
Lecture 16
Min Cut and Karger’s Algorithm
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Announcements

• HW8 Due Wednesday
• Midterm 4 on Mon-Tue next week.
• Cannot be dropped
• Material covered this week is included
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Last time

• Minimum Spanning Trees!
• Prim’s Algorithm
• Kruskal’s Algorithm
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Today

• Minimum Cuts!
• Karger’s algorithm
• Karger-Stein algorithm

• Back to randomized algorithms!

4



Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty
parts.

*For today, all graphs 
are undirected and  
unweighted.
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Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty
parts.

Part 1 Part 2

*For today, all graphs 
are undirected and  
unweighted.
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This is not a cut
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This is a cut
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This is a cut These edges cross the cut.
• They go from one part to the other.
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A (global) minimum cut
is a cut that has the fewest edges possible crossing it.
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A (global) minimum cut
is a cut that has the fewest edges possible crossing it.
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Why might we care about global 
minimum cuts?
• Clustering:

• Image Segmentation

big edge 
weights* 

between similar 
pixels.  

*For the rest of today edges aren’t weighted; but the algorithm can be adapted to deal with edge weights.
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Karger’s algorithm

• Finds global minimum cuts in undirected graphs
• Randomized algorithm
• Karger’s algorithm might be wrong.
• Compare to QuickSort, which just might be slow.

• Why would we want an algorithm that might be 
wrong?
• With high probability it won’t be wrong.
• Maybe the stakes are low and the cost of a 

deterministic algorithm is high.
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Different sorts of gambling
• QuickSort is a Las Vegas randomized algorithm
• It is always correct.
• It might be slow.  

Yes, this is a 
technical term.
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Different sorts of gambling
• Karger’s Algorithm is a Monte Carlo randomized algorithm
• It is always fast.
• It might be wrong.   
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Karger’s algorithm

• Pick a random edge.
• Contract it.
• Repeat until you only have two vertices left.

Why is this a good idea?  We’ll see shortly.

b
a

b
a

New node!
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Karger’s algorithm
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Karger’s algorithm

random 
edge!

18



h

g

e

f

b

d

a

c

Karger’s algorithm

Create a 
supernode!

Create a 
superedge!

Create a 
superedge!
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h

g

e

f

d

a,b

c

Karger’s algorithm

Create a 
supernode!

Create a 
superedge!

Create a 
superedge! {c,a}{c,b}

{d,a}

{d,b}

{e,b}
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c

Karger’s algorithm

{c,a}{c,b}
{d,a}

{d,b}

random 
edge!

{e,b}
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g

e

f

d

a,b

c

Karger’s algorithm

Create a 
supernode!

{c,a}{c,b}
{d,a}

{d,b}

Create a 
superedge!

Create a 
superedge!

{e,b}
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g

e,h

f

d

a,b

c

Karger’s algorithm

Create a 
supernode!

{c,a}{c,b}
{d,a}

{d,b}

Create a 
superedge!

Create a 
superedge!

{f,e}
{f,h}

{g,e}

{g,h}

{e,b}

{e,d}
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a,b

c

Karger’s algorithm

{c,a}{c,b}
{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h}

random 
edge!

{e,b}

{e,d}
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e,h

f

a,b

Karger’s algorithm

{c,a}
{c,b}

{d,a}
{d,b}

{f,e}
{f,h}

{g,e}

{g,h}

c,d

{e,b}

{e,d}
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g

e,h

f

a,b

Karger’s algorithm

{c,a}
{c,b}
{d,a}
{d,b}

{f,e}
{f,h}

{g,e}

{g,h}

c,d

{e,b}

{e,d}

random edge!
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g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h}

{e,b} {e,d}
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g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h}

{e,b} {e,d} random 
edge!
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e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}
{e,b} {e,d}
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e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}
{e,b} {e,d} random 

edge!

30



e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}

Now stop!
• There are only two nodes left.

The minimum cut is given by 
the remaining super-nodes:
• {a,b,c,d} and {e,h,f,g}
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a

c

Karger’s algorithm
The minimum cut is given by 
the remaining super-nodes:
• {a,b,c,d} and {e,h,f,g}
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Karger’s algorithm

• Does it work?

