Lecture 2

Asymptotic Notation,
Worst-Case Analysis, and MergeSort
Announcements

• Sign up for Ed!
 • Connect with course staff!
 • Connect with your colleagues!
 • Receive course announcements!

• Please (continue to) send OAE letters and exam conflicts to cs161-win2021-staff@lists.stanford.edu
Homework!

• HW1 will be released **today** (Wednesday).
• It is due the next **Wednesday, 11:59pm** (in one week), on Gradescope.
 • Make sure you are signed up for the Winter 2021 Gradescope
• Homework comes in two parts:
 • Exercises:
 • More straightforward.
 • Try to do them on your own.
 • Problems:
 • Less straightforward.
 • Try them on your own first, but then collaborate!

• See the website for guidelines on homework:
 • Collaboration + Late Day policy (in the “Policies” tab)
 • Best practices (in the “Resources” tab)
 • Example Homework (in the “Resources” tab)
 • LaTeX help (in the “Resources” tab)
Office Hours and Sections

• Office hours calendar is on the Canvas calendar.
 • (under “Course Summary”)
 • Office hours start tomorrow

• Sections have been scheduled.
 • See Canvas calendar
 • Thu 4:30-5:30pm
 • Thu 7-8pm
 • Fri 3-4pm
 • one will be recorded
 • Don’t need to formally enroll in sections, just show up!
Huang basement
Welcome to CS 161 Winter 2021

Getting Started

Welcome! We will be using Nooks for office hours. We expect CS161 students to use this Nooks group to communicate only about the course related material and promotional messages. Please do not share solutions of the course assignments here or violate honor code. Standard penalties and consequences will apply.

If you have questions for the teaching team, please reach out to us on Ed.

Office Hour Schedule

The schedule for when each CA/instructor will be here to answer questions can be found on the Canvas calendar.

Rooms

The teaching team will set up rooms for office hours in "CA Rooms.

Students are encouraged to make their own rooms in "Student Spaces," so that they can collaborate with their friends and just hang out with their fellow students.

Rules and Guidelines

1. Absolutely no harassment or abuse
2. Always be kind and welcoming to others
3. Have fun!
Nooks
Homework Parties

• Calendar is on Canvas.
 • Sat 3-5pm
 • Mon 8-10am and 4-6pm
 • Tue 8-10am and 3-5pm
CS 161 Student Survey

• https://forms.gle/3PsgYHHRzvdHP8j36

• Please respond! It will help us adapt the course to better serve you.

• Worth 1 point on Homework 1
End of announcements!
Last time

Philosophy

- Algorithms are awesome!
- Our motivating questions:
 - Does it work?
 - Is it fast?
 - Can I do better?

Technical content

- Karatsuba integer multiplication
- Example of “Divide and Conquer”
- Not-so-rigorous analysis
Today

• We are going to ask:
 • Does it work?
 • Is it fast?

• We’ll start to see how to answer these by looking at some examples of sorting algorithms.
 • InsertionSort
 • MergeSort

SortingHatSort not discussed
The Plan

• Sorting!

• Worst-case analysis
 • InsertionSort: Does it work?

• Asymptotic Analysis
 • InsertionSort: Is it fast?

• MergeSort
 • Does it work?
 • Is it fast?
Sorting

• Important primitive
• For today, we’ll pretend all elements are distinct.

Length of the list is n
I hope everyone did the pre-lecture exercise!

What was the mystery sort algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort

```python
def mysteryAlgorithmOne(A):
    for x in A:
        B = [None for i in range(len(A))]
        for i in range(len(B)):
            if B[i] == None or B[i] > x:
                j = len(B) - 1
                while j > i:
                    B[j] = B[j-1]
                    j -= 1
                B[i] = x
                break
    return B

def mysteryAlgorithmTwo(A):
    current = A[i]
    j = i - 1
    while j >= 0 and A[j] > current:
        j -= 1
    A[j+1] = current
```
I hope everyone did the pre-lecture exercise!

