Lecture 16

Min Cut and Karger’s Algorithm

Announcements

* HW8 Due Wednesday

e Midterm 4 on Mon-Tue next week.
e Cannot be dropped
 Material covered this week is included

Last time

* Minimum Spanning Trees!
* Prim’s Algorithm
* Kruskal’s Algorithm

Today

* Minimum Cuts!
e Karger’s algorithm
e Karger-Stein algorithm

* Back to randomized algorithms!

*For today, all graphs
are undirected and

Recall: cuts in graphs umweighted.

* A cut is a partition of the vertices into two nonempty
parts.

*For today, all graphs
are undirected and

Recall: cuts in graphs amweighted.

* A cut is a partition of the vertices into two nonempty
parts. g

This is not a cut

This is a cut

These edges cross the cut.
 They go from one part to the other.

This is a cut

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

10

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

11

Why might we care about global
minimum cuts?

* Clustering: /

big edge
weights*
between similar

/ pixels.
* Image Segmentation = g e
5E 0E8 -8.470-0-0- 03094
0SSOSO HS
SO OIS
» L5 -0-6--518¢
090 00EL 2P

——————— o’

12
*For the rest of today edges aren’t weighted; but the algorithm can be adapted to deal with edge weights.

Karger’s algorithm

* Finds global minimum cuts in undirected graphs
* Randomized algorithm

e Karger’s algorithm might be wrong.
* Compare to QuickSort, which just might be slow.

* Why would we want an algorithm that might be
wrong?
e With high probability it won’t be wrong.

* Maybe the stakes are low and the cost of a
deterministic algorithm is high.

13

Different sorts of gambling

* QuickSort is a Las Vegas randomized algorithm

* It is always correct. Zeshtf_"s liia
ecnnical term.

* It might be slow.

Different sorts of gambling

e Karger’s Algorithm is a Monte Carlo randomized algorithm
* It is always fast.
* It might be wrong.

15

Karger’s algorithm

* Pick a random edge.
* Contract it.
* Repeat until you only have two vertices left.

New node!

Why is this a good idea? WEe’ll see shortly.
16

Karger’s algorithm

Karger’s algorithm

Create a
supernode!

-y,
- -~
-
-

Create a
superedge!

19

Karger’s algorithm

Create a
Loy supernode!

/7 A

[b)

1 d,

1]

N / {e/b,?
Create a
superedge! {Qa 1 Create a

Cb !
) \6:‘;\\ superedge!

(—"

20

Karger’s algorithm

-
-~ Ss

Karger’s algorithm

-
- So

U4
g: a,b Create a
\

. / 84) superedge! /e

Create a
superedge!

Create a
supernode!

22

Karger’s algorithm

-
- So

U4
[ab Create a
5 superedge!

- -~
~
= N

N 4

-

Create a
supernode!

Create a
superedge!

23

Karger’s algorithm

-
- So

random
edge!

Dy

24

Karger’s algorithm

-
- So

‘\\ d ;b /l ’f@, b}
N
{c,a}
{c,b}
{d,a}
LLLL {_d)b.} \\\\\\ /
[cd ;{e/}

NNNNN

25

Karger’s algorithm

-
- So

Dy .

Karger’s algorithm

—————
A Ss

27

Karger’s algorithm

random
edge!