• Is it fast?
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How do we implement this?
• See Lecture 16 IPython Notebook for one way 
• This maintains a secondary “superGraph” which keeps 

track of superNodes and superEdges
• There’s a skipped slide with pseudocode

• Running time?
• We contract n-2 edges

• Each time we contract an edge we get rid of a vertex, and we 
get rid of n – 2 vertices total.

• Naively each contraction takes time O(n)
• Maybe there are Ω 𝑛 nodes in the superNodes that we are 

merging.  (We can do better with fancy data structures).
• So total running time O(n2).

• We can do 𝑂(𝑚 ⋅ 𝛼 𝑛 ) with a union-find data structure, but 
𝑂(𝑛!) is good enough for today. 34



Karger’s algorithm

• Does it work?

• Is it fast?
• O(n2)

Think-share!
1 minute think
1 minute share

h

g

e

f
b

d

a

c

Create a 
supernode!

Create a 
superedge!

Create a 
superedge!

Algorithm:
• Randomly contract edges until there are only 

two supernodes left.
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Karger’s algorithm

• Does it work?

• Is it fast?
• O(n2)

h

g

e

f
b

d

a

c

Create a 
supernode!

Create a 
superedge!

Create a 
superedge!

Algorithm:
• Randomly contract edges until there are only 

two supernodes left.

No?
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Why did that work?

•We got really lucky!
• This could have gone wrong in so many ways.
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Karger’s algorithm

random 
edge!

Say we had chosen this edge
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g

fb,e

d

a

c

Karger’s algorithm Say we had chosen this edge

Now there is no way we could return a cut 
that separates b and e.
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Even worse
If the algorithm EVER chooses either of these edges, 
it will be wrong.
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How likely is that?

• For this particular graph, I did it 10,000 times:
h

g

e

fb

d

a

c

The algorithm is 
only correct about 

20% of the time!
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That doesn’t sound good
• Too see why it’s good after all, we’ll first do a case 

study of this graph.  Then we’ll generalize.

• To see the first point, let’s compare Karger’s 
algorithm to the algorithm:

The plan:

• See that 20% chance of correctness is 
actually nontrivial.

• Use repetition to boost an algorithm 
that’s correct 20% of the time to an 
algorithm that’s correct 99% of the time.

h

g

e

fb

d

a

c

Choose a completely random cut 
and hope that it’s a minimum cut. 43



Uniformly random cut in
• Pick a random way to split the vertices into two parts:

etc44



Uniformly random cut in
• Pick a random way to split the vertices into two parts:

• The probability of choosing the minimum cut is*…
number ofmin cuts in that graph

number of ways to split 8 vertices in 2 parts
=

2
2! − 2

≈ 0.008

• Aka, we get a minimum cut 0.8% of the time.

*For this example in particular
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Karger is better than completely random!

Karger’s alg. is correct 
about 20% of the time

Completely random is 
correct about 0.8% of 

the time

h

g

e

fb

d

a

c
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What’s going on?
• Which is more likely?

• Neither A nor B are very likely, but A is more likely than B.

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A: The algorithm never 
chooses either of the 
edges in the minimum cut.

B: The algorithm never 
chooses any of the edges 
in this big cut.

Lucky the 
lackadaisical lemur

Thing 1: It’s unlikely that 
Karger will hit the min cut 
since it’s so small!
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What’s going on?

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A: This cut can be returned 
by Karger’s algorithm.

B: This cut can’t be returned by 
Karger’s algorithm!  
(Because how would a and g end up 
in the same super-node?)

Lucky the 
lackadaisical lemur

Thing 2: By only contracting 
edges we are ignoring certain 

really-not-minimal cuts.

This cut actually separates the graph into three pieces, so it’s 
not minimal – either half of it is a smaller cut.48



Why does that help?

• Okay, so it’s better than completely random…
• We’re still wrong about 80% of the time.
• The main idea: repeat!
• If I’m wrong 80% of the time, then if I repeat it a few 

times I’ll eventually get it right.

The plan:

• See that 20% chance of 
correctness is actually nontrivial.

• Use repetition to boost an 
algorithm that’s correct 20% of the 
time to an algorithm that’s correct 
99% of the time. 49



Thought experiment
from pre-lecture exercise
• Suppose you have a magic button that produces one of 5 

numbers, {a,b,c,d,e}, uniformly at random when you push it.
• You don’t know what {a,b,c,d,e} are.
• Q: What is the minimum of a,b,c,d,e?