What was the mystery sort algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort
Start by moving A[1] toward the beginning of the list until you find something smaller (or can’t go any further):

Start by moving A[1]:

\[
\begin{array}{cccccc}
6 & 4 & 3 & 8 & 5 \\
\hline
4 & 6 & 3 & 8 & 5 \\
\end{array}
\]

Then move A[2]:

\[
\begin{array}{cccccc}
4 & 6 & 3 & 8 & 5 \\
\hline
3 & 4 & 6 & 8 & 5 \\
\end{array}
\]

Then move A[3]:

\[
\begin{array}{cccccc}
3 & 4 & 6 & 8 & 5 \\
\hline
3 & 4 & 5 & 6 & 8 \\
\end{array}
\]

Then we are done!
Insertion Sort

1. Does it work?
2. Is it fast?

What does that mean???
The Plan

• InsertionSort recap
• Worst-case Analysis
 • Back to InsertionSort: Does it work?
• Asymptotic Analysis
 • Back to InsertionSort: Is it fast?
• MergeSort
 • Does it work?
 • Is it fast?
Claim: InsertionSort “works”

• “Proof:” It just worked in this example:

```
6 4 3 8 5

6 4 3 8 5
4 6 3 8 5
4 6 3 8 5
3 4 6 8 5
3 4 6 8 5
```
Claim: InsertionSort “works”

• “Proof:” I did it on a bunch of random lists and it always worked:

```python
A = [1,2,3,4,5,6,7,8,9,10]
for trial in range(100):
    shuffle(A)
    InsertionSort(A)
    if is_sorted(A):
        print('YES IT IS SORTED!')
```
What does it mean to “work”?

• Is it enough to be correct on only one input?
• Is it enough to be correct on most inputs?

• In this class, we will use **worst-case analysis**:
 • An algorithm must be correct on **all possible** inputs.
 • The running time of an algorithm is the worst possible running time over all inputs.
Worst-case analysis

Think of it like a game:

Here is my algorithm!

```
Algorithm:
  Do the thing
  Do the stuff
  Return the answer
```

Algorithm designer

Here is an input!
(Which I designed to be terrible for your algorithm!)

• **Pros:** very strong guarantee
• **Cons:** very strong guarantee
Insertion Sort

1. Does it work?
2. Is it fast?

• Okay, so it’s pretty obvious that it works.

• HOWEVER! In the future it won’t be so obvious, so let’s take some time now to see how we would prove this rigorously.
Why does this work?

• Say you have a sorted list, 3 4 6 8 , and another element 5 .

• Insert 5 right after the largest thing that’s still smaller than 5 . (Aka, right after 4).

• Then you get a sorted list: 3 4 5 6 8
So just use this logic at every step.

<table>
<thead>
<tr>
<th>6</th>
<th>4</th>
<th>3</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first element, [6], makes up a sorted list.

<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>3</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So correctly inserting 4 into the list [6] means that [4,6] becomes a sorted list.

<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>3</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first two elements, [4,6], make up a sorted list.

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So correctly inserting 3 into the list [4,6] means that [3,4,6] becomes a sorted list.

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So correctly inserting 8 into the list [3,4,6] means that [3,4,6,8] becomes a sorted list.

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

The first three elements, [3,4,6], make up a sorted list.

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So correctly inserting 5 into the list [3,4,6,8] means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE!
This sounds like a job for...

Proof By Induction!
There is a handout with details!

- See website!

2 Correctness of InsertionSort

Once you figure out what INSERTIONSORT is doing (see the slides/lecture video for the intuition on this), you may think that it’s “obviously” correct. However, if you didn’t know what it was doing and just got the above code, maybe this wouldn’t be so obvious. Additionally, for algorithms that we’ll study in the future, it won’t always be obvious that it works, and so we’ll have to prove it. So in this handout we’ll carefully go through a proof that INSERTIONSORT is correct.

