Lecture 18

what we’ve done and what’s to come

Announcements

* Please fill out course feedback if you haven’t yet.
e Canvas should show you a pop up, or
* go to http://evaluationkit.stanford.edu, or
e go to Axess -> Student -> Course -> Section Evaluations.

* Your feedback is very important.
* It will help make future iterations of the course better!

Input Output

H -

Figure 1: Feedback

http://evaluationkit.stanford.edu/

Today

* What just happened?

A whirlwind tour of CS161 ﬂ

———

* What'’s next?
* A few gems from future algorithms classes

It’s been a fun ride...

\
\e,o(\’t“ms'
)
Soﬂ:\“g a“d G‘\ap\'\s" G‘eed\l
fr‘\ends‘- D3y sty 5 b M
BSTs 5, o UCturgg. p Ynamic N JnedV . MnCuts and
3Shing, r O8ramming, 00 etc- axFlows
Divide-and-conquer LCs, k .
and recurrence » RNapsacks) N\S‘S"w;\‘a\
N relations a‘\d\““
W
0\\ z"ca‘.,e Karge,.’ For d-
W AR AN Ulkerson
a \\

What have we |learned?

17 lectures in 12 slides.

General approach
to algorithm design and analysis

Canl dO bette r? To answer this question we need

both rigor and intuition:

\L/

/\

Algorithm designer

Plucky the Lucky the
Pedantic Penguin Lackadaisical Lemur

Detail-oriented Big-picture
Precise Intuitive
Rigorous Hand-wavey

We needed more details

What
does that
mean??

Does it work?
Is it fast?

@, python

Worst-case analysis big-Oh notation

HERE IS AN T(n) = 0(f(n))
INPUT! A =

dc,ng >0 s.t. Vn = n,,
0<Tm)<c-f(n) -~

s’

Algorithm design paradigm:
divide and conquer

* Like MergeSort!
* Or Karatsuba’s algorithm!
e Or SELECT!

* How do we analyze these?

Smaller Smaller
By careful Useful shortcut, the problem oroblem

analysis! master method is.

Yet Yet Yet Yet

smaller smaller smaller smaller
problem problem problem problem

Plucky the]
Pedantic Penguin Jedi master Yoda

While we're on the topic of sorting
Why not use randomness?

* We analyzed QuickSort!

* Still worst-case input, but we use randomness after
the input is chosen.

* Always correct, usually fast.
* This is a Las Vegas algorithm

Nl

All this sorting is ma
Can we do bette

* Depends on who you as

" WE CAN DO WAY BETTER!

e RadixSort takes time O(n) if
the objects are, for
example, small integers!

King me wonder...

i

<.

e Can’tdo betterina

comparison-based model.

BRI

beyond sorted arrays/linked lists:
Binary Search Trees!

e Useful data structure!
* Especially the self-balancing ones!

Maintain balance by stipulating that gl 8
black nodes are balanced, and that M6 5 8 W
there aren’t too many red nodes. ' I

Tt ¢ just good sense!

Another way to store things
Hash tables!

All of the hash functions
h:U >{1,...,Nn}
hash function h

Vg

Choose h randomly from a
universal hash family.

It’s better if the hash
family is small!

Then it takes less
space to store h.

Some buckets

ions!

icat
ical sorting, ...

and appl

DFS

’

OMG GRAPHS
To;)olog

* BFS,
* SCCs

shortest paths T

e]

~ <L i
== (-
waco e L

* E.g., transit planning,) S i

o A AR S A © s
. Az, - = O
packet routing, ... P
T | =
—
* Dijkstral =
e S - =
* Bellman-Ford!) —=—=r &
=== o
5 wenon v e UUNEY

