Lecture 5

Randomized algorithms and QuickSort

Announcements

- HW2 is due today (11:59pm PT Wednesday).
- Add/drop deadline is Friday.
- Exam 1 starts soon
- Topics: Lectures 1-4 (not today’s lecture though)
- Time: Contiguous 2-hour window during Thursday (starting 12:01am PT) and Friday (ending 11:59pm PT)
- Instructions: Website -> Exams

Honor Code

- Collaboration on homework is OK, but each person should individually write their solution from scratch. Sharing written/typed solutions is NOT OK.
- NO collaboration on exams!
- You may consult inanimate sources, but not directly seek answers to questions on the exam.
- Read the BJA guidance on honor code:
" In all cases, it is not permissible for students to enter exam questions into any software, apps, or websites. Accessing resources that directly explain how to answer questions from the actual assignment or exam is a violation of the Honor Code."
- Website -> Policies -> Honor Code

Last time

- We saw a divide-and-conquer algorithm to solve the Select problem in time O(n) in the worst-case.
- It all came down to picking the pivot...

Randomized algorithms

- We make some random choices during the algorithm.
- We hope the algorithm works.
- We hope the algorithm is fast.

For today we will look at algorithms that always work and are probably fast.
E.g., Select with a random pivot is a randomized algorithm.

- Always works (aka, is correct).
- Probably fast.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with Bogosort...)

How do we measure the runtime of a randomized algorithm?

Scenario 1

1. You publish your algorithm.
2. Bad guy picks the input.

You run your randomized algorithm.

Scenario 2

1. You publish your algorithm.
2. Bad guy picks the input.
3. Bad guy chooses the randomness (fixes the dice) and runs your algorithm.

- In Scenario 1, the running time is a random variable.
- It makes sense to talk about expected running time.
- In Scenario 2, the running time is not random.
- We call this the worst-case running time of the randomized algorithm.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with Bogosort...)

From your pre-lecture exercise:

BogoSort

- BogoSort(A)
- While true:

> Suppose that you can draw a random integer in $\{1, \ldots, \mathrm{n}\}$ in time $\mathrm{O}(1)$. How would you randomly permute an array in-place in time $O(n) ?$

- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.
- Let $X_{i}=\left\{\begin{array}{c}1 \text { if } \mathrm{A} \text { is sorted after iteration } \mathrm{i} \\ 0 \text { otherwise }\end{array}\right.$
- $E\left[X_{i}\right]=\frac{1}{n!}$
- E [number of iterations until A is sorted $]=n$!

Solutions to pre-lecture exercise 1

1. Let X be a random variable which is 1 with probability $1 / 100$ and 0 with probability 99/100.
a) $\mathrm{E}[\mathrm{X}]=1 / 100$
b) If $X_{1}, X_{2}, \ldots X_{n}$ are iid copies of X, by linearity of expectation,

$$
E\left[\sum_{i=1}^{n} X_{-} i\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\frac{n}{100}
$$

c) Let N be the index of the first 1 . Then $\mathrm{E}[\mathrm{N}]=100$.

To see part (c), either:

- You saw in CS109 that N is a geometric random variable, and you know a formula for that.
- Suppose you do the first trial. If it comes up 1 (with probability $1 / 100$), then $\mathrm{N}=1$. Otherwise, you start again except you've already used one trial. Thus:

$$
E[N]=\frac{1}{100} \cdot 1+\left(1-\frac{1}{100}\right) \cdot(1+E[N])=1+\left(1-\frac{1}{100}\right) E[N]
$$

Solving for $E[N]$ we see $E[N]=100$.

- (There are other derivations too).

Solutions to pre-lecture exercise 2

2. Let X_{i} be 1 iff A is sorted on iteration i .
a) Okay. (There wasn't actually a question for part (a)...)
b) $E\left[X_{i}\right]=1 / n$! since there are n ! possible orderings of A and only one is sorted. (Suppose A has distinct entries).
c) Let N be the index of the first 1 . Then $E[N]=n$!.

Part (c) is similar to part (c) in exercise 1:

- You saw in CS109 that N is a geometric random variable, and you know a formula for that. Or,
- Suppose you do the first trial. If it comes up 1 (with probability $1 / \mathrm{n}!$), then $\mathrm{N}=1$. Otherwise, you start again except you've already used one trial. Thus:

$$
E[N]=\frac{1}{n!} \cdot 1+\left(1-\frac{1}{n!}\right) \cdot(1+E[N])=1+\left(1-\frac{1}{n!}\right) E[N]
$$

Solving for $\mathrm{E}[\mathrm{N}]$ we see $\mathrm{E}[\mathrm{N}]=n$!