We’ll do the proof by maintaining a loop invariant, in this case that after iteration i, then $A[:i+1]$ is sorted. This is obviously true after iteration 0 (aka, before the algorithm begins), because the one-element list $A[:1]$ is definitely sorted. Then we’ll show that for any k with $0 < k < n$, if this loop invariant holds for $k - 1$, then it holds for k. That is, if it is true that $A[:k]$ is sorted after the $k - 1$’st iteration, then it is true that $A[:k+1]$ is sorted after the k’th iteration. At the end of the day, we’ll conclude that $A[:n]$ (aka, the whole thing) is sorted after the $n - 1$’st iteration, and we’ll be done.

Formally, we will proceed by induction.

- **Inductive hypothesis.** After iteration i of the outer loop, $A[:i+1]$ is sorted.

- **Base case.** After iteration 0 of the outer loop (aka, before the algorithm begins), the list $A[:1]$ contains only one element, and this is sorted.

- **Inductive step.** Let k be an integer so that $0 < k < n$. Suppose that the inductive hypothesis holds for $k - 1$, so $A[:k]$ is sorted after the $k - 1$’st iteration. We want to show that $A[:k+1]$ is sorted after the k’th iteration.

Suppose that j^* is the largest integer in $\{0, \ldots, k - 1\}$ such that $A[j^*] < A[k]$. Then the effect of the inner loop is to turn

$$[A[0], A[1], \ldots, A[j^*], \ldots, A[k-1], A[k]]$$

into

$$[A[0], A[1], \ldots, A[j^*], A[k], A[j^*+1], \ldots, A[k-1]].$$
Outline of a proof by induction
Let A be a list of length n

• **Inductive Hypothesis:**
 - A[:i+1] is sorted at the end of the ith iteration (of the outer loop).

• **Base case (i=0):**
 - A[:] is sorted at the end of the 0’th iteration. ✓

• **Inductive step:**
 - For any 0 < k < n, if the inductive hypothesis holds for i=k-1, then it holds for i=k.
 - Aka, if A[:k] is sorted at step k-1, then A[:k+1] is sorted at step k

• **Conclusion:**
 - The inductive hypothesis holds for i = 0, 1, ..., n-1.
 - In particular, it holds for i=n-1.
 - At the end of the n-1’st iteration (aka, at the end of the algorithm), A[:] = A is sorted.
 - That’s what we wanted! ✓

The first two elements, [4,6], make up a sorted list.

So correctly inserting 3 into the list [4,6] means that [3,4,6] becomes a sorted list.

This was iteration i=2.
Aside: proofs by induction

• We’re gonna see/do/skip over a lot of them.
• I’m assuming you’re comfortable with them from CS103.
 • When you assume...
• If that went by too fast and was confusing:
 • GO TO SECTION
 • **GO TO SECTION**

• Handout
• References
• Office Hours

Make sure you really understand the argument on the previous slide! Check out the handout for a more formal write-up, and go to section for an overview of what we are looking for in proofs by induction.

Siggi the Studious Stork
What have we learned?

• In this class we will use worst-case analysis:
 • We assume that a “bad guy” comes up with a worst-case input for our algorithm, and we measure performance on that worst-case input.

• With this definition, InsertionSort “works”
 • Proof by induction!
The Plan

• InsertionSort recap
• Worst-case Analysis
 • Back to InsertionSort: Does it work?
• Asymptotic Analysis
 • Back to InsertionSort: Is it fast?
• MergeSort
 • Does it work?
 • Is it fast?
How fast is InsertionSort?

- This fast:
Issues with this answer?

- The “same” algorithm can be slower or faster depending on the implementations.
- It can also be slower or faster depending on the hardware that we run it on.

With this answer, “running time” isn’t even well-defined!
How fast is InsertionSort?

• Let’s count the number of operations!

```python
def InsertionSort(A):
    for i in range(1, len(A)):
        current = A[i]
        j = i - 1
        while j >= 0 and A[j] > current:
            j -= 1
        A[j+1] = current
```

By my count*...
• $2n^2 - n - 1$ variable assignments
• $2n^2 - n - 1$ increments/decrements
• $2n^2 - 4n + 1$ comparisons
• ...

