
CS 161, Lecture 3 Solving Recurrences and the Selection Problem
Adapted From Virginia Williams’ lecture notes
Additional credits: Albert Chen, Juliana Cook (2015), Ofir Geri, Sam Kim (2016), Gregory Valiant
(2017), Aviad Rubinstein (2018)
Direct all typos/mistakes to Moses Charikar and Nima Anari (2021) Date: January 20, 2021

1 Introduction
Today we will continue to talk about divide and conquer, and go into detail on how to solve
recurrences.

Recall that divide and conquer algorithms divide up a problem into a number of subproblems
that are the smaller instances of the same problem, solve those problems recursively, and combine
the solutions to the subproblems into a solution for the original problem. When a subproblem size
is small enough, the subproblem is solved in a straightforward manner. In the past lectures we
have seen two examples of divide and conquer algorithms: MergeSort and Karatsuba’s algorithm
for integer multiplication.

The running time of divide and conquer algorithms can be naturally expressed in terms of the
running time of smaller inputs. Today we will show two techniques for solving these recurrences.
The first is called the master method to solve these recurrences. This method can only be used
when the size of all the subproblems is the same (as was the case in the examples). We will also
see a surprising algorithm that does not fall into this category, and how to analyze its running
time using another method, the substitution method.

2 Recurrences
Stated more technically, a divide and conquer algorithm takes an input of size n and does some
operations all running in O(f(n)) time for some f and runs itself recursively on k ≥ 1 instances
of size n1, n2, ..., nk, where ni < n for all i. To talk about what the runtime of such an algorithm
is, we can write a runtime recurrence. Recurrences are functions defined in terms of themselves
with smaller arguments, as well as one or more base cases. We can define a recurrence more
formally as follows:

Let T (n) be the worst-case runtime on instances of size n. If we have k recursive calls on
a given step (of sizes ni) and each step takes time O(f(n)), then we can write the runtime as

T (n) ≤ c · f(n) +
k∑

i=1

T (ni) for some constant c, where our base case is T (c′) ≤ O(1).
Now let’s try finding recurrences for some of the divide and conquer algorithms we have seen.

1

2.1 Integer Multiplication
Recall the integer multiplication problem, where we are given two n-digit integers x and y and
output the product of the two numbers. The long multiplication/grade school algorithm runs in
O(n2) time. In lecture 1 we saw two divide and conquer algorithms for solving this problem. In
both of them, we divided each of x and y into two (n/2)-digit numbers in the following way:
x = 10

n
2 a+ b and y = 10

n
2 c+ d. Then we compute xy = ac · 10n + 10

n
2 (ad+ bc) + bd.

In the first algorithm, which we call Mult1, we simply computed the four products ac, ad, bc, bd.
Karatsuba found that since we only need the sum of ad and bc, we can save one multiplication
operation by noting that ad+ bc = (a+ b)(c+ d)− ac− bd.

Algorithm 1: Mult1(x, y)
Split x and y into x = 10

n
2 a+ b and y = 10

n
2 c+ d

z1 = Mult1(a, c)
z2 = Mult1(a, d)
z3 = Mult1(b, c)
z4 = Mult1(b, d)
return z1 · 10n + 10

n
2 (z2 + z3) + z4

Algorithm 2: Karatsuba(x, y)
Split x = 10

n
2 a+ b and y = 10

n
2 c+ d

z1 = Karatsuba(a, c)
z2 = Karatsuba(b, d)
z3 = Karatsuba(a+ b, c+ d)
z4 = z3 − z1 − z2
return z1 · 10n + z4 · 10

n
2 + z2

We now express the running time of these two algorithms using recurrences. Adding two n
digit integers is an O(n) operation, since for each position we add at most three digits: the ith
digit from each number and possibly a carry from the additions due to the (i− 1)th digits.

Let T1(n) and T2(n) denote the worst-case runtime of Mult1 and Karatsuba, respectively, on
inputs of size n. Then, the runtime of Mult1 can be written as the recurrence

T1(n) = 4T1

(n
2

)
+O(n),

and Karatsuba’s runtime can be written as the recurrence

T2(n) = 3T2

(n
2

)
+O(n).