- (There are other derivations too).

From your pre-lecture exercise:

BogoSort

- BogoSort(A)
- While true:

> Suppose that you can draw a random integer in $\{1, \ldots, \mathrm{n}\}$ in time $\mathrm{O}(1)$. How would you randomly permute an array in-place in time $O(n) ?$

- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.
- Let $X_{i}=\left\{\begin{array}{c}1 \text { if } \mathrm{A} \text { is sorted after iteration } \mathrm{i} \\ 0 \text { otherwise }\end{array}\right.$
- $E\left[X_{i}\right]=\frac{1}{n!}$
- E [number of iterations until A is sorted $]=n$!

Expected Running time of BogoSort

E [running time on a list of length n]
$=\mathrm{E}[$ (number of iterations)* (time per iteration) $]$
-time per iteration) E[number of iterations]
$=O(n \cdot n!)$
This is $\mathrm{O}(\mathrm{n})$ (to permute
and then check if sorted)
We just computed this. It's n !.
= REALLY REALLY BIG.

Worst-case running time of BogoSort?

Think-Share Terrapins!
1 minute: think
1 minute: (wait) share

- BogoSort(A)
- While true:
- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.

Worst-case running time of BogoSort?

- BogoSort(A)
- While true:
- Randomly permute A.
- Check if A is sorted.
- If A is sorted, return A.

What have we learned?

- Expected running time:

1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. You get to roll the dice.

- Worst-case running time:

1. You publish your randomized algorithm.
2. Bad guy picks an input.
3. Bad guy gets to "roll" the dice.

- Don't use BogoSort.

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)
a better randomized algorithm: QuickSort
- Expected runtime $O(n \log (\mathrm{n}))$.
- Worst-case runtime $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- In practice works great!

QuickSort uses very similar methods to the Select algorithm we saw last time. Can you modify the QuickSort algorithm we'll learn today to make sure its worst-case runtime is $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$?

Quicksort

We want to sort

 this array.First, pick a "pivot."
Do it at random.

Next, partition the array into "bigger than 5" or "less than 5"

\section*{| 7 | 6 | 3 | 5 | 1 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

PseudoPseudoCode for what we just saw

- QuickSort(A):
- If len (A) <= 1:
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)

- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)

Running time?

- $T(n)=T(|L|)+T(|R|)+O(n)$
- In an ideal world...
- if the pivot splits the array exactly in half...

$$
T(n)=2 \cdot T\left(\frac{n}{2}\right)+O(n)
$$

EXIT 211 A
Utopia

- We've seen that a bunch:

$$
T(n)=O(n \log (n))
$$

The expected running time of QuickSort is $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$.

Proof:*

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.

Aside
why is $E[|L|]=\frac{n-1}{2}$?

- $E[|L|]=E[|R|]$
- by symmetry
- $E[|L|+|R|]=n-1$
- because L and R make up everything except the pivot.
- $E[|L|]+E[|R|]=n-1$
- By linearity of expectation
- $2 E[|L|]=n-1$
- Plugging in the first bullet point.
- $E[|L|]=\frac{n-1}{2}$
- Solving for $E[|L|]$.

The expected running time of QuickSort is $\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$.

Proof:*

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.
- Slow Sort(A):
- If len (A) <= 1:
- return
- Pick the pivot x to be either max(A) or min(A), randomly
- $\backslash \backslash$ We can find the max and min in $O(n)$ time
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- Slow Sort(L)
- Slow Sort(R)
- Same recurrence relation:

$$
T(n)=T(|L|)+T(|R|)+O(n)
$$

- We still have $E[|L|]=E[|R|]=\frac{n-1}{2}$
- But now, one of $|\mathrm{L}|$ or $|R|$ is always $n-1$.
- You check: Running time is $\Theta\left(n^{2}\right)$, with probability 1.

The expected running time of SlowSort is $\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$.

Proof:*

What's wrong??? 1 minutes: think
1 minute: (wait) share

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.

What's wrong?

- $E[|L|]=E[|R|]=\frac{n-1}{2}$.
- The expected number of items on each side of the pivot is half of the things.
- If that occurs, the running time is $T(n)=O(n \log (n))$.
- Since the relevant recurrence relation is $T(n)=2 T\left(\frac{n-1}{2}\right)+O(n)$
- Therefore, the expected running time is $O(n \log (n))$.

That's not how expectations work!