*Do not pay attention to these formulas, they do not matter. Also not valid for bug bounty points.
Issues with this answer?

• It’s very tedious!
• In order to use this to understand running time, I need to know how long each operation takes, plus a whole bunch of other stuff...

```
def InsertionSort(A):
    for i in range(1, len(A)):
        current = A[i]
        j = i-1
        while j >= 0 and A[j] > current:
            j -= 1
        A[j+1] = current
```

Counting individual operations is a lot of work and doesn’t seem very helpful!

Lucky the lackadaisical lemur
In this class we will use...

• **Big-Oh notation!**

• Gives us a meaningful way to talk about the running time of an algorithm, independent of programming language, computing platform, etc., without having to count all the operations.
Main idea:

Focus on how the runtime **scales** with n (the input size).

Some examples...

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Asymptotic Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{10} \cdot n^2 + 100$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$0.063 \cdot n^2 - 0.5n + 12.7$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$100 \cdot n^{1.5} - 10^{10000}\sqrt{n}$</td>
<td>$O(n^{1.5})$</td>
</tr>
<tr>
<td>$11 \cdot n \log(n) + 1$</td>
<td>$O(n \log(n))$</td>
</tr>
</tbody>
</table>

(Only pay attention to the largest function of n that appears.)

We say this algorithm is “asymptotically faster” than the others.
Why is this a good idea?

• Suppose the running time of an algorithm is:

\[T(n) = 10n^2 + 3n + 7 \text{ ms} \]

This constant factor of 10 depends a lot on my computing platform...

We’re just left with the \(n^2 \) term! That’s what’s meaningful.

These lower-order terms don’t really matter as \(n \) gets large.
Pros and Cons of Asymptotic Analysis

Pros:
- Abstracts away from hardware- and language-specific issues.
- Makes algorithm analysis much more tractable.
- Allows us to meaningfully compare how algorithms will perform on large inputs.

Cons:
- Only makes sense if \(n \) is large (compared to the constant factors).

10000000000 \(n \) is “better” than \(n^2 \) ?!?!
Informal definition for $O(...)$

• Let $T(n), g(n)$ be functions of positive integers.
 • Think of $T(n)$ as a runtime: positive and increasing in n.

• We say “$T(n)$ is $O(g(n))$” if:
 for large enough n,
 $T(n)$ is at most some constant multiple of $g(n)$.

Here, “constant” means “some number that doesn’t depend on n.”
Example

\[2n^2 + 10 = O(n^2) \]

for large enough \(n \), \(T(n) \) is at most some constant multiple of \(g(n) \).
Example

\[2n^2 + 10 = O(n^2) \]

for large enough \(n \), \(T(n) \) is at most some constant multiple of \(g(n) \).
Example

\[2n^2 + 10 = O(n^2) \]

for large enough \(n \), \(T(n) \) is at most some constant multiple of \(g(n) \).
Formal definition of $O(...)$

- Let $T(n)$, $g(n)$ be functions of positive integers.
 - Think of $T(n)$ as a runtime: positive and increasing in n.

- Formally,

 \[
 T(n) = O(g(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0,
 T(n) \leq c \cdot g(n)
 \]
Example

\[2n^2 + 10 = O(n^2) \]

\[T(n) = O(g(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, T(n) \leq c \cdot g(n) \]
Example

\[2n^2 + 10 = O(n^2) \]

\[
T(n) = O(g(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \quad T(n) \leq c \cdot g(n)
\]

\[
T(n) = 2n^2 + 10 \quad g(n) = n^2 \quad 3g(n) = 3n^2 (c=3)
\]
Example

\[2n^2 + 10 = O(n^2)\]

\[T(n) = O(g(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \]
\[T(n) \leq c \cdot g(n)\]

3\(g(n) = 3n^2\)
\(c = 3\)

\[g(n) = n^2\]

\[T(n) = 2n^2 + 10\]
Example

\[2n^2 + 10 = O(n^2)\]

