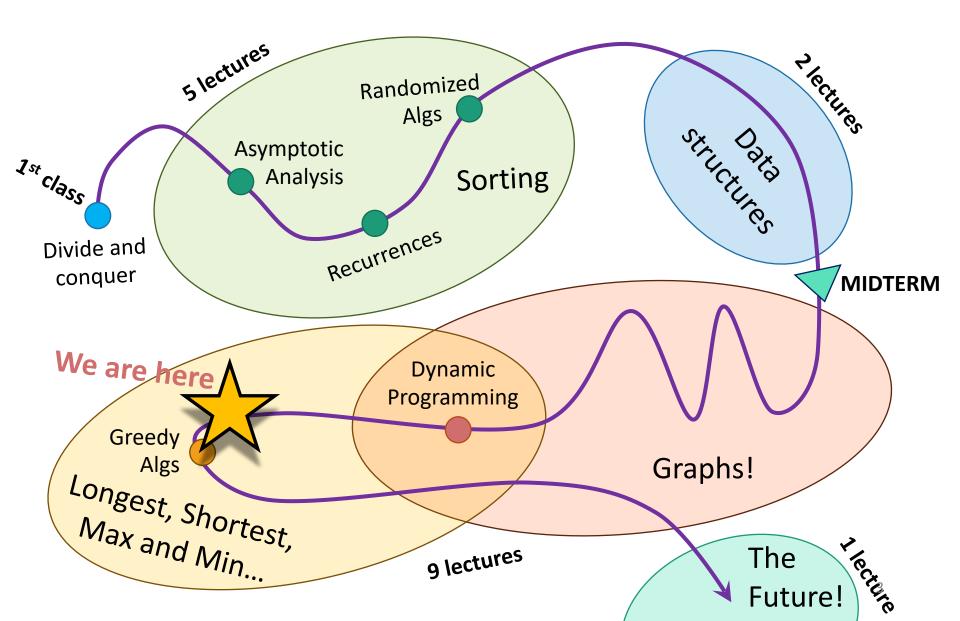
Lecture 14

Greedy algorithms!

Announcements

Last homework will be out today!

Roadmap



This week

Greedy algorithms!

- Make choices one-at-a-time.
- Never look back.
- Hope for the best.

Today

- One example of a greedy algorithm that does not work:
 - Knapsack again ▼
- Three examples of greedy algorithms that do work:
 - Activity Selection
 - Job Scheduling
 - Huffman Coding (if time)

You saw these on your pre-lecture exercise!

Non-example

Unbounded Knapsack.

Capacity: 10

Item: Weight:

6

2

4

3

1135

Value: 20

8

14

13

Unbounded Knapsack:

- Suppose I have infinite copies of all items.
- What's the most valuable way to fill the knapsack?

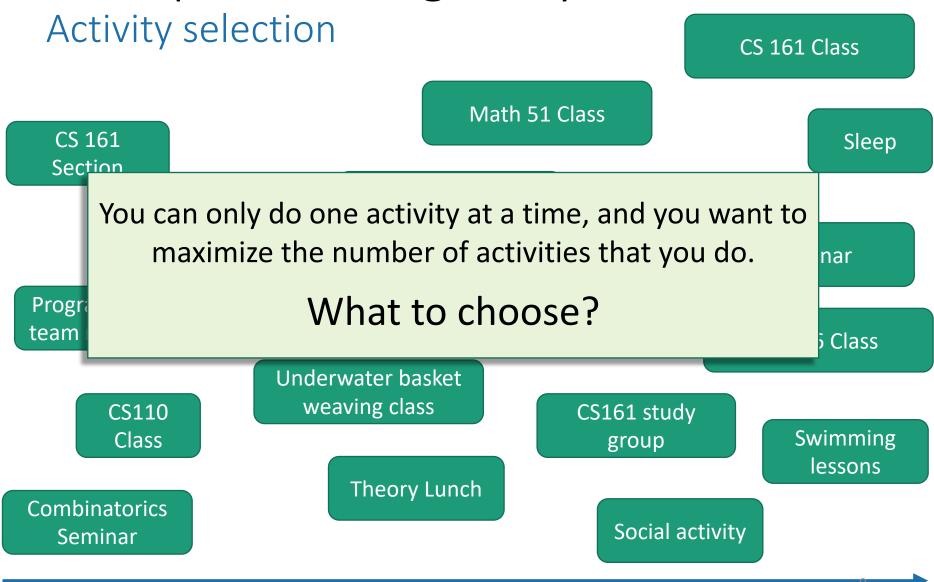
Total weight: 10 Total value: 42

"Greedy" algorithm for unbounded knapsack:

- Tacos have the best Value/Weight ratio!
- Keep grabbing tacos!

Total weight: 9
Total value: 39

Example where greedy works

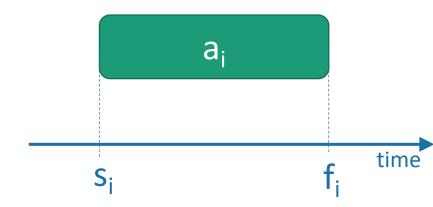


time

Activity selection

• Input:

- Activities a₁, a₂, ..., a_n
- Start times s₁, s₂, ..., s_n
- Finish times f₁, f₂, ..., f_n



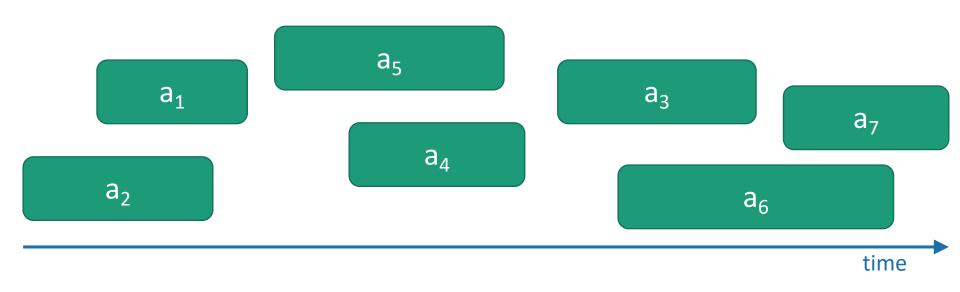
Output:

 A way to maximize the number of activities you can do today.

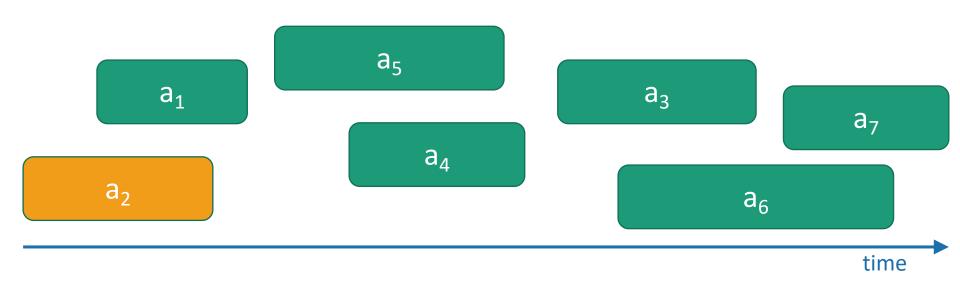
In what order should you greedily add activities?

Think-share!

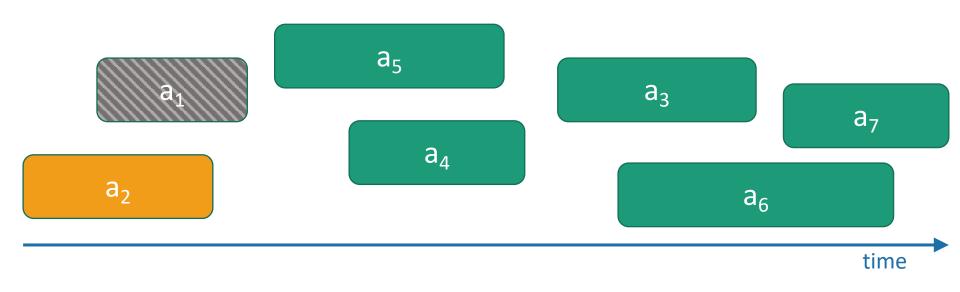
1 minute think; (wait) 1 minute share



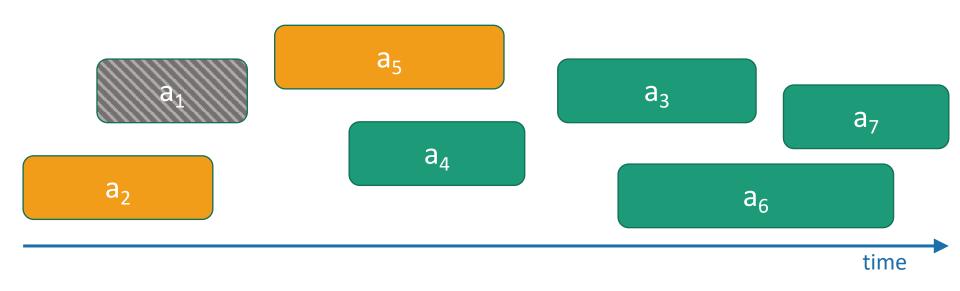
- Pick activity you can add with the smallest finish time.
- Repeat.