6 3
3

2 2
5 5

How many times do you have to push the button, in 
expectation, before you see the minimum value? 

What is the probability that you have to push it 
more than 5 times?  10 times?
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In this context

• Run Karger’s!  The cut size is 6!

• Run Karger’s!  The cut size is 3!

• Run Karger’s!  The cut size is 3!

• Run Karger’s!  The cut size is 2!

• Run Karger’s!  The cut size is 5!

If the success probability is about 20%, then if you run Karger’s
algorithm 5 times and take the best answer you get, that will likely 

be correct! (with probability about 0.67) 

Correct!
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For this particular graph

• Repeat Karger’s algorithm about 5 times, and we 
will get a min cut with decent probability.
• In contrast, we’d have to choose a random cut about 

1/0.008 = 125 times!

The plan:

• See that 20% chance of 
correctness is actually nontrivial.

• Use repetition to boost an 
algorithm that’s correct 20% of the 
time to an algorithm that’s correct 
most of the time.

h

g

e

fb

d

a

c

Hang on!  This “20%” figure just came 
from running experiments on this 
particular graph.  What about general 
graphs?  Can we prove something?

Plucky the pedantic penguin

Also, we should be a bit more 
precise about this “about 5 
times” statement.
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Questions
To generalize this approach to all graphs

1. What is the probability that Karger’s algorithm 
returns a minimum cut in a general graph?

2. How many times should we run Karger’s
algorithm to “probably” succeed?
• Say, with probability 0.99?
• Or more generally, probability 1 − 𝛿 ?
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Answer to Question 1

The probability that Karger’s algorithm returns a 
minimum cut on a graph with n vertices is 

at least !! !
"

In this case, @" !
"
= 0.036, so we are 

guaranteed to win at least 3.6% of the time.
h

g

e

f

b

d

a

c

Claim:
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Questions

1. What is the probability that Karger’s algorithm 
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?
• Say, with probability 0.99?
• Or more generally, probability 1 − 𝛿 ?

According to the claim, at least  )!
"
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Before we prove the Claim

2. How many times should we run Karger’s
algorithm to succeed with probability 1 − 𝛿 ?

h

g

e

fb

d

a

c
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A computation
• Suppose :

• the probability of successfully returning a minimum cut is 𝒑 ∈ 𝟎, 𝟏 , 
• we want failure probability at most 𝛿 ∈ 0,1 .

• Pr[ don′t return amin cut in T trials ] = 1 − 𝑝 !

• The claim says p = 1/ "
# .  Let’s choose T = "

# ln(1/𝛿) .

• Pr[ don′t return a min cut in T trials ]
• = 1 − 𝑝 !

• ≤ 𝑒"# !

• = 𝑒"#!

• = 𝑒" $%
!
"

• = 𝛿
1 − p ≤ 𝑒#$

Punchline: If we repeat T = 𝒏
𝟐 ln(𝟏/𝜹) times, 

we win with probability at least 𝟏 − 𝜹.

1 − p

𝑒#$

58



Answers

1. What is the probability that Karger’s algorithm 
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?
• Say, with probability 0.99?
• Or more generally, probability 1 − 𝛿 ?

According to the claim, at least  )!
"

*
+ ln )

,
times. 

59



Theorem
Assuming the claim about 1/ *

+ …

• Suppose G has n vertices.

• Consider the following algorithm:
• bestCut = None
• for t = 1,… , "

! ln
#
$

:
• candidateCut ← Karger(G)
• if candidateCut is smaller than bestCut:

• bestCut ← candidateCut
• return bestCut

• Then Pr[ this doesn$t return a min cut ] ≤ 𝛿.

How many repetitions 
would you need if 

instead of Karger we 
just chose a uniformly 

random cut?
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What’s the running time?

• *
+ ln )

,
repetitions, and O(n2) per repetition.

• So, 𝑂 𝑛+ ⋅ *
+ ln )

,
= O n5

Again we can do better with a union-find 
data structure. Write pseudocode for—or 
better yet, implement—a fast version of 

Karger’s algorithm!  How fast can you 
make the asymptotic running time?