28

Karger’s algorithm

~~~~~~~~
4 N

\\\\\\
55555

fffff
~
= N

N /
_______

29



Karger’s algorithm

{fg}
{fe)

{fh)

~ /
_______

random
edge!

30



Karger’s algorithm

Now stop!

* There are only two nodes left.

The minimum cut is given by

—————
7 Ss

',  theremaining super-nodes:
i abcd A - {ab,cd}and{eh,fg}
\ A ‘e 4 1
e g /I If@/o/} ,,
. s - et
—— ™

l 'II \“

[ i ehgf |

| ‘\\ /I'

31



The minimum cut is given by

the remaining super-nodes:

c,d} and {e,h,f,g}

’

b

{a,

s algorithm

]

Karger

lllllllllll
-
-
-~
-
-~
-~
-~

U
32

~
~
~~.-_—”




Karger’s algorithm

 Does it work?

* |s it fast? ’

33



How do we implement this?

* See Lecture 16 IPython Notebook for one way

* This maintains a secondary “superGraph” which keeps
track of superNodes and superEdges

* There’s a skipped slide with pseudocode

* Running time?
* We contract n-2 edges

* Each time we contract an edge we get rid of a vertex, and we
get rid of n — 2 vertices total.

* Naively each contraction takes time O(n)

* Maybe there are 0(n) nodes in the superNodes that we are
merging. (We can do better with fancy data structures).

* So total running time O(n?).

e We can do O(m - a(n)) with a union-find data structure, but
0(n?) is good enough for today. 34



Karger’s algorithm

* Does it work? ’
e

* Is it fast? Create 2
o) \g\upernode!

Think-share!
1 minute think
1 minute share

Create a
superedge!

Create a

superedge!
Algorithm:

* Randomly contract edges until there are only .
two supernodes left.



Karger’s algorithm

e Does it work? ’

No?
 |s it fast? Create a
(] O(n2) -
Create a
superedge!

Create a

superedge!
Algorithm:

 Randomly contract edges until there are only .
two supernodes left.



Why did that work?

* We got really lucky!

* This could have gone wrong in so many ways.

3@

38




Ka rge r,S d |gO rlt h M Say we had chosen this edge




Ka rge r,S d |gO r|t h M Say we had chosen this edge

Now there is no way we could return a cut
that separates b and e.

40



Even worse

If the algorithm EVER chooses either of these edges,
it will be wrong.

41



How likely is that?

* For this particular graph, | did it 10,000 times:

How often does Karger get minimum cuts? (out of 10K trials)

0.5 1 The algorithm is
only correct about
0.4 - 20% of the time!

Frequency of cuts of that size

0 1 2 3 - 5 6 7

Size of cut 42



That doesn’t sound good

* Too see why it’s good after all, we’ll first do a case
study of this graph. Then we’ll generalize.

The plan:

* See that 20% chance of correctness is
actually nontrivial.

* Use repetition to boost an algorithm
that’s correct 20% of the time to an
algorithm that’s correct 99% of the time.

* To see the first point, let’s compare Karger’s
algorithm to the algorithm:

Choose a completely random cut
and hope that it’s a minimum cut. 4



Uniformly random cut in m

* Pick a random way to split the vertices into two parts:




Uniformly random cut in

* Pick a random way to split the vertices into two parts:

* The probability of choosing the minimum cut is*...

number of min cuts in that graph

2
= ~ 0.008
number of ways to split 8 vertices in 2 parts 28 — 2

e Aka, we get a minimum cut 0.8% of the time.

45
*For this example in particular



Karger is better than completely random!

Frequency of different cut sizes (out of 10K trials)

equency of cuts of that size
o o ©
(¥ S

I
o
Pt

o
o

0.5 - WS completely random
BN karger
Karger’s alg. is correct : |
about 20% of the time '
Completely random is '
correct about 0.8% of |
the time \
_ . —
0 2 4 6 8 10

Size of cut

46



What’s going on?

* Which is more likely?

A: The algorithm never
chooses either of the
edges in the minimum cut.

Thing 1: It’s unlikely that
Karger will hit the min cut
since it’s so small!

Lucky the
lackadaisical lemur

B: The algorithm never
chooses any of the edges
in this big cut.

* Neither A nor B are very likely, but A is more likely than B.



Y/ . Thing 2: By only contracting
W h at S gO | ﬂ g O n ? edges we are ignoring certain

really-not-minimal cuts.

Lucky the
lackadaisical lemur

B: This cut can’t be returned by
Karger’s algorithm!

(Because how would a and g end up
in the same super-node?)

A: This cut can be returned
by Karger’s algorithm.

This cut actually separates the graph into three pieces, so it’s
not minimal — either half of it is a smaller cut.



Why does that help?

e Okay, so it’s better than completely random...
* We're still wrong about 80% of the time.

* The main idea: repeat!

* If I'm wrong 80% of the time, then if | repeat it a few
times I'll eventually get it right.

The,plan:
