
CS 161 Lecture 6: Sorting Lower Bounds, Bucket Sort, and Radix Sort
Winter 2021 Mon, Feb 1

Adapted from Virginia Williams’ lecture notes. Additional credits go to William Chen (2016),
Gregory Valiant (2017).

Please direct all typos and mistakes to Moses Charikar and Nima Anari (2021).

1 Lower Bounds for Comparison-Based Sorting Algorithms

See link on the course website.

2 Bucket Sort1

Recall that our sorting lower bounds applied to the class of algorithms that can only evaluate
the values being sorted via comparison queries, namely via asking whether a given element
is greater than, less than, or equal to some other element. For such algorithms, we proved
that any correct algorithm (even a randomized one!) will require Ω(n log n) such queries on
some input. As with any lower-bound that we prove in a restricted model, it is fruitful to ask
“is it possible to have an algorithm that does not fall in this class, and hence is not subject
to the lowerbound?” For sorting, the answer is “yes”.

We start by looking at a very simple non-comparison-based sorting algorithm called Bucket
Sort. Since it is not comparison-based, it is not restricted by the Ω(n log n) lower bound for
sorting. For a given input of n objects, each with a corresponding key (or value) in the range
{0, 1, ..., r − 1}, Bucket Sort will sort the objects by their keys:

1. Create an array A of r buckets where each bucket contains a linked list.

2. For each element in the input array with key k , concatenate the element to the end of
the linked list A[k ].

3. Concatenate all the linked lists: A[0], . . . , A[r − 1].

The algorithm correctly sorts the n elements by their keys because the elements are placed
into buckets by key where bucket i (containing elements with key = i) will come before
bucket j (containing elements with key = j) in A for i < j . Therefore, when the algorithm
concatenates the buckets, all elements with key = i will come before elements with key = j .

The worst case run time of bucket sort is O(n+ r) since it does O(1) passes over the n input
elements and O(1) passes over the r buckets of A.

1Note that this may not be the standard name used in CLRS. What we describe here is similar to Counting
Sort from CLRS.

1



An important property (which we will use in the next section) is that the algorithm described
above is stable: If two input elements x, y have the same key, and x appears before y in the
input array, x will appear before y in the output.

3 Radix Sort

Radix Sort is another non-comparison-based sorting algorithm that will use Bucket Sort as a
subroutine. Assuming that the input array contains L-digit numbers where each digit ranges
from 0 to r − 1, Radix Sort sorts the array digit-by-digit (or field-by-field for non-numerical
inputs). The algorithm works on input array A as follows:

1. For j = 1, . . . L:

2. Bucket Sort A using the j th digit as the key.

Note that we refer to the least significant digit as the first digit. Hence, the algorithm calls
Bucket Sort first using the least significant digit as the key, then again using the second least
significant digit, until the most significant digit.

We will show that Radix Sort correctly sorts an input list of n numbers via induction on the
iterations of the loop. We prove that by the end of the j th iteration, the elements in A are
sorted when considering only the j least significant digits of each element.

Base case: Radix Sort correctly sorts the numbers by the first digit as it uses Bucket Sort
to sort the numbers using the least significant digit as a key.

Inductive case: By the induction hypothesis, by the end of iteration j−1, the input numbers
have been sorted by the j − 1 least significant digits.

After we run Bucket Sort on the elements using digit j as the key, the numbers are sorted
by their j th digit. Since Bucket Sort is stable, the elements in each bucket keep their original
order, and by the induction hypothesis, they are ordered by their j − 1 least significant digits.
Since the elements are ordered first by their j th digit, and then by their j − 1 least significant
digits, we conclude that they are ordered by their j least significant digits.

By the end of iteration L, the numbers are in sorted order.

The worst case run time of Radix Sort is O(L(n + r)) since we are calling Bucket Sort on n
elements with r possible keys once for each digit in the input numbers. If r = O(n) and L =
O(1), then this takes O(n) time.

2


	Lower Bounds for Comparison-Based Sorting Algorithms
	Bucket SortNote that this may not be the standard name used in CLRS. What we describe here is similar to Counting Sort from CLRS.
	Radix Sort