Formally:
- Choose \(c = 3 \)
- Choose \(n_0 = 4 \)
- Then:
 \[\forall n \geq 4, \quad 2n^2 + 10 \leq 3 \cdot n^2\]
Same example

$2n^2 + 10 = O(n^2)$

Formally:
- Choose $c = 7$
- Choose $n_0 = 2$
- Then:
 $$\forall n \geq 2, \quad 2n^2 + 10 \leq 7 \cdot n^2$$

There is not a “correct” choice of c and n_0
$O(\ldots)$ is an upper bound:

$n = O(n^2)$

\[T(n) = O(g(n)) \iff \exists c, n_0 > 0 \ s.t. \ \forall n \geq n_0, \quad T(n) \leq c \cdot g(n) \]

- Choose $c = 1$
- Choose $n_0 = 1$
- Then

\[\forall n \geq 1, \quad n \leq n^2 \]
Break
\(\Omega(...)\) means a lower bound

• We say "\(T(n)\) is \(\Omega(g(n))\)" if, for large enough \(n\),
 \(T(n)\) is at least as big as a constant multiple of \(g(n)\).

• Formally,

\[
T(n) = \Omega(g(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0,
\]

\[
c \cdot g(n) \leq T(n)
\]

Switched these!!
Example

\[n \log_2(n) = \Omega(3n) \]

Choose \(c = \frac{1}{3} \)

Choose \(n_0 = 2 \)

Then
\[3n \leq n \log_2(n) \]
\(\Theta(\ldots) \) means both!

- We say "\(T(n) \) is \(\Theta(g(n)) \)" iff both:

 \[
 T(n) = O(g(n))
 \]

 and

 \[
 T(n) = \Omega(g(n))
 \]
Non-Example:

\(n^2\) is not \(O(n)\)

• Proof by contradiction:
• Suppose that \(n^2 = O(n)\).
• Then there is some positive \(c\) and \(n_0\) so that:
 \[\forall n \geq n_0, \quad n^2 \leq c \cdot n\]
• Divide both sides by \(n\):
 \[\forall n \geq n_0, \quad n \leq c\]
• That’s not true!!! What about, say, \(n_0 + c + 1\)?
 • Then \(n \geq n_0\), but \(n > c\)
• Contradiction!
Take-away from examples

• To prove $T(n) = O(g(n))$, you have to come up with c and n_0 so that the definition is satisfied.

• To prove $T(n)$ is NOT $O(g(n))$, one way is proof by contradiction:
 • Suppose (to get a contradiction) that someone gives you a c and an n_0 so that the definition is satisfied.
 • Show that this someone must be lying to you by deriving a contradiction.
Another example: polynomials

- Say $p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$ is a polynomial of degree $k \geq 1$.

- Then:

 1. $p(n) = O(n^k)$
 2. $p(n)$ is **not** $O(n^{k-1})$

- See the notes/references for a proof.
More examples

- \(n^3 + 3n = O(n^3 - n^2) \)
- \(n^3 + 3n = \Omega(n^3 - n^2) \)
- \(n^3 + 3n = \Theta(n^3 - n^2) \)

- \(3^n \) is **NOT** \(O(2^n) \)
- \(\log_2(n) = \Omega(\ln(n)) \)
- \(\log_2(n) = \Theta(2^{\log\log(n)}) \)

Work through these on your own! Also look at the examples in the reading!
Some brainteasers

• Are there functions f, g so that \textit{NEITHER} $f = O(g)$ nor $f = \Omega(g)$?

• Are there \textit{non-decreasing} functions f, g so that the above is true?
Recap: Asymptotic Notation

• This makes both Plucky and Lucky happy.
 • \textbf{Plucky the Pedantic Penguin} is happy because there is a precise definition.
 • \textbf{Lucky the Lackadaisical Lemur} is happy because we don’t have to pay close attention to all those pesky constant factors.

• But we should always be careful not to abuse it.