fee that 20% chance of
correctness is actually nontrivial.

e Use repetition to boost an
algorithm that’s correct 20% of the
time to an algorithm that’s correct
99% of the time. 49




Thought experiment
from pre-lecture exercise

» Suppose you have a magic button that produces one of 5
numbers, {a,b,c,d,e}, uniformly at random when you push it.
* You don’t know what {a,b,c,d,e} are.

* Q: What is the minimum of a,b,c,d,e?

3 5 5
6 32 5,7

How many times do you have to push the button, in
expectation, before you see the minimum value?

What is the probability that you have to push it

more than 5 times? 10 times?




In this context

\.J * Run Karger’s! The cut size is 6!
e? * Run Karger’s! The cut size is 3!
\.J * Run Karger’s! The cut size is 3!
ev * Run Karger’s! The cut size is 2! - Correct!

\.J * Run Karger’s! The cut size is 5!

If the success probability is about 20%, then if you run Karger’s
algorithm 5 times and take the best answer you get, that will likely
be correct! (with probability about 0.67)

52



For this particular graph

* Repeat Karger’s algorithm about 5 times, and we
will get a min cut with decent probability.

* |In contrast, we’d have to choose a random cut about
1/0.008 = 125 times!

Hang on! This “20%” figure just came
from running experiments on this

particular graph. What about general
i The plan:
graphs? Can we prove something?
See that 20% chance of
Also, we should be a bit more correctness is actually nontrivial.
precise about this “about 5 "
i " ctat ¢ *4"Use repetition to boost an
imes= statement. algorithm that’s correct 20% of the
Plucky the pedantic beneuin time to an algorithm that’s correct
Y P PEng most of the time. 53




Questions 4% 0% ¥ ‘@

To generalize this approach to all graphs

1. What is the probability that Karger’s algorithm
returns a minimum cut in a general graph?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

 Say, with probability 0.997
* Or more generally, probability 1 — 6 ?

54



Answer to Question 1

Claim:

The probability that Karger’s algorithm returns a
minimum cut on a graph with n vertices is

at least 1
/)

In this case, 1/(8) = 0.036, so we are
2

guaranteed to win at least 3.6% of the time.



Questions Dy »

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?
 Say, with probability 0.997
* Or more generally, probability 1 — o6 ?



Before we prove the Claim

2. How many times should we run Karger’s
algorithm to succeed with probability 1 — 6 ?

Success probability for repeating Karger's algorithm a bunch
10 A

<
[e2

<
(=)}
'

<
N

Empirical success probability

<
(N

<o
o

0 5 10 15 20 25 57 30
Number of repetitions



A CO m p u tat| O n Punchline: If we repeat T = ('2') In(1/68) times,

we win with probability at least 1 — 4.

* Suppose :
* the probability of successfully returning a minimum cutis p € [0, 1],
« we want failure probability at most § € (0,1).

* Pr[ don’t return amin cutin T trials ] = (1 — p)?
* The claim says p = 1/(’;). Let’s choose T = (g) In(1/0)

* Pr[ don't return a min cut in T trials ]

=1 -p)f
¢« < (e—P)T

o — p—PT

. = ¢ n(3)

e =5




N

0@ &

Dy

Answers Dy

1. What is the probability that Karger’s algorithm
returns a minimum cut?

According to the claim, at least

(")

2. How many times should we run Karger’s
algorithm to “probably” succeed?

 Say, with probability 0.997
* Or more generally, probability 1 — o6 ?

(2‘) In (%) times.

59



Theorem
Assuming the claim about 1/(’21)

e Suppose G has n vertices.

* Consider the following algorithm:
* bestCut = None

e fort=1,..., (g)ln (%) :
e candidateCut « Karger(G)

e if candidateCut is smaller than bestCut:
e bestCut « candidateCut
e return bestCut

* Then Pr[ this doesn’t return a min cut | < 6.

How many repetitions
would you need if
instead of Karger we
just chose a uniformly
random cut?

60




What’s the running time?

. (’21) In (%) repetitions, and O(n?) per repetition.

50,0 (n?- (3)In(3)) = 0@® L™

Again we can do better with a union-find
data structure. Write pseudocode for—or
better yet, implement—a fast version of
Karger’s algorithm! How fast can you
make the asymptotic running time?

Ollie the over-achieving ostrich
61



Theorem
Assuming the claim about 1/(’21)

Suppose G has n vertices. Then [repeating Karger’s
algorithm a bunch of times] finds a min cut in G with
probability at least 0.99 in time O(n%).

Now let’s prove the claim...



Break



Claim

The probability that Karger’s algorithm returns a
minimum cut in a graph with n vertices is

at least 1
/)

64




Proof of Claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* | = PR[ none of the e, cross $* ]
