[4] = ITEMS[2] + ¢

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
« ITEMS[0] = ©
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e ifw; < x:

* K[x] =max{K[x],K[x —w;] +v;}
* If K[x] was updated:
e ITEMS[x] = ITEMS[x — wi] U { item i }
* return ITEMS[W]

ltem:

Weight:

Value:

Capacity: 4

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the

actual solution. {
 Step 5: If needed, code this up like a reasonable
person.
(Pass)

59

What have we |learned?

* We can solve unbounded knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a one-dimensional table, creating smaller
problems by making the knapsack smaller.

60

Weight: 6 2

s Capacity: 10 Value: 20 8 14 13

ltem: h L~ b g/ g

* Unbounded Knapsack:
» Suppose | have infinite copies of all of the items.
 What’s the most valuable way to fill the knapsack?

f i Total weight: 10
/ / = = Total value: 42

» * 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What’s the most valuable way to fill the knapsack?

U Total weight: 9
-~ b/ i’ Total value: 35

61

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

62

Optimal substructure: try 1

e Sub-problemes:
* Unbounded Knapsack with a smaller knapsack.

First solve the
problem for

Then larger Then larger
small knapsacks knapsacks knapsacks

63

This won’t quite work...

* We are only allowed one copy of each item.

* The sub-problem needs to “know” what items
we’ve used and what we haven’t.

| can’t use
any turtles...

64

Optimal substructure: try 2

e Sub-problems:

First solve the
problem with
few items

We’'ll still increase the size of the knapsacks.
Then more
items

Then yet
more
items

(We-
// ke
ep d t'/'/o\d.
S/O

/78/ tab/e}

Our sub-problems:

* Indexed by x and |

K[x,j] = optimal solution for a knapsack of
size x using only the first j items.

66

Relationship between sub-problems

* Want to write K[x,j] in terms of smaller sub-problem:s.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 67

Two cases ﬁ item |

* Case 1: Optimal solution for j items does not use item j.
* Case 2: Optimal solution for j items does use item j.

K[x,j] = optimal solution for a knapsack of
size x using only the first j items. 68

Two cases h item |

* Case 1: Optimal solution for j items does not use item j.

o =»

‘lﬂm

L

Capacity x
Value V
Use only the first j items

First j items

What lower-indexed problem
should we solve to solve this
problem?

1 min think; (wait) 1 min share

& -

69

Two cases h item |

* Case 1: Optimal solution for j items does not use item j.

Capacity x
Value V
Use only the first j items

Value V 0
First j-1 items Use only the first j-1 items.

Two cases item |

* Case 2: Optimal solution for j items uses item j.

Weight w, i~ e
Value v, Capacity x
Value V
First j items Use only the first j items

What lower-indexed problem
should we solve to solve this
problem?

1 min think; (wait) 1 min share

& -

71

Two cases h item |

* Case 2: Optimal solution for j items uses item j.

Weight w; AT
Value v, Capacity x
Value V
First j items Use only the first j items

* Then this is an optimal solution for j-1 items and a
smaller knapsack:

Capacity x — w;
Value V —v;

First -1 items Use only the first j-12items.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

73

Recursive relationship

* Let K[x,j] be the optimal value for:

* capacity x,
e with j items.

K[x,j] = max{ K[x,]-1],

Case 1

* (And K[x,0] = 0 and K[O,j] = 0).

74

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

75

Bottom-up DP algorithm

e Zero-One-Knapsack(W, n, w, v):
* K[x,0] =0 forall x=0,.... W
e K[O,i]=0foralli=0,...,n
e forx=1,...,W:
e forj=1,..,n:
* K[x,j] = K[x, j-1]
«ifw, < x:
* K[x,j] = max{ K[x,j], }
e return K|\W,n]

Case 1

Running time O(pW)

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J'l]

e jfw <x:
x=0 x=1 x=2 x=3 ¢ KDl = max{ Kxjl,
Kx —wj, j-1] +v; }
-0 0 0 0 0 * return K[\W,n]
J:
0
!
0
. =2
0
o = =

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J'l]

e jfw <x:
x=0 x=1 x=2 x=3 ¢ KDl = max{ Kxjl,
Kx —wj, j-1] +v; }
-0 0 0 0 0 * return K[\W,n]
J:
0 0
!
0
. =2
0
o = =

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Exa m p | e e forj=1,..,n:

¢ K[XIJ] = K[XI J'l]

e ifw, <x:
x=0 x=1 x=2 x=3 © K] = max{ K[x),
Kx —wj, j-1] +v; }
-0 0 0 0 0 return K[\W,n]
J:
0 1
) ™Y
0
. =2
0

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Exa m p | e e forj=1,..,n:

¢ K[XIJ] = K[XI J'l]

e ifw <x:
=0 x=1 x=2 x=3 *Klx,j] = max{ Kix,,
Kx —wj, j-1] +v; }
-0 0 0 0 0 * return K[\W,n]
J:
. 0 1
) g ‘s
0 1
W a
0 1

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Exa m p | e e forj=1,..,n:

¢ K[XIJ] = K[XI J'l]

e ifw, <x:
=0 x=1 x=2 x=3 Kl j) = max{ K[},
Kx —wj, j-1] +v; }
=0 0 0 0 0 * return K[\W,n]
0 1 0
W)
0 1
W e
0 1
o = ey
ltem: b

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-ls-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:

current relevant Weight: 1 2 3
entry previous entry Value: 1

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

ltem:
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:

Exa m p | e e forj=1,..,n:

¢ K[XIJ] = K[XI J'l]

o ifw,<x
=0 x=1 x=2 x=3 © Kixj] = max{ K[x,],
Kx —wj, j-1] +v; }
. 0 0 0 0 return K[\W,n]
j=0
. 0 1 1 1
W o (e
0 1 4 5
(= h J=2 h & hg
0 1 4
b = h =3 h ¢

ltem:
current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

ltem:
current relevant Weight: 3
entry previous entry Value: 6

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

¥
¥-[v-]s-

current relevant
entry previous entry

e Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
 K[0,i]=0foralli=0,...,n
e forx=1,..W:
Example ot <1,
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 * K[x,j] = max{ K[x,],
Kx —wj, j-1] +v; }

0 0 0 0 s return K[\W,n]

put one watermelon in your
knapsack!