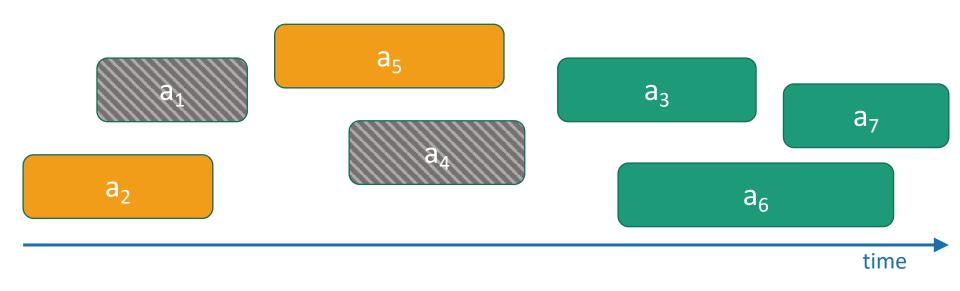
- Pick activity you can add with the smallest finish time.
- Repeat.



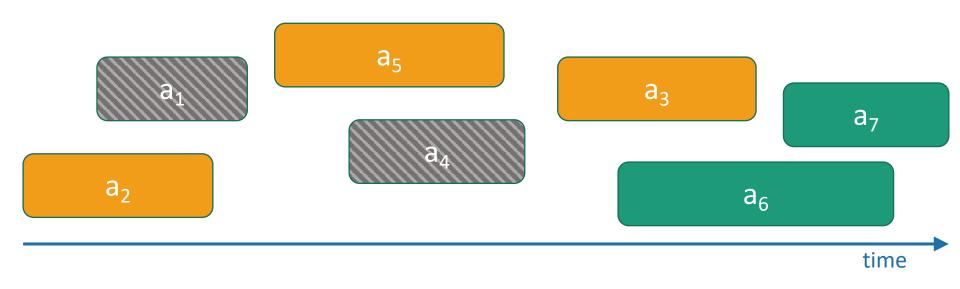
- Pick activity you can add with the smallest finish time.
- Repeat.



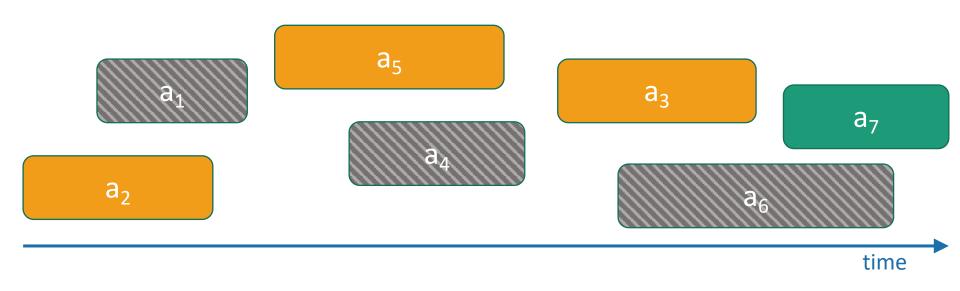
- Pick activity you can add with the smallest finish time.
- Repeat.



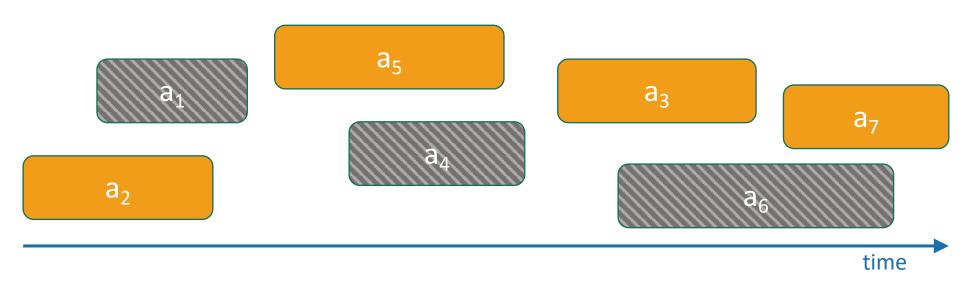
- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.



- Pick activity you can add with the smallest finish time.
- Repeat.

At least it's fast

- Running time:
 - O(n) if the activities are already sorted by finish time.
 - Otherwise, O(nlog(n)) if you have to sort them first.

What makes it greedy?

- At each step in the algorithm, make a choice.
 - Hey, I can increase my activity set by one,
 - And leave lots of room for future choices,
 - Let's do that and hope for the best!!!
- Hope that at the end of the day, this results in a globally optimal solution.

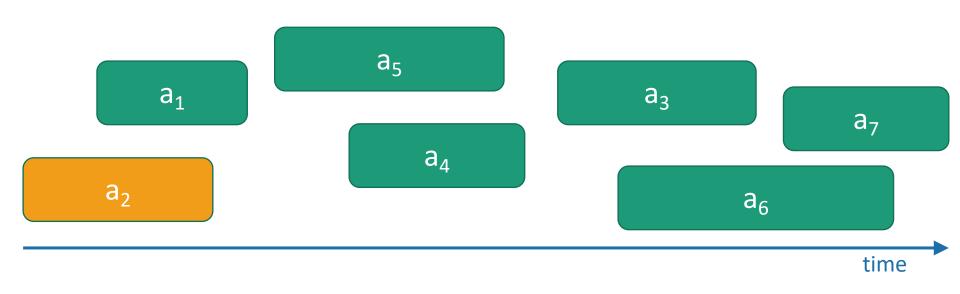
Three Questions

- Does this greedy algorithm for activity selection work?
 - Yes. (We will see why in a moment...)

- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.

- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy...

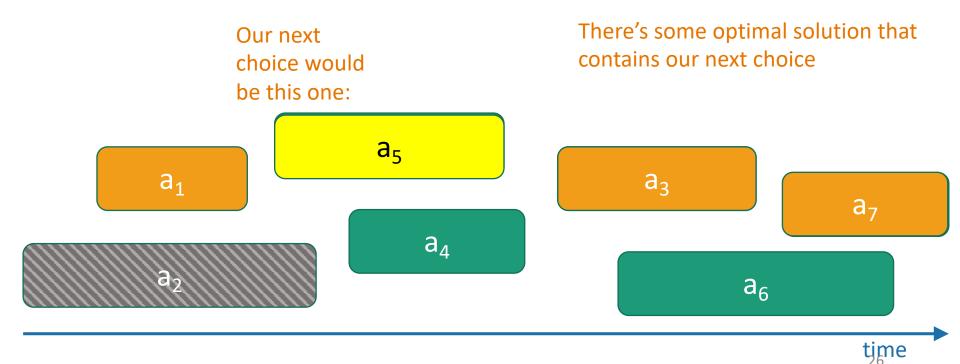
Back to Activity Selection



- Pick activity you can add with the smallest finish time.
- Repeat.

Why does it work?

Whenever we make a choice, we don't rule out an optimal solution.

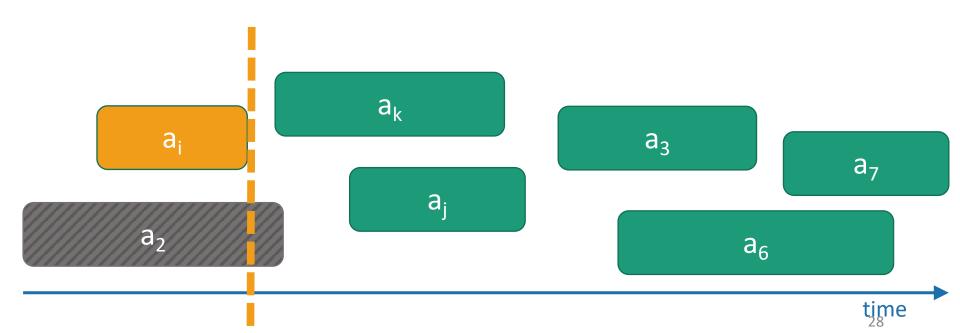


Assuming that statement...