= PR[ e, doesn’t cross $* ]

X PR[ e, doesn’t cross S* | e; doesn’t cross S* |

X PR[ e, doesn’t cross S* | ey,...,e, 5 don’t cross S* ]

I
I
I
I
[
I le
/)

1
" S* 65
|



Focus in on:
PR[ e, doesn’t cross S* | ey,...,e; ; don’t cross S* ]

» Suppose: After j-1 iterations, we haven’t messed up yet!
* What'’s the probability of messing up now?

These two edges
haven’t been chosen




Focus in on:
PR[ e, doesn’t cross S* | ey,...,e;; don't cross S* |

» Suppose: After j-1 iterations, we haven’t messed up yet!
* What'’s the probability of messing up now?

e Say there are k edges that cross S§*

* Every supernode has at least k (original) edges coming out.
e Otherwise we’d have a smaller cut.

* Thus, there are at least (n-j+1)k/2 edges total.
* b/ctherearen-j+1supernodes left, each with at least k edges.

So the probability that we b i (D\.

choose one of the k edges \ 2 I' 9

crossing S* atstepjisatmost: /N i~ L.
A N

k _ 2 \ ( e,h ,
(n—j+1)k _ Se .- /
( . ) n—j+1 c ~% }




Focus in on:
PR[ e, doesn’t cross S* | ey,...,e;; don't cross S* |

* So the probability that we choose one of the k edges
crossing S* at step j is at most:

Kk 2
((n—j2+1)k) — n—j+1

* The probability we don’t choose one of the k edges is at
legst: f
{__2 _nj-1 a,b::' : ¢

~ ’
______

c 7N o8




Proof of Claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* | = PR[ none of the e, cross $* ]
= PR[ e, doesn’t cross $* ]

X PR[ e, doesn’t cross S* | e; doesn’t cross S* |

X PR[ e, doesn’t cross S* | ey,...,e, 5 don’t cross S* ]

I
I
I
I
[
I le
/)

1
" S* 69
|



Proof of Claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* | = PR[ none of the e, cross $* ]

-(5) (5) (=) 5 65) -0 G 6 6)

I
I
I
I
[
I le
/)
1
I
I S*
|



Proof of Claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e, ..., €,
* PR[ return S* ] = PR[ none of the g, cross $*

]

71



Theorem
Assuming the claim about 1/(’21)

Suppose G has n vertices. Then [repeating Karger’s
algorithm a bunch of times] finds a min cut in G with
probability at least 0.99 in time O(n%).




What have we |learned?

* If we randomly contract edges:
* It’s unlikely that we’ll end up with a min cut.
e Butit’s not TOO unlikely

* By repeating, we likely will find a min cut.
Here | chose § = 0.01
just for concreteness.

* Repeating this process: |
* Finds a global min cut in time O(n?), with probability 0.99.
 We can run a bit faster if we use a union-find data structure.

73



More generally

* If we have a Monte-Carlo algorithm with a small
success probability,

* and we can check how good a solution is,

* Then we can boost the success probability by
repeating it a bunch and taking the best solution.




Can we do better?

* Repeating O(n?) times is pretty expensive.
* O(n%) total runtime to get success probability 0.99.

* The Karger-Stein Algorithm will do better!
* The trick is that we’ll do the repetitions in a clever way.
* O( n?log?(n) ) runtime for the same success probability.

 Warning! This is a tricky algorithm! We’ll sketch the
approach here: the important part is the high-level idea,
not the details of the computations.

To see how we might save on repetitions,
let’s run through Karger’s algorithm again.

75






Probability that we didn’t mess up:

Karger’s algorithm 12/14

There are 14 edges, 12 of
which are good to contract.

random

77



Karger’s algorithm

Create a
supernode!

-y,
- -~
-
-

Create a
superedge!

78



Karger’s algorithm

Create a
Loy supernode!

/7 A

[ b )

1 d,

1 ]

N / {e/b,?
Create a
superedge! {Qa 1 Create a

Cb !
) \6:‘;\\ superedge!

(—"

79



Probability that we didn’t mess up:

Karger’s algorithm  14/13

Now there are only 13 edges,
since the edge betweenaand b

disappeared.
Y & '@
fqa}
0
»0f )
N
random

(o—"
0 edge! G
5 :



Karger’s algorithm

-
- So

U4
g: a,b Create a
\

. / 84 ) superedge! /e

Create a
superedge!

Create a
supernode!

81



Karger’s algorithm

-
- So

U4
[ ab Create a
5 superedge!

- -~
~
= N

N 4

-
______

Create a
supernode!

Create a
superedge!

82



Probability that we didn’t mess up:

Karger’s algorithm  14/17

Now there are only 12 edges,
since the edge between e and h

disappeared.

-
- So

random
edge!

Dy }




Karger’s algorithm

-
- So

‘\\ d ;b /l ’f@, b}
N
{c,a}
{c,b}
{d,a}
LLLL {_d)b.} \\\\\\ /
[ cd ;{e/}

NNNNN

84



Probability that we didn’t mess up:

Karger’s algorithm  g/14

random edge!
(We pick at
random from
the original
edges).

NNNNN

Dy )



Karger’s algorithm

—————
A Ss

86



Karger’s algorithm

Probability that we didn’t mess up:

5/7

random
edge!

87



Karger’s algorithm