=
5

h v So the optimal solution is to
6

@

current relevant Weight:
entry previous entry Value:

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

PEerson. You do this one!
(We did it on the slide in the previous
example, just not in the pseudocode!)4

What have we |learned?

e We can solve 0/1 knapsack in time O(nW).
* If there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a two-dimensional table, creating smaller
problems by restricting the set of allowable items.

95

Question

e How did we know which substructure to use in
which variant of knapsack?

Answer in retrospect:

This one made sense for
unbounded knapsack
because it doesn’t have
any memory of what
items have been used.

VS.

In 0/1 knapsack, we
can only use each item
once, so it makes sense

to leave out one item
at a time.

Operational Answer: try some stuff, see what works! %

Example 3: Independent Set

if we still have time

An independent set
is a set of vertices
so that no pair has
an edge between
them.

* Given a graph with
weights on the
vertices...

e Whatis the

independent set with
the largest weiéht?

Actually, this problem is NP-complete.

So, we are unlikely to find an efficient algorithm.

e But if we also assume that the graph is a tree...

0

Atreeisa
connected
graph with no
cycles.

Problem:

find a maximal independent set in a tree (with vertex weights}):

G

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution

* Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

99

Optimal substructure

e Subtrees are a natural candidate.
e There are two cases: ‘

1. The root of this tree is notin a

maximal independent set.

(U
A

100

Case 1;

the root is not in a maximal independent set

e Use the optimal solution ‘
from these smaller problems. -
" S - \
\ el ‘ N / \
’ \ I \
7 \ I ‘ \
’ \
% \ : ‘\
//’ \‘ 1 \
/ \ i \
/7 v ‘\
/ \ 1
/ \ 1 \
/ 1\ \
] [1
i) \
I ‘ 11 \
| I 1
1 1 | \
\ I g 1
\\ ,l \ 'I
\\\ _______________ Y \\~ i g

Case 2;

the root is in an maximal independent set

 Then its children can’t be.

* Below that, use the optimal
solution from these smaller

subproblems.

\ N ’
4)| 4 \ \] \
/ I 1 \ / \
I I I
1 \] \
I i I
[\ ! \
1 1 ! v ! 1
k v 1Y i I |
<) \ / \ 102 J

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

103

Recursive formulation: try 1

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

o Alu] =

ZvEu.ChildI’en Alv]

max

Weight(u) T Zveu,grandchildren

When we implement this, how do
we keep track of this term?

C

Recursive formulation: try 2

Keep two arrays!

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

* Let B[u] =), Alv]

veu.children

ZvEu.Childl‘en Alv]
* Alu] = max

weight(u) + ZvEu.Children

- — -

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

106

A top-down DP algorithm

* MIS_subtree(u): Mitjay;,
e - ¢ €8l
e ifuis aleaf: h:’t We Wlf/)/ba/ raye
* Alu] = weight(u) e reCUrs,-L.:Se 'n gy j} ’
* Blu]=0 € Calfs,
e else:
e for vin u.children:
* MIS subtree(v)
» Alu] =max{} _ hildrenAlv] weight(u) + }
Running time?
e V| |S(T) * We visit each vertex once, and for
every vertex we do O(1) work:
* MIS_subtree(T.root) « Make a recursive call
* return A[T.root] * Participate in summations of
parent node
* Running time is O(|V]) 7

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

* MIS_subtree(u):

his js ex
. a
* ifuis a leaf: except Wec,té’;he Me pseudocog
i Co
* return weight(u) are jyst ca//,-nltCMTd the tapja and
in S
e else: stead O looking up\:;J ?tree(v)
Vlio
* return max{ Zveu.children MIS_subtree(v), "Blv].

weight(u) +). MIS_subtree(v) }

veugrandchildren

« MIS(T):

e return MIS_subtree(T.root)

108

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

How often would we ask ‘
about the subtree rooted
here?

Once for this node
and once for

But we then ask ‘ . a . ‘

about this node

twice, and here. \ ‘ .

This will blow up exponentially
without using dynamic

programming to take advantage ’ ‘ ‘ ‘ ’ ’ ’ ’

of overlapping subproblems.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

person.
You do this one!
110

What have we |learned?

* We can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

* For this example, it was natural to implement our
DP algorithm in a top-down way.

Recap

* Today we saw examples of how to come up with
dynamic programming algorithmes.
* Longest Common Subsequence
e Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

112

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

* Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

113

-

Reca i
~_ SOBORINGIN
* Today we saw examples of how to come up with
dynamic programming algorithmes.
* Longest Common Subsequence
* Knapsack two ways

maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

* Sometimes coming up with the right substructure
takes some creativity
* Practice on homework! ©

* For even more practice check out additional
examples/practice problems in CLRS or section!

114

Next time

* Greedy algorithms!

Before next time

* Pre-lecture exercise: Greed is good!
* Good luck on exam 3.

115