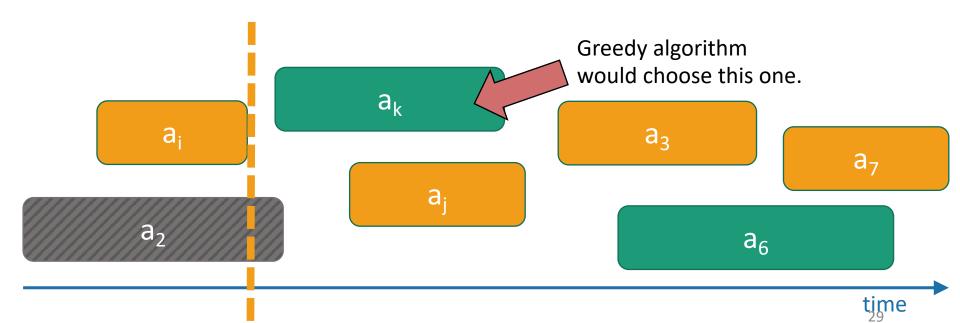
- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

Lucky the Lackadaisical Lemur

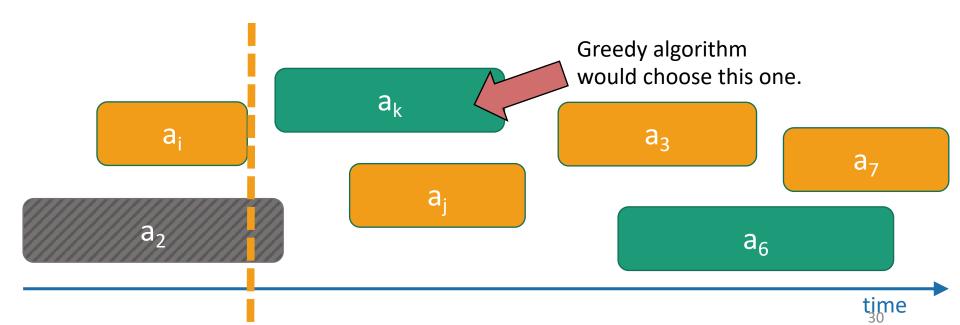
 Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.



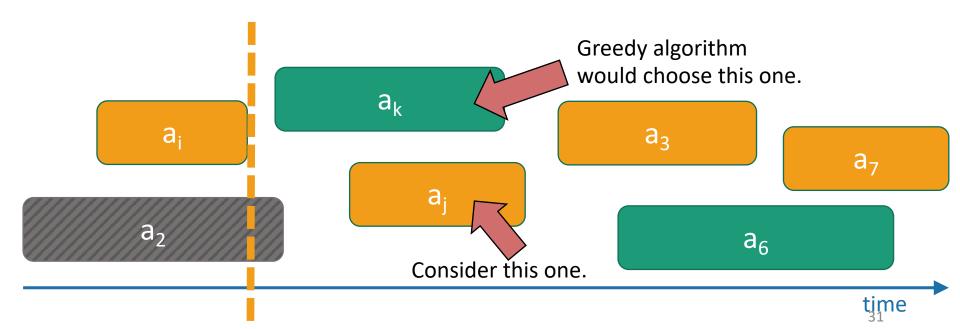
- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_k.
- If a_k is in T*, we're still on track.



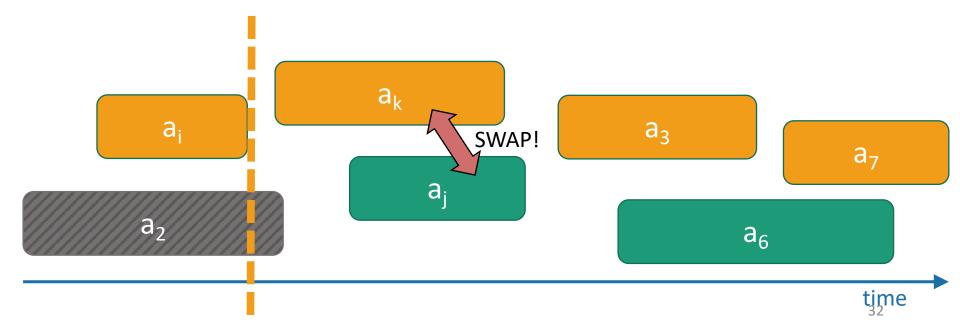
- Suppose we've already chosen a_i, and there is still an optimal solution T* that extends our choices.
- Now consider the next choice we make, say it's a_k.
- If a_k is **not** in T*...



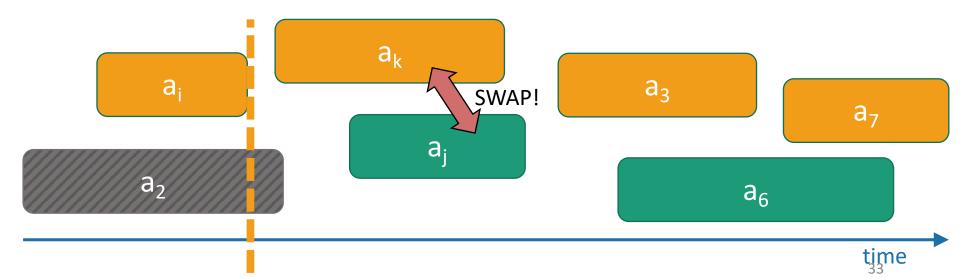
- If a_k is **not** in T^* ...
- Let a_i be the activity in T* with the smallest end time.
- Now consider schedule T you get by swapping a_i for a_k



- If a_k is **not** in T^* ...
- Let a_j be the activity in T* (after a_i ends) with the smallest end time.
- Now consider schedule T you get by swapping a_i for a_k

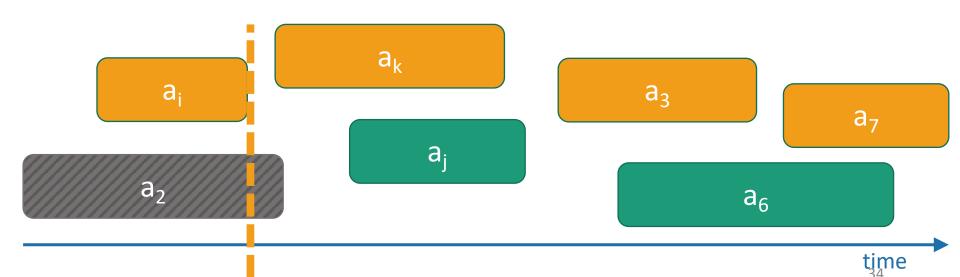


- This schedule T is still allowed.
 - Since a_k has the smallest ending time, it ends before a_i.
 - Thus, a_k doesn't conflict with anything chosen after a_i.
- And T is still optimal.
 - It has the same number of activities as T*.



We've just shown:

- If there was an optimal solution that extends the choices we made so far...
- ...then there is an optimal schedule that also contains our next greedy choice a_k.



So the algorithm is correct

- We never rule out an optimal solution
- At the end of the algorithm, we've got some solution.
- So it must be optimal.

Lucky the Lackadaisical Lemur

So the algorithm is correct

Plucky the Pedantic Penguin

- Inductive Hypothesis:
 - After adding the t-th thing, there is an optimal solution that extends the current solution.
- Base case:
 - After adding zero activities, there is an optimal solution extending that.
- Inductive step:
 - We just did that!
- Conclusion:
 - After adding the last activity, there is an optimal solution that extends the current solution.
 - The current solution is the only solution that extends the current solution.
 - So the current solution is optimal.

Three Questions

- 1. Does this greedy algorithm for activity selection work?
 - Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.

- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy...

One Common strategy for greedy algorithms

- Make a series of choices.
- Show that, at each step, our choice won't rule out an optimal solution at the end of the day.
- After we've made all our choices, we haven't ruled out an optimal solution, so we must have found one.

One Common strategy (formally) for greedy algorithms

• Inductive Hypothesis:

"Success" here means "finding an optimal solution."

- After greedy choice t, you haven't ruled out success.
- Base case:
 - Success is possible before you make any choices.
- Inductive step:
 - If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.
- Conclusion:
 - If you reach the end of the algorithm and haven't ruled out success then you must have succeeded.

One Common strategy

for showing we don't rule out success

- Suppose that you're on track to make an optimal solution T*.
 - E.g., after you've picked activity i, you're still on track.
- Suppose that T* disagrees with your next greedy choice.
 - E.g., it *doesn't* involve activity k.
- Manipulate T* in order to make a solution T that's not worse but that agrees with your greedy choice.
 - E.g., swap whatever activity T* did pick next with activity k.

Note on "Common Strategy"

- This common strategy is not the only way to prove that greedy algorithms are correct!
- I'm emphasizing it in lecture because it often works, and it gives you a framework to get started.
- There is a mathematical subject called "matroid theory". Often (but not always) when greedy algorithms work correctly, matroid theory can explain why. CLRS has a small section on this.

Three Questions

- 1. Does this greedy algorithm for activity selection work?
 - Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When the problem exhibits especially nice optimal substructure.

- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy...