Note that the constant “hidden” in the O(n) term in T2 may be greater than in T1, but for
asymptotic analysis of the running time, these constants are not important.

2

2.2 MergeSort
Consider the basic steps for algorithm MergeSort(A), where |A| = n.

1. If |A| = 1, return A.

2. Split A into A1, A2 of size n
2
.

3. Run MergeSort(A1) and MergeSort(A2).

4. Merge(A1, A2)

Steps 2 and 4 each take time O(n). In step 3, we are splitting the work up into two
subproblems of size n

2
. Therefore, we get the following recurrence:

T (n) = 2T
(n
2

)
+O(n).

In the previous lecture, we saw that the running time of MergeSort is O(n logn). In this
lecture we will show how to derive this using the master method.

3 The Master Method
We now introduce a general method, called the master method, for solving recurrences where
all the subproblems are of the same size. We assume that the input to the master method is a
recurrence of the form

T (n) = a · T
(n
b

)
+O(nd).

In this recurrence, there are three constants:

• a is the number of subproblems that we create from one problem, and must be an integer
greater than or equal to 1.

• b is the factor by which the input size shrinks (it must hold that b > 1).

• d is the exponent of n in the time it takes to generate the subproblems and combine their
solutions.

There is another constant “hidden” in the big-O notation. We will introduce it in the proof and
see that it does not affect the result.

In addition, we need to specify the “base case” of the recurrence, that is, the runtime when
the input gets small enough. For a sufficiently small n (say, when n = 1), the worst-case runtime
of the algorithm is constant, namely, T (n) = O(1).

We now state the master theorem, which is used to solve the recurrences.

3

Theorem 3.1 (Master Theorem). Let T (n) = a · T
(
n
b

)
+ O(nd) be a recurrence where a ≥

1, b > 1. Then,

T (n) =


O(nd logn) if a = bd

O(nd) if a < bd

O(nlogb a) if a > bd

Remark 1. In some cases, the recurrence may involve subproblems of size ⌈n
b
⌉, ⌊n

b
⌋, or n

b
+ 1.

The master theorem holds for these cases as well. However, we do not prove that here.
Before we turn to the proof of the master theorem, we show how it can be used to solve the

recurrences we saw earlier.
• Mult1: T (n) = 4T

(
n
2

)
+O(n).

The parameters are a = 4, b = 2, d = 1, so a > bd, hence T (n) = O(nlog2 4) = O(n2).

• Karatsuba: T (n) = 3T
(
n
2

)
+O(n).

The parameters are a = 3, b = 2, d = 1, so a > bd, hence T (n) = O(nlog2 3) = O(n1.59).

• MergeSort: T (n) = 2T
(
n
2

)
+O(n).

The parameters are a = 2, b = 2, d = 1, so a = bd, hence T (n) = O(n logn).

• Another example: T (n) = 2T
(
n
2

)
+O(n2).

The parameters are a = 2, b = 2, d = 2, so a < bd, hence T (n) = O(n2).
We see that for integer multiplication, Karatsuba is the clear winner!

Proof of the Master Theorem. Let T (n) = a · T
(
n
b

)
+ O(nd) be the recurrence we solve using

the master theorem. For simplicity, we assume that T (1) = 1 and that n is a power of b. From
the definition of big-O, we know that there is a constant c > 0 such that for sufficiently large
n, T (n) ≤ a · T

(
n
b

)
+ c · nd. The proof of the master theorem will use the recursion tree in a

similar way to our analysis of the running time of MergeSort.

Level 0: n

vvlll
lll

lll
lll

lll
lll

}}zz
zz
zz
zz
z

 A
AA

AA
AA

AA
A

((PP
PPP

PPP
PPP

PPP
PP

Level 1: n/b

vvmmm
mmm

mmm
mmm

mmm
mm

}}{{
{{
{{
{{

�� !!C
CC

CC
CC

C
n/b . . . n/b

Level 2: n/b2 n/b2 · · · n/b2 · · ·

vvmmm
mmm

mmm
mmm

mmm
mmm

mmm

}}{{
{{
{{
{{
{{
{

�� !!C
CC

CC
CC

CC
CC

...