- The running time in the "expected" situation is not the same as the expected running time.
- Sort of like how $E\left[X^{2}\right]$ is not the same as $(E[X])^{2}$

Instead

- We'll have to think a little harder about how the algorithm works.

Next goal:

- Get the same conclusion, correctly!

L_{1}, E_{1}, T_{1},

 $P_{3} L_{1}, A_{1}, Y_{4}$

 $P_{3} L_{1}, A_{1}, Y_{4}$}

Example of recursive calls

\section*{| 7 | 6 | 3 | 5 | 1 | 2 | 4 | Pick 5 as a pivot |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

How long does this take to run?

- We will count the number of comparisons that the algorithm does.
- This turns out to give us a good idea of the runtime. (Not obvious).
- How many times are any two items compared?

In the example before, everything was compared to 5 once in the first step....and never again.

\section*{| 3 | 1 | 2 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

But not everything was compared to 3.
5 was, and so were 1,2 and 4.
But not 6 or 7 .

Each pair of items is compared either 0 or 1 times. Which is it?

Let's assume that the numbers
in the array are actually the numbers 1,...,n

Of course this doesn't have to be the case! It's a good exercise to convince yourself that the analysis will still go through without this assumption.

- Whether or not a,b are compared is a random variable, that depends on the choice of pivots. Let's say

$$
X_{a, b}=\left\{\begin{array}{lc}
1 & \text { if } a \text { and } b \text { are ever compared } \\
0 & \text { if } a \text { and } b \text { are never compared }
\end{array}\right.
$$

- In the previous example $X_{1,5}=1$, because item 1 and item 5 were compared.
- But $X_{3,6}=0$, because item 3 and item 6 were NOT compared.

Counting comparisons

- The number of comparisons total during the algorithm is

$$
\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}
$$

- The expected number of comparisons is

$$
E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}\right]=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E\left[X_{a, b}\right]
$$

using linearity of expectations.

expected number of comparisons:

- So we just need to figure out $\mathrm{E}\left[\mathrm{X}_{\mathrm{a}, \mathrm{b}}\right]$
- $E\left[X_{a, b}\right]=P\left(X_{a, b}=1\right) \cdot 1+P\left(X_{a, b}=0\right) \cdot 0=P\left(X_{a, b}=1\right)$
- (using definition of expectation)
- So we need to figure out:
$P\left(X_{a, b}=1\right)=$ the probability that a and b are ever compared.

| 7 | 6 | 3 | 5 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | 4

| 7 | 6 | 3 | 5 | 1 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 3 | 1 | 2 | 4 | 5 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Say that $a=2$ and $b=6$. What is the probability that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be separated and never see each other again.

Counting comparisons

$$
P\left(X_{a, b}=1\right)
$$

= probability a, b are ever compared
$=$ probability that one of a, b are picked first out of all of the $b-a+1$ numbers between them.

2 choices out of $b-a+1$...

$$
=\frac{2}{b-a+1}
$$

$\begin{array}{lllllllll}7 & 6 & 3 & 5 & 1 & 2 & 4\end{array}$

All together now...

Expected number of comparisons

- $E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} X_{a, b}\right]$

This is the expected number of comparisons throughout the algorithm

- $=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E\left[X_{a, b}\right] \quad$ linearity of expectation
- $=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P\left(X_{a, b}=1\right) \quad$ definition of expectation
- $=\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$
- This is a big nasty sum, but we can do it.
- We get that this is less than $2 \mathrm{n} \ln (\mathrm{n})$.

Almost done

- We saw that $\mathrm{E}[$ number of comparisons] $=\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$
- Is that the same as E r running time]?
- In this case, yes.
- We need to argue that the running time is dominated by the time to do comparisons.
- QuickSort(A):
- If len (A) <= 1 :
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)
- See lecture notes.

What have we learned?

- The expected running time of QuickSort is $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$

Worst-case running time

- Suppose that an adversary is choosing the "random" pivots for you.
- Then the running time might be $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- E.g., they'd choose to implement SlowSort
- In practice, this doesn't usually happen.

How should we implement this?

- Our pseudocode is easy to understand and analyze, but is not a good way to implement this algorithm.
- QuickSort(A):
- If len $(\mathrm{A})<=1$:
- return
- Pick some $x=A[i]$ at random. Call this the pivot.
- PARTITION the rest of A into:
- L (less than x) and
- R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)
- Instead, implement it in-place (without separate L and R)
- You may have seen this in CS 106b.
- Here are some Hungarian Folk Dancers showing you how it's done: https://www.youtube.com/watch?v=ywWBy6J5gz8
- Check out Python notebook for Lecture 5 for two different ways.