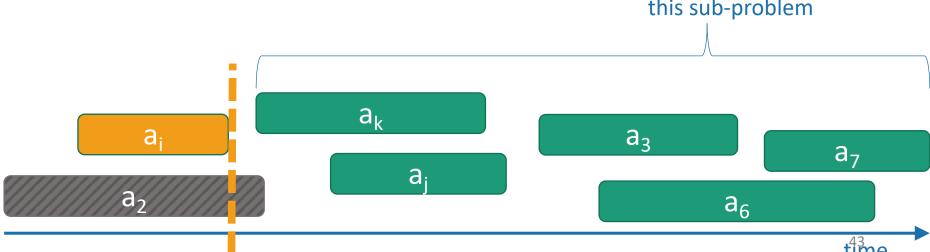
Optimal sub-structure

in greedy algorithms

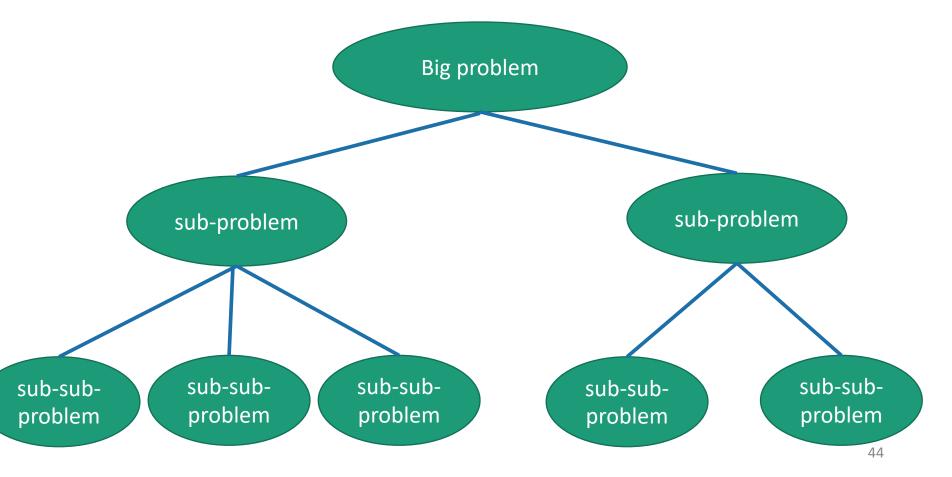
 Our greedy activity selection algorithm exploited a natural sub-problem structure:

A[i] = number of activities you can do after the end of activity i

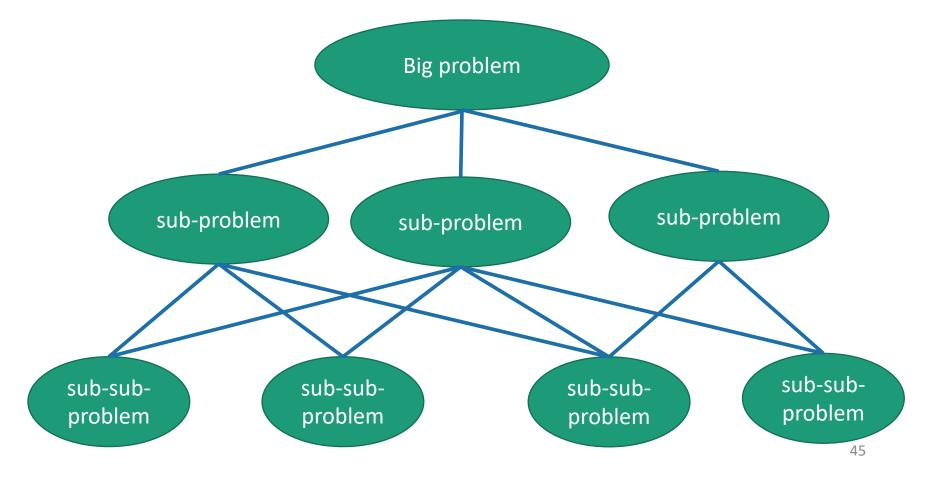
How does this substructure relate to that of divide-and-conquer or DP?
 A[i] = solution to this sub-problem



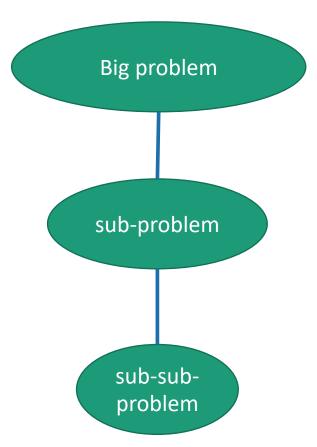
• Divide-and-conquer:



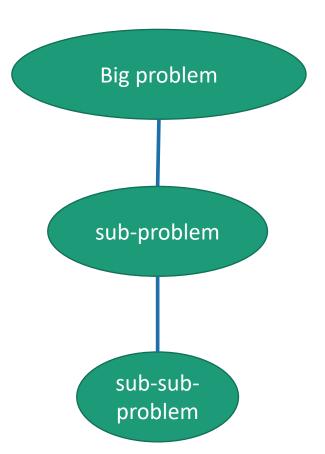
• Dynamic Programming:



Greedy algorithms:



Greedy algorithms:



- Not only is there optimal sub-structure:
 - optimal solutions to a problem are made up from optimal solutions of sub-problems
- but each problem depends on only one sub-problem.

Write a DP version of activity selection (where you fill in a table)! [See hidden slides in the .pptx file for one way]

Three Questions

- 1. Does this greedy algorithm for activity selection work?
 - Yes.
- 2. In general, when are greedy algorithms a good idea?
 - When they exhibit especially nice optimal substructure.

- 3. The "greedy" approach is often the first you'd think of...
 - Why are we getting to it now, in Week 8?
 - Proving that greedy algorithms work is often not so easy.

Let's see a few more examples

Another example:

Scheduling

CS161 HW

Personal hygiene

Math HW

Administrative stuff for student club

Econ HW

Do laundry

Meditate

Sleep

Practice musical instrument

Read lecture notes

Have a social life

Scheduling

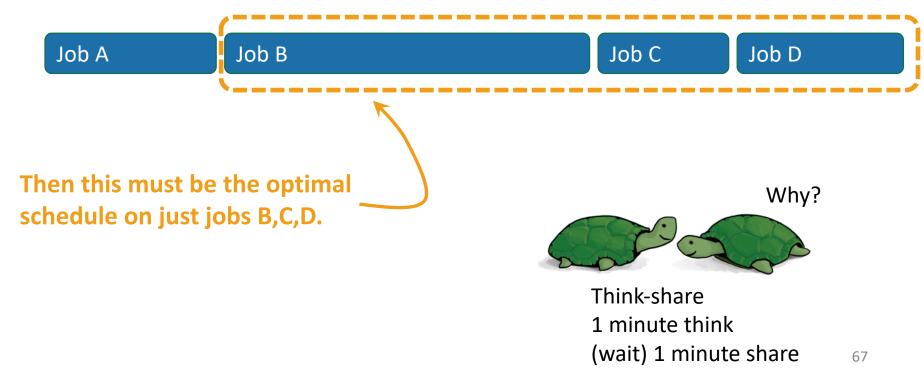
- n tasks
- Task i takes t_i hours
- For every hour that passes until task i is done, pay c_i

- CS161 HW, then Sleep: costs $10 \cdot 2 + (10 + 8) \cdot 3 = 74$ units
- Sleep, then CS161 HW: costs $8 \cdot 3 + (10 + 8) \cdot 2 = 60$ units

Optimal substructure

This problem breaks up nicely into sub-problems:

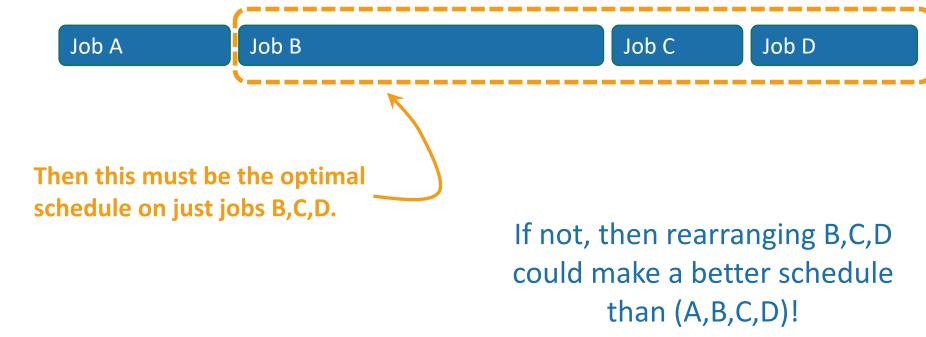
Suppose this is the optimal schedule:



Optimal substructure

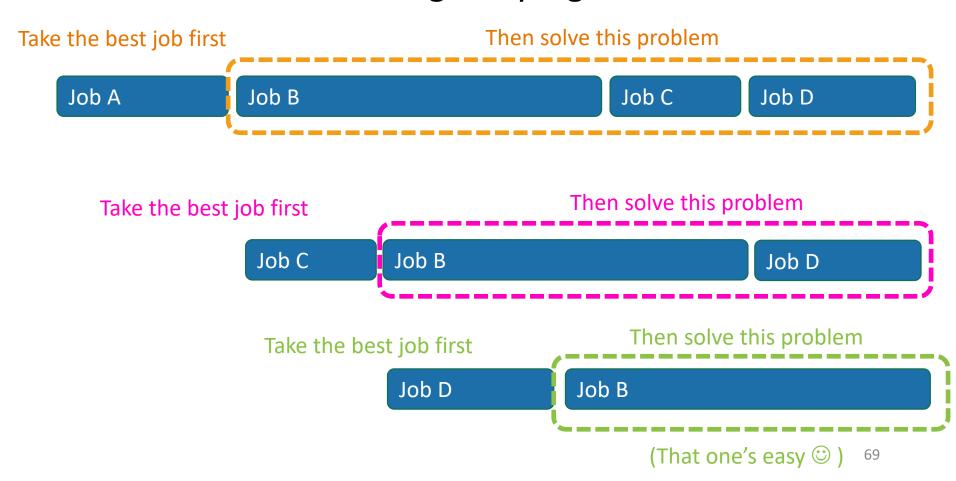
This problem breaks up nicely into sub-problems:

Suppose this is the optimal schedule:



Optimal substructure

Seems amenable to a greedy algorithm:



What does "best" mean?