Level logb n: 1 1 · · · 1 · · ·

4

The recursion tree drawn above has logb n + 1 level. We analyze the amount of work done
at each level, and then sum over all levels in order to get the total running time. Consider level
j. At level j, there are aj subproblems. Each of these subproblems is of size n

bj
, and will take

time at most c
(
n
bj

)d to solve (this only considers the work done at level j and does not include
the time it takes to solve the subsubproblems). We conclude that the total work done at level j
is at most aj · c

(
n
bj

)d
= cnd

(
a
bd

)j.
Writing the running time this way shows us where the terms a and bd come from: a is the

branching factor and measures how the number of subproblems grows at each level, and bd is the
shrinkage in the work needed (per subproblem).

Summing over all levels, we get that the total running time is at most cnd
∑logbn

j=0

(
a
bd

)j. We
now consider each of the three cases.

1. a = bd. In this case, the amount of work done at each level is the same: cnd. Since there
are logb n+ 1 levels, the total running time is at most (logb n+ 1)cnd = O(nd logn).

2. a < bd. In this case, a
bd

< 1, hence,
∑logb n

j=0

(
a
bd

)j ≤ ∑∞
j=0

(
a
bd

)j
= 1

1− a

bd
= bd

bd−a
. Hence,

the total running time is cnd · bd

bd−a
= O(nd).

Intuitively, in this case the shrinkage in the work needed per subproblem is more significant,
so the work done in the highest level “dominates” the other factors in the running time.

3. a > bd. In this case,
∑logb n

j=0

(
a
bd

)j
=

(a

bd
)
logb n+1

−1
a

bd
−1

. Since a, b, c, d are constants, we get that

the total work done is O
(
nd ·

(
a
bd

)logb n) = O
(
nd · alogb n

bd logb n

)
= O

(
nd · nlogb a

nd

)
= O(nlogb a).

Intuitively, here the branching factor is more significant, so the total work done at each
level increases, and the leaves of the tree “dominate”.

□

We conclude with a more general version of the master theorem.

Theorem 3.2 (Master Theorem - more general version). Let T (n) = a · T
(
n
b

)
+ f(n) be a

recurrence where a ≥ 1, b > 1. Then,

• If f(n) = O
(
nlogb(a)−ϵ

)
for some constant ϵ > 0, T (n) = Θ

(
nlogb(a)

)
.

• If f(n) = Θ
(
nlogb(a)

)
, T (n) = Θ

(
nlogb a logn

)
.

• If f(n) = Ω
(
nlogb(a)+ϵ

)
for some constant ϵ > 0 and if af(n/b) ≤ cf(n) for some c < 1

and all sufficiently large n, then T (n) = Θ(f(n)).

5

4 The Substitution Method
Recurrence trees can get quite messy when attempting to solve complex recurrences. With the
substitution method, we can guess what the runtime is, plug it in to the recurrence and see if it
works out.

Given a recurrence T (n) ≤ f(n)+
k∑

i=1

T (ni), we can guess that the solution to the recurrence
is

T (n) ≤
{

d · g(n0) if n = n0

d · g(n) if n > n0

for some constants d > 0 and n0 ≥ 1 and a function g(n). We are essentially guessing that
T (n) ≤ O(g(n)).

For our base case we must show that you can pick some d such that T (n0) ≤ d · g(n0). For
example, this can follow from our standard assumption that T (1) = 1.

Next we assume that our guess is correct for everything smaller than n, meaning T (n′) ≤
d · g(n′) for all n′ < n. Using the inductive hypothesis, we prove the guess for n. We must pick
some d such that

f(n) +
k∑

i=1

d · g(ni) ≤ d · g(n),whenever n ≥ n0.

Typically the way this works is that you first try to prove the inductive step starting from
the inductive hypothesis, and then from this obtain a condition that d needs to obey. Using this
condition you try to figure out the base case, i.e., what n0 should be.