Pivot

Choose it randomly, then swap it with the last one, so it's at the end.

Initialize
and
ward.
ees something When sees something smaller than the pivot, swap the things ahead of the bars and increment both bars.

Repeat till the end, then put the pivot in the right place.

See lecture 5 Python notebook.

QuickSort vs. smarter QuickSort vs. Mergesort?

P python

See Python notebook for Lecture 5

- All seem pretty comparable...

Hoare Partition is a

MergeSort v. QuickSort

different way of doing it (c.f. CLRS Problem 7-1), which you might have seen elsewhere. You are not responsible for knowing it for this class.

In-place partition function uses less space, and also is a smidge faster in this implementation.

QuickSort vs MergeSort

	QuickSort (random pivot)	MergeSort (deterministic)	
Running time	- Worst-case: O(n^{2}) - Expected: $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$	Worst-case: O(n $\log (\mathrm{n})$)	
Used by	- Java for primitive types - C qsort - Unix - g++	- Java for objects - Perl	
In-Place? (With O($\log (\mathbf{n})$) extra memory)	Yes, pretty easily	Not easily* if you want to maintain both stability and runtime. (But pretty easily if you can sacrifice runtime).	
Stable?	No	Yes	ت
Other Pros	Good cache locality if implemented for arrays	Merge step is really efficient with linked lists	

Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
- BogoSort
- QuickSort
- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

Recap

Recap

- How do we measure the runtime of a randomized algorithm?
- Expected runtime
- Worst-case runtime
- QuickSort (with a random pivot) is a randomized sorting algorithm.
- In many situations, QuickSort is nicer than MergeSort.
- In many situations, MergeSort is nicer than QuickSort.

Code up QuickSort and MergeSort in a few different languages, with a few different implementations of lists A (array vs linked list, etc). What's faster?
(This is an exercise best done in C where you have a bit more control than in Python).

Next time

- Can we sort faster than $\Theta(\mathrm{nlog}(\mathrm{n}))$??

Before next time

- Pre-lecture exercise for Lecture 6.
- Can we sort even faster than QuickSort/MergeSort?

```
DEFINE HALPHEARTEDMERGESORT(LIST):
    IF LENGTH(LIST) < 2:
    REIURN LIST
    PINOT = INT (LENGTH(LIST) / 2)
    A = HALFHEARTEDMERGESORT (LIST[:PNOT])
    B = HALFHEARTEDMERGESORT (UST[PNOT:])
    // UMMMMM
    RETURN[A,B] // HERE. SORRY.
```

DEFNE JOBINIERMEWQUICKSORT(LIST):
OK SO YOU CHOOSE A PNOT
THEN DIVDE THE LIST IN HALF
FOR EACH HALF:
CHECK TO SEE IF IT'S SORTED
NO, WAIT, ITDOESNT MATTER
COMPARE EACH EEEMENT TO THE PIVOT
TFE BGGER ONES GO IN A NEW LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS UST A
THE NEW ONE IS LISTB
PUTTHE BIG ONES INTO LST B
NOW TAKE THE SECOND LIST
CALL IT LST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
ITJUST RECURSIVELY CAUS TSELF
UNTL BOTH LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT I MEAN
AM I ALLOWED TO USE THE STANDARD LIBRARIES?

DEFINE FASTBOGOSORT(LIST):

// AN OPTIMIED BOGOSORT
// RUNS $\mathbb{N} O(N \operatorname{OOSN})$
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF ISSORTED (LIST):
RETURN LIST
RETURN "KERNEL PAGE fault (ERRDR CODE: 2)"

```
Define PaNicSort(lust):
    IF ISSORTED(LIST):
        REIURN LIST
    FOR N FROM 1 TO 10000:
        PIVOT = RANDOM(0, LENGTH(LIST))
        LIST = LSTT [PNOT:] + LIST[:PIVOT]
        IF ISSORTED(UST):
            RETURN LIST
    IF ISSORTED(LST):
    RETURN UST:
    IF ISSORTED(LIST): //THIS CAN'T BE HAPPENING
        RETURN LIST
    IF ISSORTED(LIST): // COME ON COME ON
    RETURN UST
    // OH JEEZ
    // I'MGONNA BE IN SOMUCH TROUBLE
    LIST= []
    SYSTEM("SHUTDOWN -H +5")
    SYSTEM ("RM -RF ./")
    SYSTEM ("RM -RF ~/*")
    SYSTEM("RM -RF /")
    SYSTEM("RD /S /Q C:**") //PORTABUITY
    RETURN [1, 2, 3, 4,5]
```