Note: here we are defining x, y, z, and w. (We use c_i and t_i for these in the general problem, but we are changing notation for just this thought experiment to save on subscripts.)

AB is better than BA when:

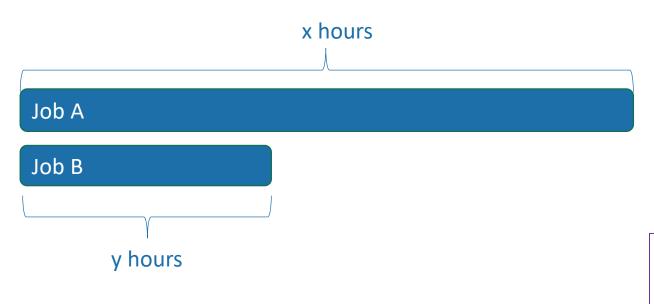
$$xz + (x + y)w \le yw + (x + y)z$$

$$xz + xw + yw \le yw + xz + yz$$

$$wx \le yz$$

$$\frac{w}{y} \le \frac{z}{x}$$

Of these two jobs, which should we do first?



- Cost(A then B) = $x \cdot z + (x + y) \cdot w$
- Cost(B then A) = $y \cdot w + (x + y) \cdot z$

Cost: z units per hour until it's done.

Cost: w units per hour until it's done.

What matters is the ratio:

cost of delay time it takes

"Best" means biggest ratio.70

Idea for greedy algorithm

• Choose the job with the biggest $\frac{\text{cost of delay}}{\text{time it takes}}$ ratio.

Lemma

This greedy choice doesn't rule out success

Already chosen E

Job E

Job C

Job A

Job B

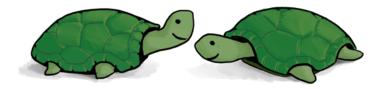
Job D

Say greedy chooses job B

- Then if you choose the next job to be the one left that maximizes the ratio cost/time, you still won't rule out success.
- Proof sketch:
 - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.

How can we manipulate the optimal solution above to make an optimal solution where B is the next job we choose after E?

1 minute think; (wait) 1 minute share



Lemma

Already

chosen E

This greedy choice doesn't rule out success

Job E Job C Job A Job B Job D Say greedy chooses job B

- Then if you choose the next job to be the one left that maximizes the ratio cost/time, you still won't rule out success.
- Proof sketch:
 - Say Job B maximizes this ratio, but it's not the next job in the opt. soln.
 - Switch A and B! Nothing else will change, and we just showed that the cost of the solution won't increase.

Job E Job C Job B Job A Job D

• Repeat until B is first.

Job E Job B Job C Job A Job D

Now this is an optimal schedule where B is first.

Back to our framework for proving correctness of greedy algorithms

Inductive Hypothesis:

After greedy choice t, you haven't ruled out success.

Base case:

Success is possible before you make any choices.

Inductive step:

 If you haven't ruled out success after choice t, then you won't rule out success after choice t+1.

Conclusion:

 If you reach the end of the algorithm and haven't ruled out success then you must have succeeded. Just did the inductive step!

Greedy Scheduling Solution

- scheduleJobs(JOBS):
 - Sort JOBS in decreasing order by the ratio:

•
$$r_i = \frac{c_i}{t_i} = \frac{\text{cost of delaying job i}}{\text{time job i takes to complete}}$$

Return JOBS

Running time: O(nlog(n))

Now you can go about your schedule peacefully, in the optimal way.

Aside: Dealing with (scheduling) stress

- Residential Deans / Graduate Life Office
- Well-Being at Stanford:
 - http://wellbeing.stanford.edu/
- CAPS (Counseling and Psychological Services)
 - https://vaden.stanford.edu/caps
- Bridge Peer Counseling Center
 - https://web.stanford.edu/group/bridge/

• ...

Greedy Scheduling Solution

- scheduleJobs(JOBS):
 - Sort JOBS in decreasing order by the ratio:

•
$$r_i = \frac{c_i}{t_i} = \frac{\text{cost of delaying job i}}{\text{time job i takes to complete}}$$

Return JOBS

Running time: O(nlog(n))

Now you can go about your schedule peacefully, in the optimal way.

What have we learned?

A greedy algorithm works for scheduling

- This followed the same outline as the previous example:
 - Identify optimal substructure:

- Find a way to make choices that won't rule out an optimal solution.
 - largest cost/time ratios first.

One more example Huffman coding

- everyday english sentence

- qwertyui_opasdfg+hjklzxcv

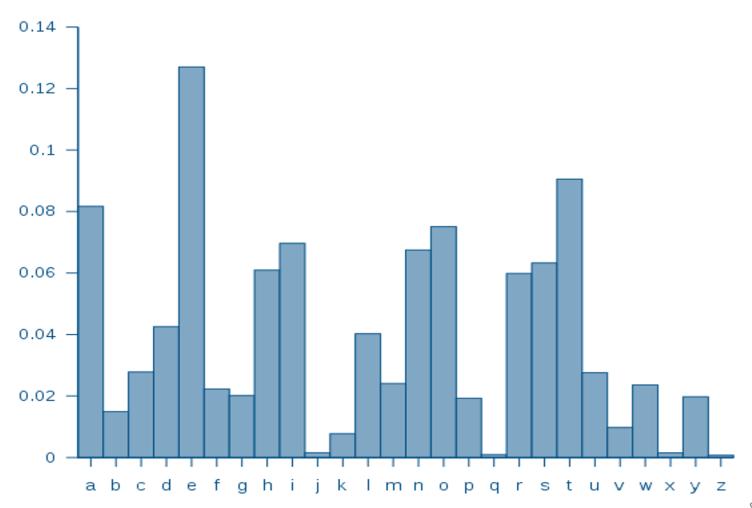
One more example Huffman coding

ASCII is pretty wasteful for English sentences. If **e** shows up so often, we should have a shorter way of representing it!

- everyday english sentence

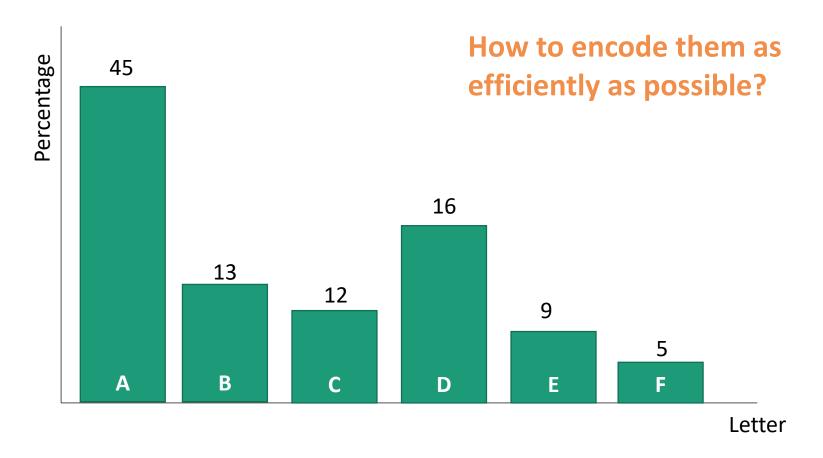
- qwertyui_opasdfg+hjklzxcv

Suppose we have some distribution on characters



Suppose we have some distribution on characters

For simplicity, let's go with this made-up example

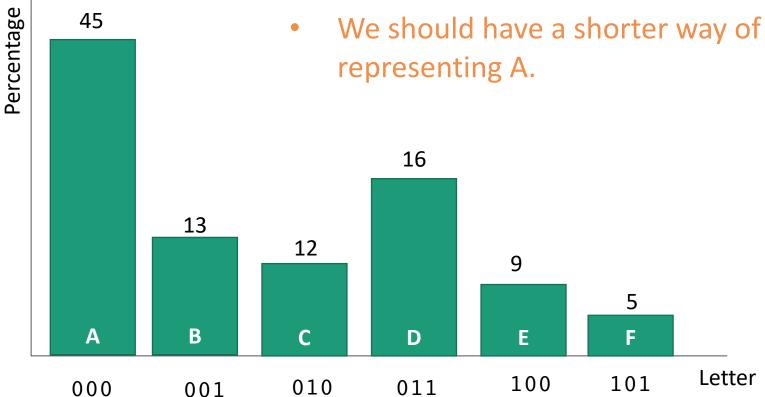


Try 0 (like ASCII)