5 Selection
The selection problem is to find the kth smallest number in an array A.

Input: array A of n numbers, and an integer k ∈ {1, · · · , n}.

Output: the k-th smallest number in A.

One approach is to sort the numbers in ascending order, and then return the kth number in
the sorted list. This takes O(n logn) time, since it takes O(n logn) time for the sort (e.g. by
MergeSort) and O(1) time to return kth number.

5.1 Minimum Element
As always, we ask if we can do better (i.e. faster in big-O terms). In the special case where
k = 1, selection is the problem of finding the minimum element. We can do this in O(n) time
by scanning through the array and keeping track of the minimum element so far. If the current
element is smaller than the minimum so far, we update the minimum.

In fact, this is the best running time we could hope for.

6

Algorithm 3: SelectMin(A)
m←∞;
n← length(A);
for i = 1 to n do

if A(i) < m then
m← A(i);

return m;

Definition 5.1. A deterministic algorithm is one which, given a fixed input, always performs the
same operations (as opposed to an algorithm which uses randomness).
Claim 1. Any deterministic algorithm for finding the minimum has runtime Ω(n).
Proof of Claim 1. Intuitively, the claim holds because any algorithm for the minimum must
look at all the elements, each of which could be the minimum. Suppose a correct deterministic
algorithm does not look at A(i) for some i. Then the output cannot depend on A(i), so the
algorithm returns the same value whether A(i) is the minimum element or the maximum element.
Therefore the algorithm is not always correct, which is a contradiction. So there is no sublinear
deterministic algorithm for finding the minimum. □

So for k = 1, we have an algorithm which achieves the best running time possible. By similar
reasoning, this lower bound of Ω(n) applies to the general selection problem. So ideally we would
like to have a linear-time selection algorithm in the general case.

6 Linear-Time Selection
In fact, a linear-time selection algorithm does exist. Before showing the linear time selection
algorithm, it’s helpful to build some intuition on how to approach the problem. The high-level
idea will be to try to do a Binary Search over an unsorted input. At each step, we hope to divide
the input into two parts, the subset of smaller elements of A, and the subset of larger elements
of A. We will then determine whether the kth smallest element lies in the first part (with the
“smaller” elements) or the part with larger elements, and recurse on exactly one of those two
parts.

How do we decide how to partition the array into these two pieces? Suppose we have a
black-box algorithm ChoosePivot that chooses some element in the array A, and we use this
pivot to define the two sets–any A[i] less than the pivot is in the set of “smaller” values, and any
A[i] greater than the pivot is in the other part. We will figure out precisely how to specify this
subroutine ChoosePivot a bit later, after specifying the high-level algorithm structure. For clarity
we’ll assume all elements are distinct from now on, but the idea generalizes easily. Let n be the
size of the array and assume we are trying to find the kth element.

At each iteration, we use the element p to partition the array into two parts: all elements
smaller than the pivot and all elements larger than the pivot, which we denote A< and A>,
respectively.

7

Algorithm 4: Select(A,n, k)
if n == 1 then

return A[1];
p← ChoosePivot(A,n);
A< ← {A(i) | A(i) < p};
A> ← {A(i) | A(i) > p};
if |A<| = k − 1 then

return p;
else if |A<| > k − 1 then

return Select(A<, |A<|, k);
else if |A<| < k − 1 then

return Select(A>, |A>|, k − |A<| − 1);

Depending on what the size of the resulting sub-arrays are, the runtime can be different. For
example, if one of these sub-arrays is of size n− 1, at each iteration, we only decreased the size
of the problem by 1, resulting in total running time O(n2). If the array is split into two equal
parts, then the size of the problem at iteration reduces by half, resulting in a linear time solution.
(We assume ChoosePivot runs in O(n).)

Claim 2. If the pivot p is chosen to be the minimum or maximum element, then Select runs
in Θ(n2) time.

