
CS 161 Lecture 7: Heaps and Binary Search Trees
Winter 2021 Wed, Feb 3

Adapted From Virginia Williams’ lecture notes. Additional credits: Ilan Goodman, Vishnu
Sundaresan (2015), Wilbur Yang (2016), Gregory Valiant (2017).

Please direct all typos and mistakes to Moses Charikar and Nima Anari (2021).

1 Data Structures

Thus far in this course we have mainly discussed algorithm design, and have specified algorithms
at a relatively high level. For example, in describing sorting algorithms, we often assumed
that we could insert numbers into a list in constant time; we didn’t worry too much about
the actual implementation of this, and took it as an assumption that this could actually be
implemented (e.g. via a linked-list).

In this lecture, we will talk about the actual design and implementation of some useful
data-structures. The purpose of this lecture is mainly to give you a taste of data-structure
design. We won’t discuss this area too much more in the course, and will switch back to
discussing higher-level algorithms. If you like data-structures, CS166 is an entire course about
them!

To motivate the data structures that we will discuss in this lecture, consider the following
table that lists a bunch of basic operations that we would like to perform on a set/list of
numbers, together with the worst-case runtime of performing those operation for two of the
data structures that you are (hopefully) familiar with: linked lists of n (unsorted) numbers,
and an array of n sorted numbers. In this lecture, we will assume that all the numbers we
store are unique.

Runtime with Runtime with
Operation Unsorted Sorted Array

Linked List
Search (i.e. find 17) Θ(n) Θ(log n) (via binary search)

Select (i.e. find 12 smallest element) Θ(n) Θ(1) (just look at 12th elt.)
Rank (i.e. # elt. less than 17) Θ(n) Θ(log n)

Predecessor/Sucessor1 Θ(n) Θ(1)

Insert element Θ(1) Θ(n)

Delete element Θ(1)2 Θ(n)

The above table makes Sorted Arrays look like a pretty decent data structure for static data.
In many applications, however, the data changes often, in which case the Θ(n) time it takes
to insert or delete an element is prohibitive. This prompts the question: Is it possible to have

1



one data structure that is the best of both worlds (logarithmic or constant time for all these
operations)? The answer is, essentially, “Yes”, provided we don’t mind if some of the Θ(1)’s
turn into Θ(log n). We will sketch out one such data structure, the Binary Search Tree.

Before talking about binary search trees, we sketch another data structure called Heap. Heaps
are worse than both unsorted linked lists and sorted arrays in just about any parameter in the
table above, except that they can allow for efficient (O(log n)) insertions - still worse than
linked lists. But there is one operation that Heaps do exceptionally well (again, Θ(log n)):
extract−min, which outputs the minimum element, and then deletes it from the heap. Heaps
(in their simple form that we consider here) still don’t beat the asymptotic runtime of binary
search trees for any operation, but they have two other advantages: they are much simpler,
and if you only want to run insert and extract−min they are also much faster in practice.

2 Heaps

Definition 1 (Complete binary tree). A complete binary tree is a rooted binary tree where
each level is full except maybe the last level, and all nodes on the last level are as far left as
they can be.
Definition 2 (Binary min-heap).

A Binary min-heap is a data structure that stores elements that have keys from a totally
ordered universe (say, the integers). A binary min-heap supports the following operations:

• insert(i): Inserts an element with key i into the data structure

• extract−min: Returns the element with the minimum key and deletes it from the data
structure.

A binary heap stores elements in a complete binary tree with a root r . Each node x has key(x)

(the key of the element stored in x), p(x) (the parent of x , where p(r) = NIL), left(x) (the
left child of x), and right(x) (the right child of x). The children of x are either other nodes or
NIL.

A binary heap should satisfy two key properties: The first key property is that for every node
x , the keys of all nodes under x are greater than key(x). The second key property of a heap
is that its tree is complete (see 1).

As explained above, binary min-heaps (which we call heaps for short) support two operations3:
insert(i) and extract−min. These are particularly useful if you want to have a priority queue
where elements (e.g. jobs) arrive in an arbitrary order, but always leave in order of their
key/priority (e.g. when the highest priority job is executed first).

3You can implement other operations such as search(i) and delete(i) on a heap, but they would not be
efficient (take Θ(n) time).

2



2.1 Basic Operations on Heaps

In the heap data structure we always maintain a pointer to the last node in the heap (the
rightmost node in the last level), as well as a pointer to the next node to be created (typically
the one to the right of the last node; except when the last level is full, in which case this
is the left-most node in the next level). Maintaining those is easy when we think of the
representation of a heap as an array. But to make things simpler, we will abstract these details
and simply assume access to these pointers. (See CLRS for details.)

2.1.1 insert(i)

To insert an element, we create a new node with key i at the bottom of the heap. Then
recursively “propagate it up the heap” until the heap property is restored: That is compare i
to the key of the new element’s parent; if i is smaller than the key of its parent, replace the
keys, and continue to compare with the parent’s parent, etc. Once the algorithm reaches a
parent whose key is smaller, the insertion is complete.

Algorithm 1: Heap insert(i)

x ← first node without two children
y ← new node with key(y)← i , left(y)← NIL, right(y)← NIL, p(y)← x

if left(x) == NIL then
left(x)← y

else
right(x)← y

while p(y) 6= NIL & key(p(y)) > key(y) do
v ← key(y)

key(y)← key(p(y))

key(p(y))← v

y ← p(y)

2.1.2 extract−min

To extract-min, we save the key of the root, replace it with the key of the last node, and
delete the last node. Then we recursively “propagate the key copied from the last node down
the tree”. That is compare to the children of the root; if the key of the root is larger than
the keys of one of the children, swap the smaller key up, and recurse on the corresponding
sub-tree. Once the algorithm reaches children whose keys are larger, the heap property is
restored. Then we can return the value we saved at the beginning.