* Floyd-Warshall
Oy a rs a ! DN@a22a@e3:~ mary$ traceroute -a www.ethz.ch

traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
[AS@] 10.34.160.2 (10.34.160.2) 38.168 ms 31.272 ms 28.841 ms
[AS@] cwa-vrtr.sunet (10.21.196.28) 33.769 ms 28.245 ms 24.373 ms
[AS32] 171.66.2.229 (171.66.2.229) 24.468 ms 20.115 ms 23.223 ms
[AS32] hpr-svl-rtr-vian8.sunet (171.64.255.235) 24.644 ms 24.962 ms 17.453 ms
[AS2152] hpr-svl-hpr2--stan-ge.cenic.net (137.164.27.161) 22.129 ms 4.902 ms 3.642 ms
[AS2152] hpr-lax-hpr3--svl-hpr3-10@ge.cenic.net (137.164.25.73) 12.125 ms 43.361 ms 32.3
[AS2152] hpr-i2--lax-hpr2-r&e.cenic.net (137.164.26.201) 40.174 ms 38.399 ms 34.499 ms
[AS@]) et-4-0-0.4079.sdn-sw.lasv.net.internet2.edu (162.252.70.28) 46.573 ms 23.926 ms 17
[AS@] et-5-1-0.4079.rtsw.salt.net.internet2.edu (162.252.70.31) 30.424 ms 25.770 ms 23.1
[AS@] et-4-0-0.4079.sdn-sw.denv.net.internet2.edu (162.252.70.8) 47.454 ms 57.273 ms 73.
[ASO]) et-4-1-0.4079.rtsw.kans.net.internet2.edu (162.252.70.11) 70.825 ms 67.809 ms 62.1
[ASO]) et-4-1-0.4070.rtsw.chic.net.internet2.edu (198.71.47.206) 77.937 ms 57.421 ms 63.6
[ASQ) et-0-1-0.4079.sdn-sw.ashb.net.internet2.edu (162.252.70.60) 77.682 ms 71.993 ms 73
[AS@] et-4-1-0.4079.rtsw.wash.net.internet2.edu (162.252.70.65) 71.565 ms 74.988 ms 71.0
[AS21320] internet2-gw.mx1l.lon.uk.geant.net (62.40.124.44) 154.926 ms 145.606 ms 145.872
[AS21320] ae@.mx1.lon2.uk.geant.net (62.40.98.79) 146.565 ms 146.604 ms 146.801 ms
[AS21320] ae@.mx1.par.fr.geant.net (62.40.98.77) 153.289 ms 184.995 ms 152.682 ms
[AS21320] ae2.mxl.gen.ch.geant.net (62.40.98.153) 160.283 ms 160.104 ms 164.147 ms
[AS21320] swicel-100ge-0-3-0-1.switch.ch (62.40.124.22) 162.068 ms 160.595 ms 163.095 ms
[AS559] swizh1-100ge-0-1-0-1.switch.ch (130.59.36.94) 165.824 ms 164.216 ms 163.983 ms
[AS559] swiez3-100ge-0-1-0-4 . switch.ch (130.59.38.109) 164.269 ms 164.370 ms 163.929 ms
[AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 164.082 ms 170.645 ms 165.372
[AS559] rou-fw-rz-rz-gw.ethz.ch (192,.33.92.169) 164.773 ms 165.193 ms 172.158 ms

Bellman-Ford and Floyd-Warshall
were examples of...

®” Instead, an
algorithmic
paradigm!

» Step 1: Identify optimal substructure.

S sub sub sub

e Step 2: Find a recursive formulation problem coblem proplem __ Problem

for the value of the optimal solution. ‘ ﬁ"
V.

* Steps 3-5: Use dynamic programming:
fill in a table to find the answer!

Sometimes we can take even better advantage of
optimal substructure...with

Greedy algorithms

 Make a series of choices, and commit!

Intuitively we want to show that our greedy choices never
rule out success.

Rigorously, we usually analyzed these by induction.

o
Examples! , 'S,a\%;;\r\l ree

. . prir
* Activity Selection %(eed\N

* Job Scheduling
e Huffman Coding
* Minimum Spanning Trees

Cuts and flows

* Global minimum cut:
e Karger’s algorithm!

* Minimum s-t cut:
* is the same as maximum s-t flow!

* Ford-Fulkerson can find them!

 useful for routing
 also assignment problems

Monte-Carlo algorithm:
it is always fast
but might be wrong.

And now we’re here

What have we learned?

* A few algorithm design paradigms:
e Divide and conquer, dynamic programming, greedy

* A few analysis tools:

* Worst-case analysis, asymptotic analysis, recurrence
relations, probability tricks, proofs by induction

* A few common objects:
* Graphs, arrays, trees, hash functions

* A LOT of examples!

What have we learned?
We’ve filled out a toolbox

* Tons of examples give us intuition about what
algorithmic techniques might work when.

* The technical skills make sure our intuition works out.

But there’s lots more out there

e What’s next???

A taste of what's to come

CS154 — Introduction to Automata and Complexity flndSomeTheoryCourses():

CS163 — The Practice of Theory Research * go to theory.stanford.edu
CS166 — Data Structures * Click on “People”

CS168 — The Modern Algorithmic Toolbox * Look at what we’re teaching!
MS&E 212 — Combinatorial Optimization STANFORD THEORY GROUP

CS250 — Error Correcting Codes Faculty
CS252 — Analysis of Boolean Functions

CS254 — Computational Complexity

CS255 — Introduction to Cryptography

CS259Q — Quantum Computing

CS260 — Geometry of Polynomials in Algorithm Design
CS261 — Optimization and Algorithmic Paradigms
CS263 — Counting and Sampling

CS265 — Randomized Algorithms

CS2690 - Introduction to Optimization Theory

MS&E 316 — Discrete Mathematics and Algorithms
CS352 — Pseudorandomness

CS366 — Computational Social Choice

CS368 — Algorithmic Techniques for Big Data
EE364A/B — Convex Optimization | and I

...and many many more!