Proof. At each iteration, the number of elements decreases by 1. Since running ChoosePivot
and creating A< and A> takes linear time, the recurrence for the runtime is T (n) = T (n− 1) +
Θ(n). Expanding this,

T (n) ≤ c1n+ c1(n− 1) + c1(n− 2) + ...+ c1 = c1n(n+ 1)/2

and
T (n) ≥ c2n+ c2(n− 1) + c2(n− 2) + ...+ c2 = c2n(n+ 1)/2.

We conclude that T (n) = Θ(n2). □

Claim 3. If the pivot p is chosen to be the median element, then Select runs in O(n) time.

Proof. Intuitively, the running time is linear since we remove half of the elements from consid-
eration each iteration. Formally, each recursive call is made on inputs of half the size, namely,
T (n) ≤ T (n/2) + cn. Expanding this, the runtime is T (n) ≤ cn+ cn/2 + cn/4 + ...+ c ≤ 2cn,
which is O(n). □

So how do we design ChoosePivot that chooses a pivot in linear time? In the following,
we describe three ideas.

8

6.1 Idea #1: Choose a random pivot
As we saw earlier, depending on the pivot chosen, the worst-case runtime can be O(n2) if we
are unlucky in the choice of the pivot at every iteration. As you might expect, it is extremely
unlikely to be this unlucky, and one can prove that the expected runtime is O(n) provided the
pivot is chosen uniformly at random from the set of elements of A. In practice, this randomized
algorithm is what is implemented, and the hidden constant in the O(n) runtime is very small.

6.2 Idea #2: Choose a pivot that creates the most “balanced” split
Consider ChoosePivot that returns the pivot that creates the most “balanced” split, which
would be the median of the array. However, this is exactly selection problem we are trying to
solve, with k = n/2! As long as we do not know how to find the median in linear time, we cannot
use this procedure as ChoosePivot.

6.3 Idea #3: Find a pivot ”close enough” to the median
Given a linear-time median algorithm, we can solve the selection problem in linear time (and vice
versa). Although ideally we would want to find the median, notice that as far as correctness goes,
there was nothing special about partitioning around the median. We could use this same idea of
partitioning and recursing on a smaller problem even if we partition around an arbitrary element.
To get a good runtime, however, we need to guarantee that the subproblems get smaller quickly.
In 1973, Blum, Floyd, Pratt, Rivest, and Tarjan came up with the Median of Medians algorithm.
It is similar to the previous algorithm, but rather than partitioning around the exact median, uses
a surrogate “median of medians”. We update ChoosePivot accordingly.

Algorithm 5: ChoosePivot(A,n)
Split A into g = ⌈n/5⌉ groups p1, . . . , pg;
for i = 1 to g do

pi ←MergeSort(pi);
C ← {median of pi | i = 1, . . . , g};
p← Select(C, g, g/2);
return p;

What is this algorithm doing? First it divides A into segments of size 5. Within each group,
it finds the median by first sorting the elements with MergeSort. Recall that MergeSort
sorts in O(n logn) time. However, since each group has a constant number of elements, it takes
constant time to sort. Then it makes a recursive call to Select to find the median of C, the
median of medians. Intuitively, by partitioning around this value, we are able to find something
that is close to the true median for partitioning, yet is ‘easier’ to compute, because it is the
median of g = ⌈n/5⌉ elements rather than n. The last part is as before: once we have our
pivot element p, we split the array and recurse on the proper subproblem, or halt if we found our
answer.

9

We have devised a slightly complicated method to determine which element to partition
around, but the algorithm remains correct for the same reasons as before. So what is its running
time? As before, we’re going to show this by examining the size of the recursive subproblems.
As it turns out, by taking the median of medians approach, we have a guarantee on how much
smaller the problem gets each iteration. The guarantee is good enough to achieve O(n) runtime.

6.3.1 Running Time

Lemma 6.1. |A<| ≤ 7n/10 + 5 and |A>| ≤ 7n/10 + 5.