Ollie the over-achieving ostrich

Treating 𝜹 as 
constant.
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Theorem
Assuming the claim about 1/ !

" …

Suppose G has n vertices.  Then [repeating Karger’s 
algorithm a bunch of times] finds a min cut in G with 

probability at least 0.99 in time O(n4).

Now let’s prove the claim…
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Break
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Claim

The probability that Karger’s algorithm returns a 
minimum cut in a graph with n vertices is 

at least !! !
"
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Proof of Claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]
= PR[ e1 doesn’t cross S* ]
× PR[ e2 doesn’t cross S* | e1 doesn’t cross S* ] 
…
× PR[ en-2 doesn’t cross S* | e1,…,en-3 don’t cross S* ]

h

g

e

fb

d

a

c

S* 65



Focus in on:
PR[ ej doesn’t cross S* | e1,…,ej-1 don’t cross S* ]

• Suppose: After j-1 iterations, we haven’t messed up yet!
• What’s the probability of messing up now?

g

e,h

f

d

a,b

c

{c,a}{c,b}
{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h}

{e,b}

{e,d}

These two edges 
haven’t been chosen 
for contraction!
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Focus in on:
PR[ ej doesn’t cross S* | e1,…,ej-1 don’t cross S* ]

• Suppose: After j-1 iterations, we haven’t messed up yet!
• What’s the probability of messing up now?

g

f

d
c

a,b

e,h

• Say there are k edges that cross S*
• Every supernode has at least k (original) edges coming out.

• Otherwise we’d have a smaller cut.
• Thus, there are at least (n-j+1)k/2 edges total.

• b/c there are n - j + 1 supernodes left, each with at least k edges.

So the probability that we 
choose one of the k edges 
crossing S* at step j is at most:

𝒌
𝒏&𝒋(𝟏 𝒌

𝟐

= 𝟐
𝒏&𝒋(𝟏
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Focus in on:
PR[ ej doesn’t cross S* | e1,…,ej-1 don’t cross S* ]

• So the probability that we choose one of the k edges 
crossing S* at step j is at most:

?
/0123 4

5

= @
ABCDE

• The probability we don’t choose one of the k edges is at 
least:

1 − +
*678)

= *676)
*678)

g

f

d
c

a,b

e,h
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Proof of Claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]
= PR[ e1 doesn’t cross S* ]
× PR[ e2 doesn’t cross S* | e1 doesn’t cross S* ] 
…
× PR[ en-2 doesn’t cross S* | e1,…,en-3 don’t cross S* ]

h

g

e

fb

d

a

c

S* 69



Proof of Claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]

= *6+
*

*69
*6)

*65
*6+

*6:
*69

*6;
*65

⋯ 5
;

9
:

+
5

)
9
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d
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c
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Proof of Claim
Say that S* is a minimum cut.

• Suppose the edges that we choose are e1, e2, …, en-2

• PR[ return S* ] = PR[ none of the ei cross S* ]

= *6+
*

*69
*6)

*65
*6+

*6:
*69

*6;
*65

⋯ 5
;

9
:

+
5

)
9

= +
* *6)

=	 )!
"

h

g

e

fb

d

a

c

S*

CLAIM PROVED
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Theorem
Assuming the claim about 1/ !

" …

Suppose G has n vertices.  Then [repeating Karger’s 
algorithm a bunch of times] finds a min cut in G with 

probability at least 0.99 in time O(n4).

That proves this 
Theorem!
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What have we learned?

• If we randomly contract edges:
• It’s unlikely that we’ll end up with a min cut.
• But it’s not TOO unlikely
• By repeating, we likely will find a min cut.

• Repeating this process:
• Finds a global min cut in time O(n4), with probability 0.99.
• We can run a bit faster if we use a union-find data structure.

Here I chose 𝛿 = 0.01
just for concreteness.
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More generally

• If we have a Monte-Carlo algorithm with a small 
success probability,
• and we can check how good a solution is, 
• Then we can boost the success probability by 

repeating it a bunch and taking the best solution.
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Can we do better?
• Repeating O(n2) times is pretty expensive.
• O(n4) total runtime to get success probability 0.99.