~~~~~~~~
4 N

\\\\\\
55555

fffff
~
= N

N /

88

Karger’s algorithm

Probability that we didn’t mess up:

3/5

random
edge!

~ /

89

Karger’s algorithm

7 S

~
———————

aaaaa
7 SS

~
~ -’
~~~~~~~

90



Karger’s algorithm

—————
A Ss

l/ \\

{ \

i a,b,cd ]

\\\ {e
AN o ) le o],

Now stop!

* There are only two nodes left.

———————
,,,,

S 4
~~~~~
[pe—

91

Probability of not messing up

* At the beginning, it’s pretty likely we’ll be fine.

* The probability that we mess up gets worse and
worse over time.

Moral:

Repeating the stuff from
the beginning of the
algorithm is wasteful!

12/14 |

0.8 |
0.7 |-

0.6 |-

0.5 |

probability
of success

3/5

iteration

1 2 3 4 9§

In words

* Run Karger’s algorithm on G for a bit.

e Until there are % supernodes left.

* Then split into two independent copies, G; and G,
* Run Karger’s algorithm on each of those for a bit.
)

e Until there are == supernodes left in each.
V2 2

* Then split each of those into two independent copies...

94

In pseudocode

» KargerStein(G = (V,E)):
*ne« |V]
e ifn<4:
* find a min-cut by brute force \\ time O(1)
* Run Karger’s algorithm on G with independent

. . n .
repetitions until {ﬁ‘ nodes remain.

* G, G, « copies of what’s left of G

S, = KargerStein(G,)

S, = KargerStein(G,)

return whichever of S, S, is the smaller cut.

n nodes

Recursion
tree

Contract a
bunch of edges
n

¥ nodes

Make 2
copies

Contract a
bunch of edges

Contract a
bunch of edges

n

n
— nodes Ja

Va

nodes

Make 2
copies

Make 2
copies

V8

nodes

Recursion tree

. I
* depthislog 7(n) = IOOgg((nﬁ)) = 2log(n)

e number of leaves is 22/08(n) = p2

/—

This counts as one level
. . —==
for this analysis

—
This counts as one level Contract a
for this analysis S bunch of
edges

\

Contract a
bunch of edges

Make 2
copies
Contract a

bunch of

Two gquestions

* Does this work?

e |s it fast? <

At the jth |eve| The amount of work per level is

the amount of work needed to
reduce the number of nodes by

a factor of V2.

e That’s at most O(n?).

* since that’s the time it takes to
run Karger’s algorithm once,
cutting down the number of
supernodes to two.

Contract a
bunch of edges

n
2(j+1)/2
nodes

e Qur recurrence relationis...

T(n) = 2T(n/v/2) + O(n2)

Make 2
copies

The Master Theorem says...
T(n) = O(n?log(n))

99

n n

2(j+1)/2 2(j+1)/2
nodes nodes

Jedi Master Yoda

Two gquestions

* Does this work? =

* |s it fast?
* Yes, O(n?%log(n)).

100

Suppose we contract n—t edges, until

W hy n/,‘ / 2 P, there are t supernodes remaining.

e Suppose the first n-t edges that we choose are
€1, €5, vy €4
* PR[none of ¢4, €, ..., €, Cross S*]
= PR[e, doesn’t cross $*]
X PR[e, doesn’t cross S* | e; doesn’t cross S* |

X PR[e, doesn’t cross S* | ey,...,e,+, don’t cross S*]

101

Suppose we contract n—t edges, until

W hy n/,‘ / 2 P, there are t supernodes remaining.

e Suppose the first n-t edges that we choose are
€1, €5, wur, €14
* PR[none of ¢4, €, ..., €, Cross S*]
_ (n-=2 n-—3 n—4\ [n-5 n—6 t+1 t t—1
-(7) (=) (2 62))~ () (3) &)
t-(t—1)
n-(n—1)