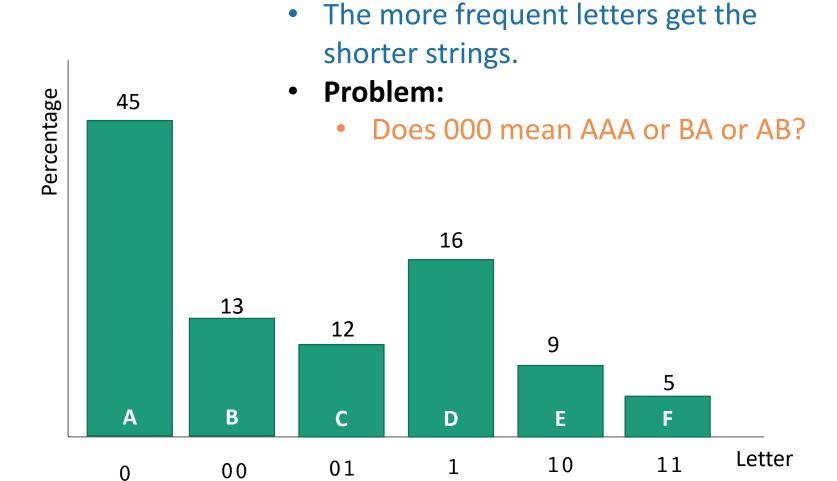
 Every letter is assigned a binary string of three bits.

Wasteful!

110 and 111 are never used.

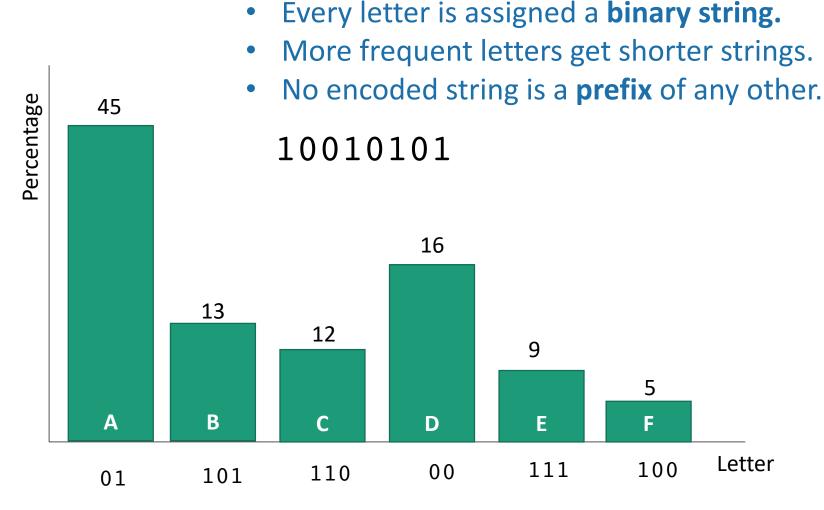


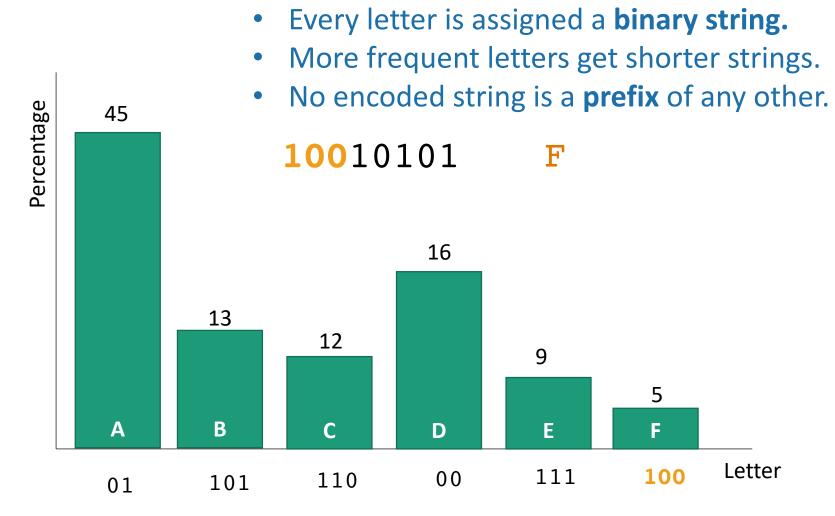
Try 1

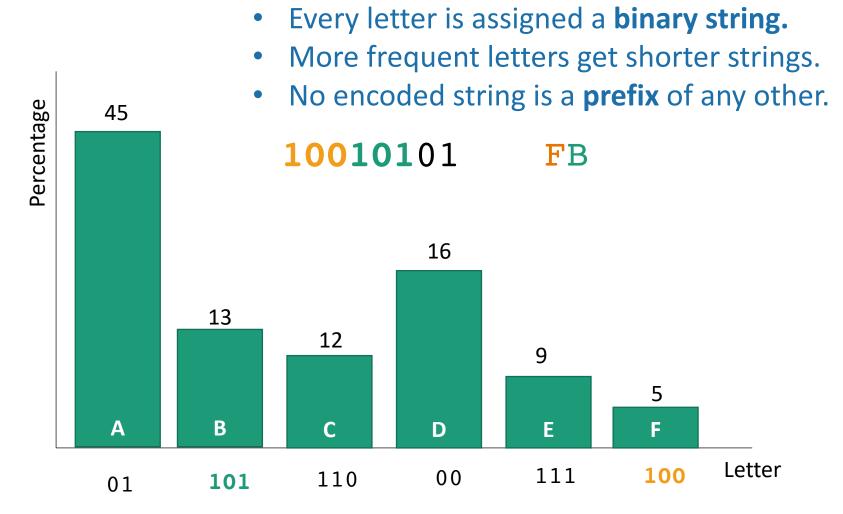


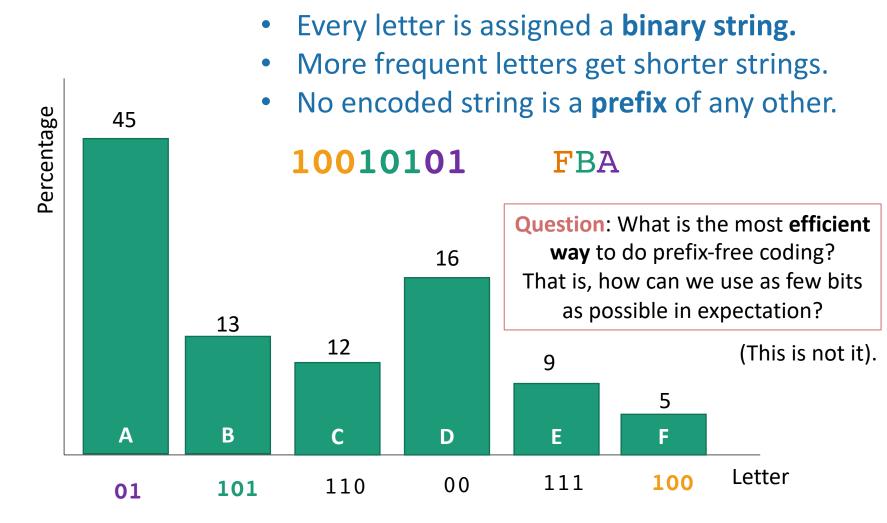
of one or two bits.