• The Karger-Stein Algorithm will do better!
• The trick is that we’ll do the repetitions in a clever way.
• O( n2log2(n) ) runtime for the same success probability.
• Warning!  This is a tricky algorithm!  We’ll sketch the 

approach here: the important part is the high-level idea, 
not the details of the computations.

To see how we might save on repetitions, 
let’s run through Karger’s algorithm again.
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Karger’s algorithm
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h

g

e

f
b

d

a

c

Karger’s algorithm

random 
edge!

Probability that we didn’t mess up:

12/14
There are 14 edges, 12 of 

which are good to contract.
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h

g

e

f

b

d

a

c

Karger’s algorithm

Create a 
supernode!

Create a 
superedge!

Create a 
superedge!
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h

g

e

f

d

a,b

c

Karger’s algorithm

Create a 
supernode!

Create a 
superedge!

Create a 
superedge! {c,a}{c,b}

{d,a}

{d,b}

{e,b}
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h

g

e

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d,a}

{d,b}

random 
edge!

{e,b}

Probability that we didn’t mess up:

11/13
Now there are only 13 edges, 

since the edge between a and b 
disappeared.
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h

g

e

f

d

a,b

c

Karger’s algorithm

Create a 
supernode!

{c,a}{c,b}
{d,a}

{d,b}

Create a 
superedge!

Create a 
superedge!

{e,b}
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g

e,h

f

d

a,b

c

Karger’s algorithm

Create a 
supernode!

{c,a}{c,b}
{d,a}

{d,b}

Create a 
superedge!

Create a 
superedge!

{f,e}
{f,h}

{g,e}

{g,h}

{e,b}

{e,d}
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g

e,h

f

d

a,b

c

Karger’s algorithm

{c,a}{c,b}
{d,a}

{d,b}

{f,e}
{f,h}

{g,e}

{g,h}

random 
edge!

{e,b}

{e,d}

Probability that we didn’t mess up:

10/12
Now there are only 12 edges, 

since the edge between e and h 
disappeared.
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g

e,h

f

a,b

Karger’s algorithm

{c,a}
{c,b}

{d,a}
{d,b}

{f,e}
{f,h}

{g,e}

{g,h}

c,d

{e,b}

{e,d}
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g

e,h

f

a,b

Karger’s algorithm

{c,a}
{c,b}
{d,a}
{d,b}

{f,e}
{f,h}

{g,e}

{g,h}

c,d

{e,b}

{e,d}

random edge!
(We pick at 
random from 
the original 
edges).

Probability that we didn’t mess up:

9/11
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g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h}

{e,b} {e,d}
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g

e,h

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{g,e}

{g,h}

{e,b} {e,d} random 
edge!

Probability that we didn’t mess up:

5/7

87



e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}
{e,b} {e,d}
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e,h,g

f

a,b,c,d

Karger’s algorithm

{f,e}
{f,h}

{f,g}
{e,b} {e,d} random 

edge!

Probability that we didn’t mess up:

3/5
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e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}
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e,h,g,f

a,b,c,d

Karger’s algorithm

{e,b} {e,d}

Now stop!
• There are only two nodes left.
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Probability of not messing up

• At the beginning, it’s pretty likely we’ll be fine.
• The probability that we mess up gets worse and 

worse over time.

12/14 11/13 10/12 9/11

5/7

3/5Moral:
Repeating the stuff from 
the beginning of the 
algorithm is wasteful!  iteration

pr
ob

ab
ili

ty
 

of
 su

cc
es

s
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Instead…
h

g

e

fb

d

a

c

h

g

e

f

d

a,b

c

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

e

d

a,b

c

f,g,h

h
d

a,b,e

c

f,g

Contract!

Contract!

Contract!
Contract!

FORK!

etc
etc

This branch 
made a bad 

choice.

But it’s okay since 
this branch made 

a good choice.
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In words

• Run Karger’s algorithm on G for a bit.
• Until there are 01 supernodes left.

• Then split into two independent copies, G1 and G2

• Run Karger’s algorithm on each of those for a bit.

• Until there are 
#
"
1 = 21 supernodes left in each.