Today
A few gems

o

This will be pretty fluffy,

without much detail —

2 take more CS theory
2 .

classes for more detail!

* Linear programming

 Random projections

* Low-degree polynomials

Linear Programming

 This is a fancy name for optimizing a linear function
subject to linear constraints.

* For example:

o x =0

Maximize bject to y >0
Xty dx +y < 2
x+2y <1

* It turns out the be an extremely general problem.

We’ve already seen an example!

* None of the flows
are bigger than the

Maximize o
edge capacities

the sum of the subject to

: * At every vertex,
flows leaving s

stuff going in =
stuff going out.

Linear Programming
Has a really nice geometric intuition

Maximize
Xty

subject to

x =0
y =0
4x +y < 2
x+2y <1

Linear Programming
Has a really nice geometric intuition

Maximize
Xty

subject to

x =0
y =0
4x +y < 2
x+2y <1

Linear Programming

Has a really nice geometric intuition

increasing in
this direction.

S
— <+
> § XJ)
'-l‘x Q
2 4
QA X+ yis
J \\\\ y

~<o
~<
~
~
~
~<
~<
~
~~
~<.
~
~<
~<
~
~
~
~<.
~
~

The function
is maximized
here!

~~
~~
S~
~
~.
~
~~
S~
~
~,
~
~~
S~
~
~.
~
~~
~~
~
~<
~
~.

Maximize
Xty

subject to

x =0
y =0

4x +y < 2
x+2y <1

In general

* The constraints define a polytope
* The function defines a direction

* We just want to find the vertex that is furthest in
that direction.

The function
is maximized
here!

Duality

How do we know we have an optimal solution?

| claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

1 3 Maximize
-x+y=—(4x+y)+;(x+2y) X+
1
¢ ; 2 + . |
. B E subject to
7
N x =0
You can check this point
~~~~~~~~~~~~~ f has value 5/7...but how y 2 O
would we prove it’s
optimal other than by 4X + y S 2
eyeballing it?

x+2y <1



cute, but

How did you come up with 1/7, 3/77?

| claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

. x+)@](4x+y)+ (x + 2y)
subject to

0 x 2 O
* | want to choose things to put her y > ()
e So that | minimize thi o

Subject to these things 4x + y < 2
) x+2y <1

Maximize
Xty

m




Note: it’s not immediately obvious how to
turn that into a linear program, this is just
meant to convince you that it’s plausible.
In this case the dual is:

That’s a linear program!

w+z>1landw+2z>1

* How did | find those special values 1/7, 3/77?

* | solved some linear program.  Minimize the upper bound you get,

, subject to the proof working.
* It’s called the dual program.

Maximize stuff The optimal values are Min_imize other stuft
subject to stuff the same! subject to other stuff

Dual

Primal



We’ve actually already seen this too

The Min-Cut Max-Flow Theorem!

Maximize the Minimize the sum

sum of the chi
. The optimal values are of the capacities
flows leaving s the same! on a cut
S.t S.t.
All the flow it’s a legit cut
constraints are
satisfied

Primal =



LPs and Duality are really powerful

* This general phenomenon shows up all over the place
* Min-Cut Max-Flow is a special case.

* Duality helps us reason about an optimization problem
* The dual provides a certificate that we’ve solved the primal.

* E.g., if you have a cut and a flow with the same value, you
must have found a max flow and a min cut.

* We can solve LPs quickly!

* For example, by intelligently bouncing around the vertices of
the feasible region.

This is an extremely powerful algorithmic primitive.




Today
A few gems

* Linear programming

* Random projections ; -

* Low-degree polynomials ljy




A very useful trick
Take a random projection and hope for the best.

o High-dimensional /bsfeadOE;ZZ’WéCfo,,,o
o set of points

P @ Q ror example, each data
point is a vector
‘ (age, height, shoe size, ...)

@ Their shadow is a
@ projection onto the

. . ground.




Why would we do this?

* High dimensional data takes a long time to process.
* Low dimensional data can be processed quickly.

* “THEOREM”: Random projections approximately
preserve properties of data that you care about.



Example: nearest neighbors

* | want to find which point is closest to this one.

‘ Johnson-Lindenstrauss Lemma: Find the closest point
Euclidean distance is down here, you're
That takes a really long ,
approximately preserved by probably pretty

time in high dimensions.

random projections. correct.




Another example:
Compressed Sensing

* Start with a sparse vector
* Mostly zero or close to zero

(,0,0,0,0,001,0.01,58,32,14,0,0,0,12,0,0,5,0, .03)

* For example:

This image is sparse This image is sparse after |
take a wavelet transform.



Compressed sensing continued

* Take a random projection of that sparse vector:

n

Random short fat matrix

Short vector

Goal: Given the short

L
vector, recover the Ong Spare D

vector
long sparse vector.



Why would | want to do that?

* Image compression and signal processing

* Especially when you never have space to store the
whole sparse vector to begin with.

o, ¢ o O

O
O S 3 O

Randomly sampling (in the time

domain) a signal that is sparse in Random measurements in
: . an fMRI means you spend
the Fourier domain.

less time inside an fMRI

A “single pixel
camera” is a
thing.




All examples of this:

Random short fat matrix

Goal: Given the short
vector, recover the
long sparse vector.

Long sparse
vector

n

Short vector



But why should this be possible?

* There are tons of long vectors that map to the

short vector! E

Random short fat matrix

Short vector

Goal: Given the short

L
vector, recover the Ong Spare D

vector
long sparse vector.



Back to the geometry

All of the .
sparse 6
vectors
(Infinitely

many of them)

Theorem:

random projections preserve the
geometry of sparse vectors too.



If we don’t care about algorithmes,
that’s more than enough.

All of the
sparse
vectors

=)

Multiply by

5 Random short
fat matrix
. There may be tons of vectors
that map to this point, but only
. This means that, in theory, one of them is sparse!

we can invert that arrow.

How do we do this efficiently??




Goal: Given the short vector,
recover the long sparse vector.

|
Random short I

An efficient algorithm?

fat matrix A

What we’d like to do is: Short
o vectory
Minimize number of Long
. . s.t. Ax — y sparse
nonzero entries in X vector

This norm is the sum \ ’
of the absolute values Thisisnta  Problem: [ don’t know
of the entries of x \ nice function  how to do that efficiently!

Instead:

Minimize ||x]|, v Ax =y

e It turns out that because the geometry of sparse vectors is
preserved, this optimization problem gives the same answer.
* We can use linear programming to solve this quickly!



Today
A few gems

* Linear programming

* Random projections ‘ ¥
* Low-degree polynomials I_f -




Another very useful trick
Polynomial interpolation

e Say we have a few evaluation points of a low-degree
polynomial.
O

* We can recover the polynomial.
e 2 pts determine a line, 3 pts determine a parabola, etc.

* We can recover the whole polynomial really fast.

* Even works if some of the points are wrong.



One application:
Communication and Storage ~

* Alice wants to send a message to Bob
“Hi, Bob!”
fX)=H+I-x+B-x*+0-x>+B-x*

,7 i

Noisy channel and figure out what Alice
Alice meant to say!

Bob can do super-fast
polynomial interpolation
Bob



This is used in practice

* It’s called “Reed-Solomon Encoding”




Another application:

Designing “random” projections that
are better than random

=

Random.siiost fat matrix

The matrix that treats the big -

| . Alice’ * This s still “random enough”
ong vec .or as Adlees mess.age to make the LP solution work.
polynomial and evaluates it

) * Itis much more efficient to
REALLY FAST at random points. :
manipulate and store!




Today

A few 5E€Ms To learn more:

* Linear programming

N CS168, CS261,
* Random projections ¥

CS265, ...
* Low-degree polynomials f CS163, 5250, ...

CS168, CS261, ...



Tons more cool
algorithms stuff!




To see more...

* Take more classes!

 Come hang out with the theory group!
* |n person, once we can hang out in person again ...
* Theory lunch, most Thursdays at noon (remote for now).
* Join the theory-seminar mailing list for updates.

theory.stanford.edu

Stanford theory group (circa 2017):
We are very friendly.




A few final messages...



Thanks to our course coordinator
Amelie Byun!

* Amelie has been making all the
logistics work behind the scenes.




Thanks to our superstar CAs!!!
tell them you appreciate them!

Albert Zuo Amy Kanne Avery Wang Caci Jiang Carrie Wu Changyu Bi

v 34 2840

Chenru Liu Geng Zhao lan Tullis Jerry Qu Jesus Cervantes Jiazheng Zhao

. v
” «(

John Sun Nick Lai Ofir Geri Qile (Suyie) Zhi Rose Li Teresa Noyola
5

~ e

Trey Connelly Weiyun (Anna) Ma Wilhem Kautz

o

Reyna Hulett |l|