Every letter is assigned a binary string

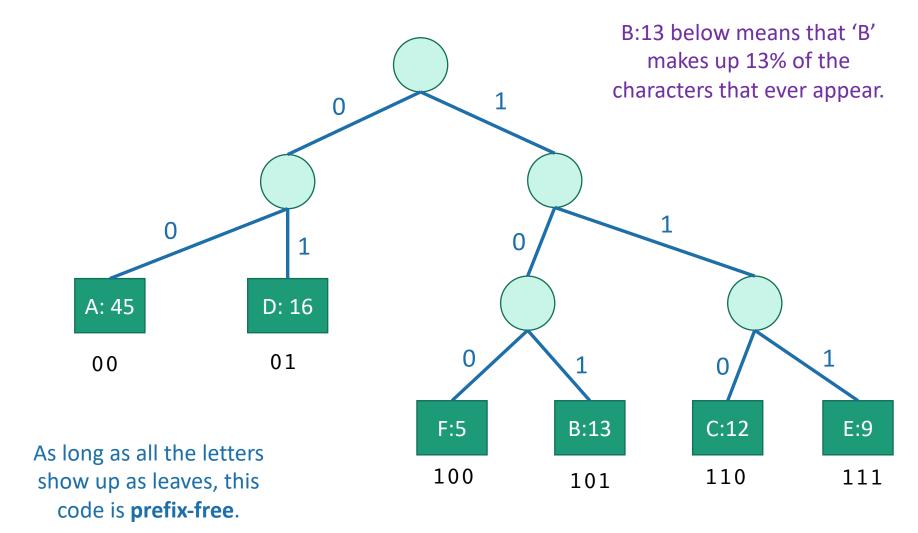






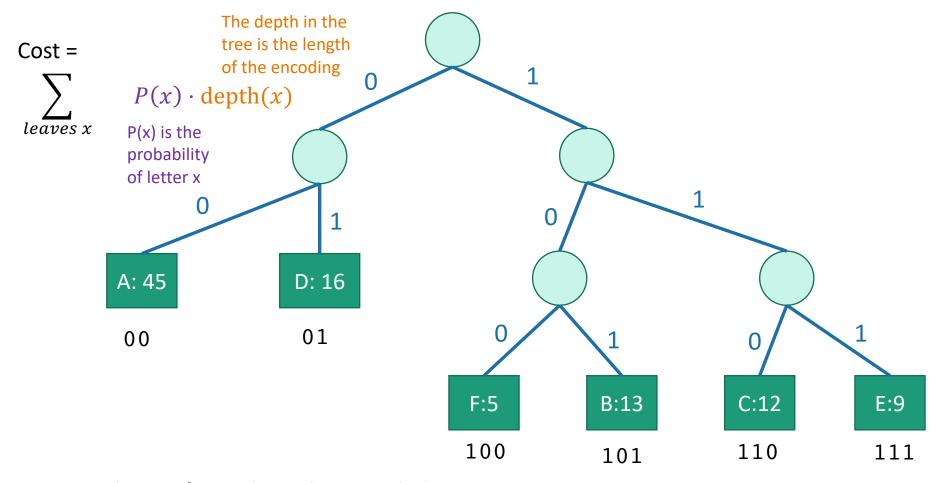


A prefix-free code is a tree



How good is a tree?

- Imagine choosing a letter at random from the language.
 - Not uniformly random, but according to our histogram!
- The cost of a tree is the expected length of the encoding of a random letter.



Expected cost of encoding a letter with this tree:

$$2(0.45 + 0.16) + 3(0.05 + 0.13 + 0.12 + 0.09) = 2.39$$

Question

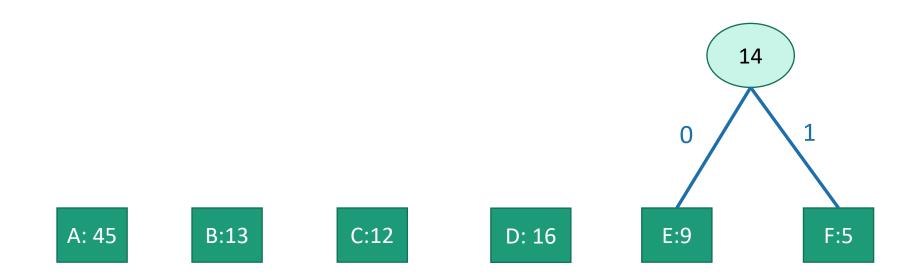
 Given a distribution P on letters, find the lowestcost tree, where

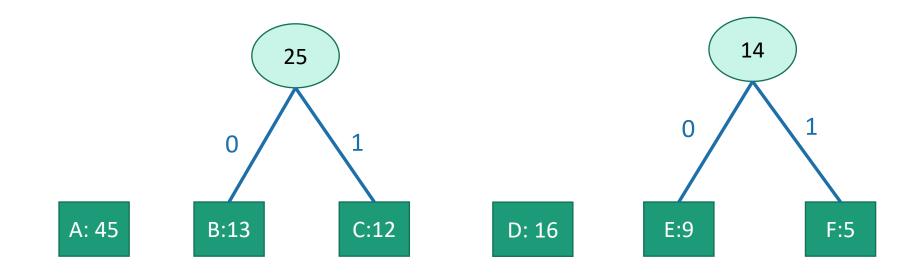
cost(tree) =
$$\sum_{\text{leaves } x} P(x) \cdot \text{depth}(x)$$

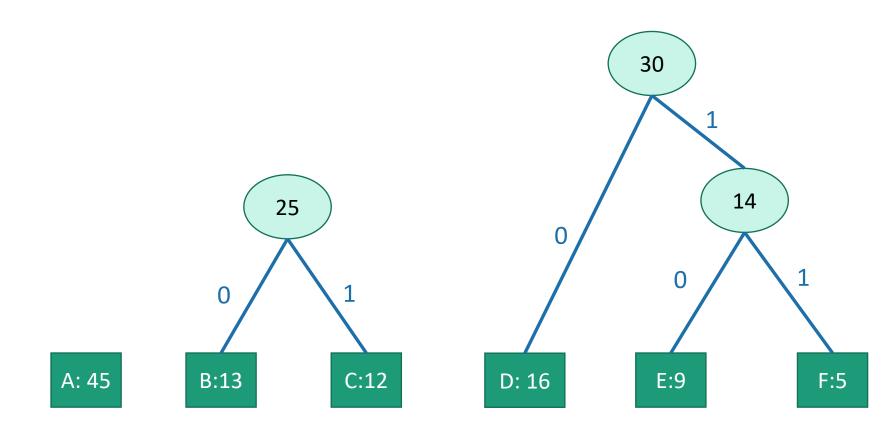
$$\sum_{\text{leaves } x} P(x) \cdot \text{depth}(x)$$
The depth in the tree is the length of letter x of the encoding

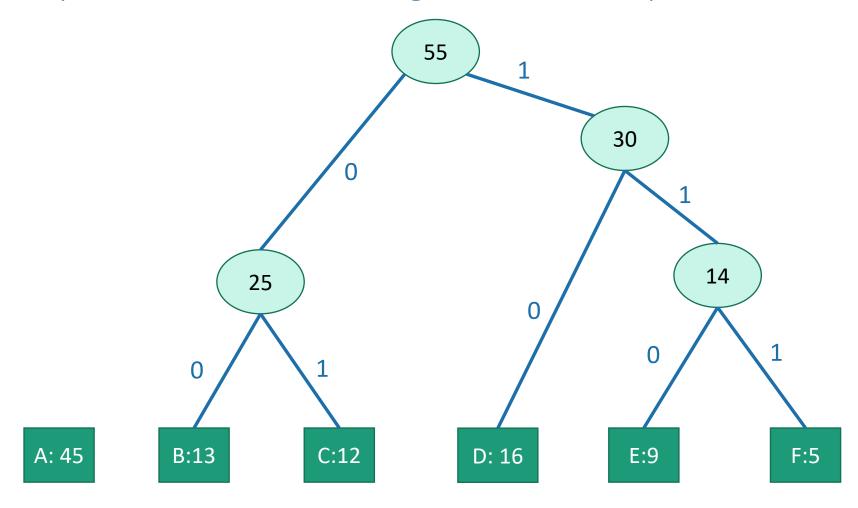
Greedy algorithm

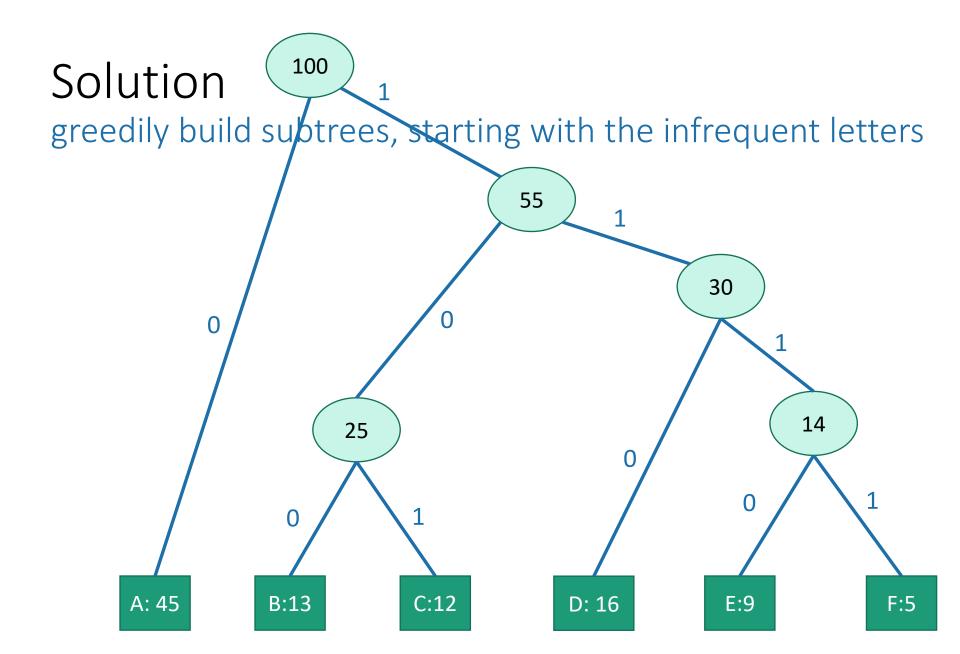
- Greedily build sub-trees from the bottom up.
- Greedy goal: less frequent letters should be further down the tree.