• Then split each of those into two independent copies…

Why 
'
(
? We’ll see later.
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In pseudocode

• KargerStein(G = (V,E)):
• n ← |V|
• if n < 4:
• find a min-cut by brute force                    \\ time O(1)

• Run Karger’s algorithm on G with independent 
repetitions until 2

1 nodes remain.
• G1, G2 ← copies of what’s left of G
• S1 = KargerStein(G1)
• S2 = KargerStein(G2)
• return whichever of S1, S2 is the smaller cut.
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Recursion 
tree

n nodes

)
(

nodes

Contract a 
bunch of edges

)
(

nodes)
(

nodes
Make 2 
copies

)
*

nodes

Contract a 
bunch of edges

)
*

nodes

Make 2 
copies

)
*

nodes

)
*

nodes

Contract a 
bunch of edges

)
*

nodes

Make 2 
copies

)
*

nodes

)
+

nodes

)
+

nodes

)
+

nodes

)
+

nodes
𝑛
8

nodes
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Recursion tree

• depth is log + 𝑛 = <=> *
<=>( +)

= 2log(𝑛)

• number of leaves is 22log(n) = n2

n nodes

)
(

nodes

Contract a 
bunch of edges

)
(

nodes

)
(

nodes
Make 2 
copies

)
*

nodes

)
*

nodes

Contract a 
bunch of 
edges

Contract a 
bunch of 

edges

This counts as one level
for this analysis

This counts as one level
for this analysis
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Two questions

• Does this work?

• Is it fast?
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At the jth level
"
!!/#

nodes

Contract a 
bunch of edges

Make 2 
copies

"
!(!%&)/#
nodes

"
!(!%&)/#
nodes

"
!(!%&)/#
nodes

• The amount of work per level is 
the amount of work needed to 
reduce the number of nodes by 
a factor of 2.

• That’s at most O(n2). 
• since that’s the time it takes to 

run Karger’s algorithm once, 
cutting down the number of 
supernodes to two.

• Our recurrence relation is…
T(n) = 2T(n/ 2) + O(n2)

• The Master Theorem says…
T(n) = O(n2log(n))

Jedi Master Yoda
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Two questions

• Does this work?

• Is it fast?
• Yes, O(n2log(n)).
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Why n/ 2 ?

• Suppose the first n-t edges that we choose are
e1, e2, …, en-t

• PR[ none of e1, e2, …, en-t cross S*]
= PR[ e1 doesn’t cross S* ]
× PR[ e2 doesn’t cross S* | e1 doesn’t cross S* ] 
…
× PR[ en-t doesn’t cross S* | e1,…,en-t-1 don’t cross S* ]

Suppose we contract n – t  edges, until 
there are t supernodes remaining.

101



Why n/ 2 ?

• Suppose the first n-t edges that we choose are 
e1, e2, …, en-t

• PR[ none of e1, e2, …, en-t cross S*]

= *6+
*

*69
*6)

*65
*6+

*6:
*69

*6;
*65

⋯ ?8)
?89

?
?8+

?6)
?8)

= ?⋅(?6))
*⋅(*6))

= 
!
"
⋅ !

"
6)

*⋅(*6))
≈ 𝟏

𝟐

Choose 𝒕 = 𝒏/ 𝟐

when n is large

Suppose we contract n – t  edges, until 
there are t supernodes remaining.
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Recursion 
tree

n nodes

)
(

nodes

Contract a 
bunch of edges

)
(

nodes)
(

nodes
Make 2 
copies

)
*

nodes

Contract a 
bunch of edges

)
*

nodes

Make 2 
copies

)
*

nodes

)
*

nodes

Contract a 
bunch of edges

)
*

nodes

Make 2 
copies

)
*

nodes

)
+

nodes

)
+

nodes

)
+

nodes

)
+

nodes

Pr[ failure ] = 1/2

Pr[ failure ] = 1/2Pr[ failure ] = 1/2

Pr[ failure ] = 1/2Pr[ failure ] = 1/2

etc.
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Probability 
of success

n nodes

)
(

nodes

)
(

nodes)
(

nodes
Make 2 
copies

)
*

nodes

)
*

nodes

Make 2 
copies

)
*

nodes

)
*

nodes

)
*

nodes

Make 2 
copies

)
*

nodes

)
+

nodes

)
+

nodes

)
+

nodes

)
+

nodes

Is the probability that there’s 
a path from the root to a leaf 
with no failures.