• In the course, (almost) every algorithm we see will be actually practical, without needing to take \(n \geq n_0 = 2^{10000000} \).
Back Insertion Sort

1. Does it work?
2. Is it fast?
Insertion Sort: running time

• Operation count was:
 • $2n^2 - n - 1$ variable assignments
 • $2n^2 - n - 1$ increments/decrements
 • $2n^2 - 4n + 1$ comparisons
 • ...

• The running time is $O(n^2)$

Go back to the pseudocode and convince yourself of this!
Insertion Sort: running time

As you get more used to this, you won’t have to count up operations anymore. For example, just looking at the pseudocode below, you might think...

```
def InsertionSort(A):
    for i in range(1, len(A)):
        current = A[i]
        j = i-1
        while j >= 0 and A[j] > current:
            j -= 1
        A[j+1] = current
```

In the worst case, about n iterations of this inner loop

“There’s $O(1)$ stuff going on inside the inner loop, so each time the inner loop runs, that’s $O(n)$ work. Then the inner loop is executed $O(n)$ times by the outer loop, so that’s $O(n^2)$.”
What have we learned?

InsertionSort is an algorithm that correctly sorts an arbitrary n-element array in time $O(n^2)$.

Can we do better?
The Plan

• InsertionSort recap
• Worst-case analysis
 • Back to InsertionSort: Does it work?
• Asymptotic Analysis
 • Back to InsertionSort: Is it fast?
• MergeSort
 • Does it work?
 • Is it fast?
Can we do better?

- **MergeSort**: a *divide-and-conquer* approach
- **Recall from last time:**

![Divide and Conquer:]

```
Big problem
  /   \\   /
Smaller Smaller
  problem problem
  /     /
Yet smaller Yet smaller
  problem problem
  /     /
Yet smaller Yet smaller
  problem problem
```
MergeSort

Recursive magic!

Recursive magic!

MERGE!

Code for the MERGE step is given in the Lecture2 IPython notebook, or the textbook.
MergeSort Pseudocode

MERGESORT(A):

• n = length(A)

• if n ≤ 1:
 • return A
 If A has length 1,
 It is already sorted!

• L = MERGESORT(A[0 : n/2])
 Sort the left half

• R = MERGESORT(A[n/2 : n])
 Sort the right half

• return MERGE(L,R)
 Merge the two halves
What actually happens?

First, recursively break up the array all the way down to the base cases

This array of length 1 is sorted!
Then, merge them all back up!

A bunch of sorted lists of length 1 (in the order of the original sequence).
Two questions

1. Does this work?
2. Is it fast?

Empirically:
1. Seems to work.
2. Seems fast.

IPython notebook says...
It works

• Yet another job for...

Proof By Induction!

Work this out! There’s a skipped slide with an outline to help you get started.
It works

- **Inductive hypothesis:**
 “In every the recursive call on an array of length at most i, MERGESORT returns a sorted array.”

- **Base case (i=1):** a 1-element array is always sorted.

- **Inductive step:** Need to show: if the inductive hypothesis holds for k<i, then it holds for k=i.

- Aka, need to show that if L and R are sorted, then MERGE(L,R) is sorted.

- **Conclusion:** In the top recursive call, MERGESORT returns a sorted array.

MERGESORT(A):
- \(n = \text{length}(A) \)
- \(\text{if } n \leq 1: \)
 - \(\text{return } A \)
- \(L = \text{MERGESORT}(A[1 : n/2]) \)
- \(R = \text{MERGESORT}(A[n/2+1 : n]) \)
- \(\text{return } \text{MERGE}(L,R) \)

Fill in the inductive step!
HINT: You will need to prove that the MERGE algorithm is correct, for which you may need...another proof by induction!

Assume that \(n \) is a power of 2 for convenience.
It’s fast

CLAIM:

MergeSort runs in time $O(n \log(n))$

• Proof coming soon.
• But first, how does this compare to InsertionSort?
 • Recall InsertionSort ran in time $O(n^2)$.}

Assume that n is a power of 2 for convenience.
$O(n \log(n))$ vs. $O(n^2)$?
Quick log refresher

• **Def:** \(\log(n) \) is the number so that \(2^{\log(n)} = n \).