Choose t = n/v2

n/n
— V2 (\E) ~ l when n is large
n-(n—1) 2

102

n nodes

Recursion
tree

Contract a .
Pr[failure] =1/2
bunch of edges [1=1/

n

¥ nodes

. Make 2 "
Contract a \/_E nodes copies \/_7 nodes Contract a

bunch of edges
Pr[failure] =1/2

bunch of edges
Pr[failure] =1/2

n

Va

n
nodes W7 nodes

Make 2
copies

Make 2
copies

i3

N
odes nodes
Pr[failure] =1/2

Pr[failure] =1/2

n
NE)
nodes

@:@

PrObablllty n nodes
of success

Is the probability that there’s
a path from the root to a leaf

with no failures.

Each with
probability 1/2

%\ des
.

Make 2
nodes Copies

n

T~ \/E
im

n RS
N nodes 7a noﬁs

n Make 2
Vi copies
nodes

im %ﬂi y
= £
nodes

n Make 2
Vi copies

e
V8

nodes

The problem we need to analyze

* Let T be binary tree of depth 2log(n)

* Each node of T succeeds or fails independently with
probability 1/2

* What is the probability that there’s a path from the
root to any leaf that’s entirely successful?

e It turns out that this isQ(!)

logn

e See skipped slides for proof, or try to do it yourself!
* (Proof not covered on exam, but it’s good practice with

recurrence relations!)

105

Success Probability o

* The probability that 993
one run of Karger-Stein e 2R

: 1 _
succeeds is () () copies

logn

4D
34 nodes % nOL\

Make 2
copies

n Make 2
Vi copies
nodes

106

Analysis
* Say the tree has height d.

* Let p,; be the probability that
there’s a path from the root to a
leaf that doesn’t fail.

1
2

at least one subtree
has a successful path

/Pr[[?';\

HP

wins _l_ Pr [é wins

N | =

\ —Pru

A

)\

4

1
> (Pd—1 T Pa-1

pdl__

Pd1

b))

— pczl—l)

Contract a
bunch of

edges

Slide skipped in class

Slide skipped in class

It’s a recurrence relation!

1
=
u ¥

I

(=Y

|
N | =
=
T
—

* Pd
* Po

|
p—

* We are real good at those.
* |In this case, the answer is:

1
. im: >
Claim: forall d, p; = T

Recurrence relation

1
d+1
* Proof: induction on d.

* Claim: foralld, p; =

e Basecase:1 = 1. YEP.
* Inductive step: sayd > 0.

* Suppose thatpy_1 = %.

_ 1 2
* Pa = Pd-1 — 7 Pd-1
° Zl_l.i
d1 2 ciz
° 2__
d d(d+1)
. 1
T d+1

1
* Pa = Pa-1 — 7 Pd-1
* Po =

|
p—

This slide
skipped in clgcss

Slide skipped in class

What does that mean for Karger-Stein?

1
laim: for all > —
Cla ora d,pd_d+1

* For d = 2log(n)
e thatis, d = the height of the tree:

1
>
Pzlog(n) = 2log(n) + 1

e aka,

Pr[Karger-Stein is successful | = () (1og1(n))

110

Altogether now

» Karger-Stein succeeds with probability Q(-)

logn
* We can amplify the success probability by repetition:

 Run Karger-Stein O (log(n) - log (%)) times to achieve
success probability 1 — 6.

* Each iteration takes time O(n*log(n))
* That’s what we proved before.

* Choosing 6 = 0.01 as before, the total runtime is
0(n?log(n) - log(n)) = 0(n?log?(n))

Much better than O(n*)!

111

What have we |learned?

e Just repeating Karger’s algorithm isn’t the best use
of repetition.
* We're probably going to be correct near the beginning.
* Instead, Karger-Stein repeats when it counts.
n

. V2
that we fail is close to 7.

* If we wait until there are —=nodes left, the probability

* This lets us (probably) find a global minimum cut in
an undirected graph in time O(n? log?(n)).

* Notice that we can’t do better than n? in a dense graph

(we need to look at all the edges), so this is pretty good.

112

Recap

* Some algorithms:
e Karger’s algorithm for global min-cut
* Improvement: Karger-Stein

* Some concepts:

 Monte Carlo algorithms:
* Might be wrong, are always fast.

* We can boost their success probability with repetition.
* Sometimes we can do this repetition very cleverly.

113

Next time

* More min-cuts...and max flows!

next time

* Pre-lecture exercise: routing on rickety bridges!