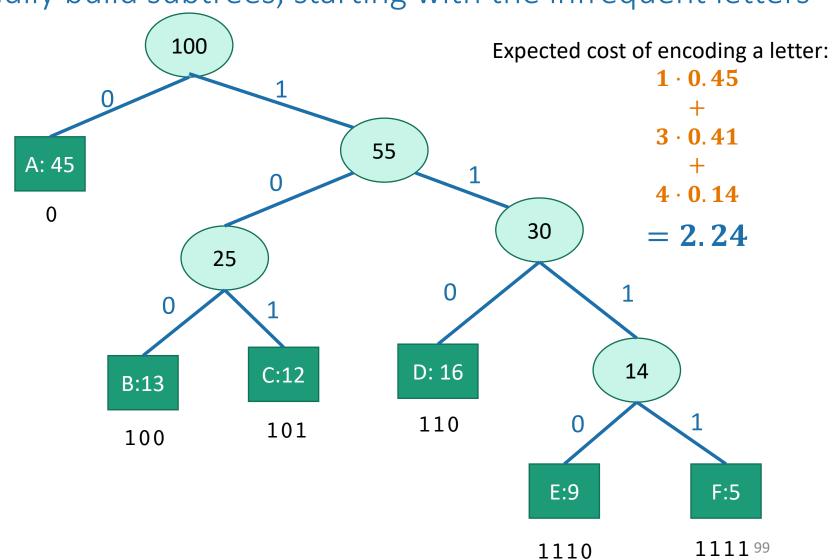






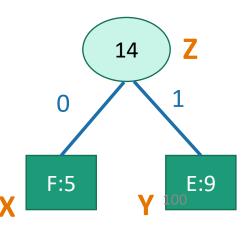






What exactly was the algorithm?

- Create a node like D: 16 for each letter/frequency
 - The key is the frequency (16 in this case)
- Let CURRENT be the list of all these nodes.
- while len(CURRENT) > 1:
 - X and Y ← the nodes in CURRENT with the smallest keys.
 - Create a new node Z with Z.key = X.key + Y.key
 - Set Z.left = X, Z.right = Y
 - Add Z to CURRENT and remove X and Y
- return **CURRENT**[0]



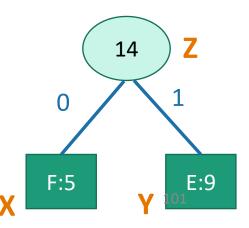
A: 45 B:13

C:12

D: 16

This is called Huffman Coding:

- Create a node like D: 16 for each letter/frequency
 - The key is the frequency (16 in this case)
- Let CURRENT be the list of all these nodes.
- while len(CURRENT) > 1:
 - X and Y ← the nodes in CURRENT with the smallest keys.
 - Create a new node Z with Z.key = X.key + Y.key
 - Set Z.left = X, Z.right = Y
 - Add Z to CURRENT and remove X and Y
- return **CURRENT**[0]



A: 45

B:13

C:12

D: 16

Does it work?

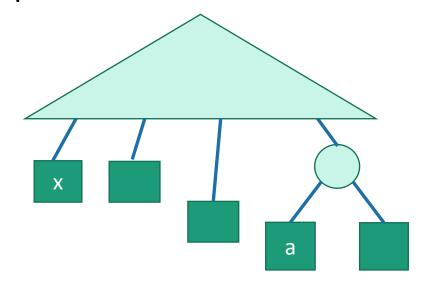
- Yes.
- We will **sketch** a proof here.
- Same strategy:
 - Show that at each step, the choices we are making won't rule out an optimal solution.
 - Lemma:

• Suppose that x and y are the two least-frequent letters. Then there is an optimal tree where x and y are siblings.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

Say that an optimal tree looks like this:



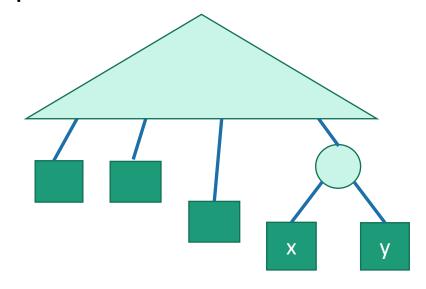
Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
 - The cost never increased so this tree is still optimal.

Lemma proof idea

If x and y are the two least-frequent letters, there is an optimal tree where x and y are siblings.

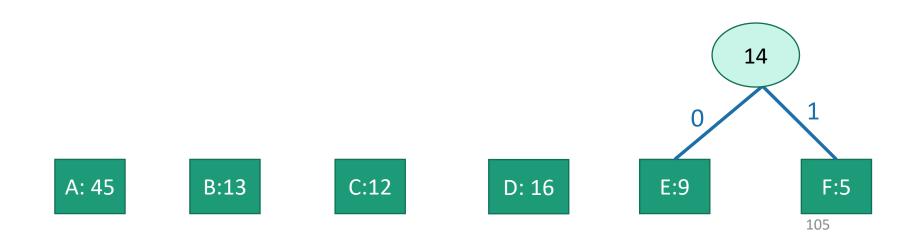
Say that an optimal tree looks like this:



Lowest-level sibling nodes: at least one of them is neither x nor y

- What happens to the cost if we swap x for a?
 - the cost can't increase; a was more frequent than x, and we just made a's encoding shorter and x's longer.
- Repeat this logic until we get an optimal tree with x and y as siblings.
 - The cost never increased so this tree is still optimal.

- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters.
 Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.



- Show that at each step, the choices we are making won't rule out an optimal solution.
- Lemma:
 - Suppose that x and y are the two least-frequent letters.
 Then there is an optimal tree where x and y are siblings.
- That's enough to show that we don't rule out optimality on the first step.

• To show that continue to not rule out optimality once we start grouping stuff...

A: 45

B:13

C:12

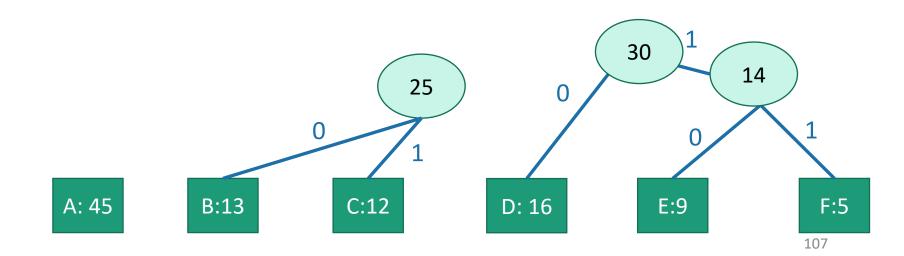
D: 16

E:9

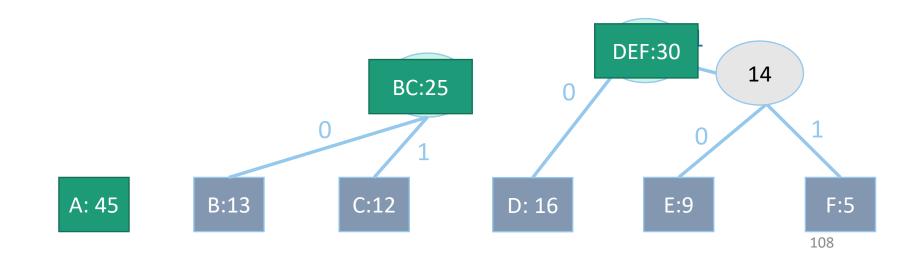
F:5

106

- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.



- To show that continue to not rule out optimality once we start grouping stuff...
- The basic idea is that we can treat the "groups" as leaves in a new alphabet.
- Then we can use the lemma from before.



For a full proof

See lecture notes or CLRS!

What have we learned?

- ASCII isn't an optimal way* to encode English, since the distribution on letters isn't uniform.
- Huffman Coding is an optimal way!
- To come up with an optimal scheme for any language efficiently, we can use a greedy algorithm.

- To come up with a greedy algorithm:
 - Identify optimal substructure
 - Find a way to make choices that won't rule out an optimal solution.
 - Create subtrees out of the smallest two current subtrees.

Recap I

- Greedy algorithms!
- Three examples:
 - Activity Selection
 - Scheduling Jobs
 - Huffman Coding
 - If we had time

Recap II

- Greedy algorithms!
- Often easy to write down
 - But may be hard to come up with and hard to justify
- The natural greedy algorithm may not always be correct.
- A problem is a good candidate for a greedy algorithm if:
 - it has optimal substructure
 - that optimal substructure is REALLY NICE
 - solutions depend on just one other sub-problem.

Next time

Greedy algorithms for Minimum Spanning Tree!

Before next time

Pre-lecture exercise: thinking about MSTs