• **Intuition:** \(\log(n) \) is how many times you need to divide \(n \) by 2 in order to get down to 1.

\[
\begin{align*}
32, 16, 8, 4, 2, 1 & \quad \Rightarrow \quad \log(32) = 5 \\
64, 32, 16, 8, 4, 2, 1 & \quad \Rightarrow \quad \log(64) = 6 \\
& \quad \log(128) = 7 \\
& \quad \log(256) = 8 \\
& \quad \log(512) = 9 \\
& \quad \ldots \\
& \quad \log(\# \text{ particles in the universe}) < 280
\end{align*}
\]

• \(\log(n) \) grows very slowly!
$O(n \log n)$ vs. $O(n^2)$?

- $\log(n)$ grows much more slowly than n
- $n \log(n)$ grows much more slowly than n^2

Punchline: A running time of $O(n \log n)$ is a lot better than $O(n^2)$!
Now let’s prove the claim

CLAIM:

MergeSort runs in time $O(n \log(n))$

Assume that n is a power of 2 for convenience.
Let’s prove the claim

Focus on just one of these sub-problems

2^t subproblems at level t.

(Size 1)
How much work in this sub-problem?

\[\frac{n}{2^t} + \frac{n}{2^{t+1}} + \frac{n}{2^{t+1}} \]

Time spent MERGE-ing the two subproblems

Time spent within the two sub-problems
How much work in this sub-problem?

Let $k = n/2^t$...

Time spent MERGE-ing the two subproblems

Time spent within the two sub-problems
How long does it take to MERGE?

Code for the MERGE step is given in the Lecture2 notebook.
How long does it take to merge?

Code for the MERGE step is given in the Lecture2 notebook.

How long does it take to run MERGE on two lists of size $k/2$?

Think-Pair-Share Terrapins

Answer: It takes time $O(k)$, since we just walk across the list once.
Recursion tree

There are $O(k)$ operations done at this node.
Recursion tree

How many operations are done at this level of the tree? (Just MERGE-ing subproblems).

How about at this level of the tree? (between both \(n/2\)-sized problems)

Think, Pair, Share!

There are \(O(k)\) operations done at this node.

(Size 1)
Recursion tree

Size of each problem

<table>
<thead>
<tr>
<th>Level</th>
<th># problems</th>
<th>Size of each problem</th>
<th>Amount of work at this level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
<td>O(n)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>n/2</td>
<td>O(n)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>n/4</td>
<td>O(n)</td>
</tr>
<tr>
<td>t</td>
<td>2^t</td>
<td>n/2^t</td>
<td>O(n)</td>
</tr>
<tr>
<td>log(n)</td>
<td>n</td>
<td>1</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Work this out yourself!
Total runtime...

• $O(n)$ steps per level, at every level

• $\log(n) + 1$ levels

• $O(n \log(n))$ total!

That was the claim!
What have we learned?

• MergeSort correctly sorts a list of n integers in time $O(n \log(n))$.
• That’s (asymptotically) better than InsertionSort!
The Plan

• InsertionSort recap
• Worst-case analysis
 • Back to InsertionSort: Does it work?
• Asymptotic Analysis
 • Back to InsertionSort: Is it fast?
• MergeSort
 • Does it work?
 • Is it fast?

Wrap-Up
• InsertionSort runs in time $O(n^2)$
• MergeSort is a divide-and-conquer algorithm that runs in time $O(n \log(n))$

• How do we show an algorithm is correct?
 • Today, we did it by induction

• How do we measure the runtime of an algorithm?
 • Worst-case analysis
 • Asymptotic analysis

• How do we analyze the running time of a recursive algorithm?
 • One way is to draw a recursion tree.
Next time

• A more systematic approach to analyzing the runtime of recursive algorithms.

Before next time

• Pre-Lecture Exercise:
 • A few recurrence relations (see website)