Each with 
probability 1/2

or
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The problem we need to analyze

• Let T be binary tree of depth 2log(n)
• Each node of T succeeds or fails independently with 

probability 1/2
• What is the probability that there’s a path from the 

root to any leaf that’s entirely successful?

• It turns out that this is Ω )
<=> *

.
• See skipped slides for proof, or try to do it yourself!
• (Proof not covered on exam, but it’s good practice with 

recurrence relations!)
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Success Probability

• The probability that 
one run of Karger-Stein 
succeeds is Ω )

<=> *

n nodes

!
"

nodes

!
"

nodes!
" nodes

Make 2 
copies

!
# nodes

!
#

nodes

Make 2 
copies

!
#

nodes

!
# nodes

!
#

nodes

Make 2 
copies

!
#

nodes

!
$

nodes

!
$

nodes

!
$

nodes

!
$

nodes
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Analysis
• Say the tree has height d.
• Let 𝒑𝒅 be the probability that 

there’s a path from the root to a 
leaf that doesn’t fail.

• 𝑝C =
)
+
⋅ Pr

• = )
+
⋅
Pr + Pr

−Pr

• = )
+
⋅ 𝑝C6) + 𝑝C6) − 𝑝C6)+

• = 𝑝C6) −
)
+
⋅ 𝑝C6)+

2%/!
nodes

Contract a 
bunch of 
edges

Make 2 
copies

2(%(#)/!
nodes

2(%(#)/!
nodes

2(%(#)/!
nodes

at least one subtree 
has a successful path

wins wins

both win
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It’s a recurrence relation!

• 𝑝C = 𝑝C6) −
)
+
⋅ 𝑝C6)+

• 𝑝E = 1

• We are real good at those.  
• In this case, the answer is:

• Claim: for all d, 𝑝* ≥
+

*(+

108

Slide skipped in class



Recurrence relation

• Claim: for all d, 𝑝C ≥
)

C8)
• Proof: induction on d.

• 𝑝8 = 𝑝89" −
"
1
⋅ 𝑝89"1

• 𝑝: = 1

• Base case: 1 ≥ 1. YEP.
• Inductive step:  say d > 0.

• Suppose that 𝑝89" ≥
"
8.

• 𝑝8 = 𝑝89" −
"
1 ⋅ 𝑝89"

1

• ≥ "
8
− "
1
⋅ "
8"

• ≥ "
8
− "
8 8;"

• = "
8;" This slide 

skipped in class
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What does that mean for Karger-Stein?

• For d = 2log(n) 
• that is, d = the height of the tree:

𝑝+<=>(*) ≥
1

2log(𝑛) + 1

• aka, 
Pr[ Karger-Stein is successful ] = Ω )

<=> *

Claim: for all d, 𝑝, ≥
-

,.-
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Altogether now

• Karger-Stein succeeds with probability Ω )
<=> *

.

• We can amplify the success probability by repetition:
• Run Karger-Stein 𝑂 log 𝑛 ⋅ log "

> times to achieve 
success probability 1 − 𝛿.

• Each iteration takes time 𝑂 𝑛+ log 𝑛
• That’s what we proved before.

• Choosing 𝛿 = 0.01 as before, the total runtime is
𝑂 𝑛+ log 𝑛 ⋅ log 𝑛 = 𝑂 𝑛+ log+ 𝑛

Much better than O(n4)!
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What have we learned?
• Just repeating Karger’s algorithm isn’t the best use 

of repetition.
• We’re probably going to be correct near the beginning.

• Instead, Karger-Stein repeats when it counts.
• If we wait until there are 21 nodes left, the probability 

that we fail is close to ½.

• This lets us (probably) find a global minimum cut in 
an undirected graph in time O(n2 log2(n) ).
• Notice that we can’t do better than n2 in a dense graph 

(we need to look at all the edges), so this is pretty good.
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Recap

• Some algorithms:
• Karger’s algorithm for global min-cut
• Improvement: Karger-Stein

• Some concepts:
• Monte Carlo algorithms:

• Might be wrong, are always fast.
• We can boost their success probability with repetition.
• Sometimes we can do this repetition very cleverly.
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Next time

• More min-cuts…and max flows!

• Pre-lecture exercise: routing on rickety bridges!
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