Proof of Lemma 6.1. p is the median of p1, · · · , pg. Because p is the median of g = ⌈n/5⌉
elements, the medians of ⌈g/2⌉ − 1 groups pi are smaller than p. If p is larger than a group
median, it is larger than at least three elements in that group (the median and the smaller two
numbers). This applies to all groups except the remainder group, which might have fewer than 5
elements. Accounting for the remainder group, p is greater than at least 3 · (⌈g/2⌉− 2) elements
of A. By symmetry, p is less than at least the same number of elements.

Now,
|A>| = # of elements greater than p

≤ (n− 1)− 3 · (⌈g/2⌉ − 2)

= n+ 5− 3 · ⌈g/2⌉
≤ n− 3n/10 + 5

= 7n/10 + 5.

(1)

By symmetry, |A<| ≤ 7n/10 + 5 as well.
Intuitively, we know that 60% of half of the groups are less than the pivot, which is 30% of

the total number of elements, n. Therefore, at most 70% of the elements are greater than the
pivot. Hence, |A>| ≈ 7n/10. We can make the same argument for |A<|. □

The recursive call used to find the median of medians has input of size ⌈n/5⌉ ≤ n/5 + 1.
The other work in the algorithm takes linear time: constant time on each of ⌈n/5⌉ groups for
MergeSort (linear time total for that part), O(n) time scanning A to make A< and A>.

Thus, we can write the full recurrence for the runtime,

T (n) ≤

{
c1n+ T (n/5 + 1) + T (7n/10 + 5) if n > 5

c2 if n ≤ 5.

How do we prove that T (n) = O(n)? The master theorem does not apply here. Instead, we
will prove this using the substitution method.

6.4 Solving the Recurrence of Select using the Substitution Method
For simplicity, we consider the recurrence T (n) ≤ T (n/5) + T (7n/10) + cn instead of the exact
recurrence of Select.

10

To prove that T (n) = O(n), we guess:

T (n) ≤
{

dn0 if n = n0

d · n if n > n0

For the base case, we pick n0 = 1 and use the standard assumption that T (1) = 1 ≤ d. For
the inductive hypothesis, we assume that our guess is correct for any n < k, and we prove our
guess for k. That is, consider d such that for all n0 ≤ n < k, T (n) ≤ dn.

To prove for n = k, we solve the following equation:

T (k) ≤ T (k/5) + T (7k/10) + ck ≤ dk/5 + 7dk/10 + ck ≤ dk

9/10d+ c ≤ d

c ≤ d/10

d ≥ 10c

Therefore, we can choose d = max(1, 10c), which is a constant factor. The induction is com-
pleted. By the definition of big-O, the recurrence runs in O(n) time.

6.5 Issues when using the Substitution Method
Now we will try out an example where our guess is incorrect. Consider the recurrence T (n) =
2T

(
n
2

)
+ n (similar to MergeSort). We will guess that the algorithm is linear.

T (n) ≤
{

dn0 if n = n0

d · n if n > n0

We try the inductive step. We try to pick some d such that for all n ≥ n0,

n+
k∑

i=1

dg(ni) ≤ d · g(n)

n+ 2 · d · n
2
≤ dn

n(1 + d) ≤ dn

n+ dn ≤ dn

n < 0,

However, the above can never be true, and there is no choice of d that works! Thus our guess
was incorrect.

This time the guess was incorrect since MergeSort takes superlinear time. Sometimes, how-
ever, the guess can be asymptotically correct but the induction might not work out. Consider for
instance T (n) ≤ 2T (n/2) + 1.

11

We know that the runtime is O(n) so let’s try to prove it with the substitution method. Let’s
guess that T (n) ≤ cn for all n ≥ n0.

First we do the induction step: We assume that T (n/2) ≤ cn/2 and consider T (n). We
want that 2 · cn/2 + 1 ≤ cn, that is, cn+ 1 ≤ cn. However, this is impossible.

This doesn’t mean that T (n) is not O(n), but in this case we chose the wrong linear function.
We could guess instead that T (n) ≤ cn−1. Now for the induction we get 2·(cn/2−1)+1 = cn−1
which is true for all c. We can then choose the base case T (1) = 1.

12