3



Algorithm 2: Heap extract−min

x ← last node
r ← root; m ← key(r)

key(r)← key(x)

if right(p(x)) == NIL then
left(p((x))← NIL

else
right(p(x))← NIL

delete node(x)
while True do

if left(r) == NIL then
Break

else if key(left(r)) < key(r) & right(r) == NIL then
v ← key(r)

key(r)← key(left(r))

key(left(r))← v

r ← left(r)

else if key(left(r)) < key(r), key(right(r)) then
v ← key(r)

key(r)← key(left(r))

key(left(r))← v

r ← left(r)

else if key(right(r)) < key(r), key(left(r)) then
v ← key(r)

key(r)← key(right(r))

key(right(r))← v

r ← right(r)

else
Break

return m

4



3 Binary Search Trees

Definition 3 (Binary search tree).

A binary search tree (BST) is a data structure that stores elements that have keys from a
totally ordered universe (say, the integers). In this lecture, we will assume that each element
has a unique key. A BST supports the following operations:

• search(i): Returns an element in the data structure associated with key i

• insert(i): Inserts an element with key i into the data structure

• delete(i): Deletes an element with key i from the data structure, if such an element
exists

A BST stores the elements in a binary tree with a root r . Each node x has key(x) (the key of
the element stored in x), p(x) (the parent of x , where p(r) = NIL), left(x) (the left child of
x), and right(x) (the right child of x). The children of x are either other nodes or NIL.

The key BST property is that for every node x , the keys of all nodes under left(x) are less
than key(x) and the keys of all nodes under right(x) are greater than key(x).
Example 4. In the following example, the root node r stores 3 in it (key(r) = 3), its left
child left(x) stores 1, its right child right(x) stores 7, and all leaf nodes (storing 1, 4, and 8,
respectively) have NIL as their two children.

3

1 7

4 8

Example 5. The following binary tree is not a BST since 2 > 3 and 2 is a child of 7, which is
the right child of 3:

3

1 7

2 8

Some properties. Relationship to Quicksort: We can think of each node x as a pivot for
quicksort for the keys in its subtree. The left subtree contains A< for key(x) and the right
subtree contains A> for key(x).

Sorting the keys: We can do an inorder traversal of the tree to recover the nodes in sorted
order from left to right (the smallest element is in the leftmost node and the largest element
is in the rightmost node). The Inorder procedure takes a node x and returns the keys in the

5



subtree under x in sorted order. We can recursively define Inorder(x) as: (1) If left(x) 6= NIL,
then run Inorder(left(x)), then: (2) Output key(x) and then: (3) If right(x) 6= NIL, run
Inorder(right(x)). With this approach, for every x , all keys in its left subtree will be output
before x , then x will be output and then every element in its right subtree.

Subtree property: If we have a subtree where x has y as a left child, y has z as a right child,
and z is the root for the subtree Tz , then our BST property implies that all keys in Tz are
> y and < x . Similarly, if we have a subtree where x has y as a right child, y has z as a left
child, and z is the root of the subtree Tz , then our BST property implies that all keys in Tz
are between x and y .

3.1 Basic Operations on BSTs

The three core operations on a BST are search, insert, and delete. For this lecture, we will
assume that the BST stores distinct numbers, i.e. we will identify the objects with their names
and we will have each name be represented by a number.

3.1.1 search

To search for an element, we start at the root and compare the key of the node we are looking
at to the element we are searching for. If the node’s key matches, then we are done. If not,
we recursively search in the left or right subtree of our node depending on whether this node
was too large or too small, respectively. If we ever reach NIL, we know the element does not
exist in our BST. In the following algorithm in this case, we simply return the node that would
be the parent of this node if we inserted it into our tree.

Algorithm 3: search(i)

return search(root, i)

Example 6. If we call search(5.5) on the following BST, we will return the node storing 5 (by
taking the path in bold). This also corresponds to the path taken when calling search(4.5) or
search(5).

4

2 6

5 81 3

7

Claim 1. search(i) returns a node containing i if i ∈ BST, otherwise a node x such that either
key(x) is the smallest in BST > i or the largest in BST < i , where node x happens to be the
parent of the new node if it were to be inserted into BST.

6



Algorithm 4: search(x, i)

if key(x) == i then
return x

else if i < key(x) then
if left(x) == NIL then

return x
else

return search(left(x), i)

else if i > key(x) then
if right(x) == NIL then

return x
else

return search(right(x), i)

This follows directly from the BST property. Try to formally prove this claim as an exercise.

2

5

Remark 7. search(i) does not necessarily return the node in BST that is closest in value.
Consider the tree above. If we search for an element with a key of 4, the node with key 2 is
returned, whereas the element with key 5 is the closest element by value.

3.1.2 insert

As before, we will assume that all keys are distinct. We will search(i) for a node x to be the
parent and create a new node y , placing it as a child of x where it would logically go according
to the BST property.

Algorithm 5: insert(i)
x ← search(i)

y ← new node with key(y)← i , left(y)← NIL, right(y)← NIL, p(y)← x

if i < key(x) then
left(x)← y

else
right(x)← y

Remark 8. Notice that x needed to have NIL as a child where we want to put y by the
properties of our search algorithm.

7



3.1.3 delete

Deletion is a bit more complicated. To delete a node x that exists in our tree, we consider
several cases:

1. If x has no children, we simply remove it by modifying its parent to replace x with NIL.

2. If x has only one child c , either left or right, then we elevate c to take x ’s position in
the tree by modifying the appropriate pointer of x ’s parent to replace x with c , and also
fixing c ’s parent pointer to be x ’s parent.

3. If x has two children, a left child c1 and right child c2, then we find x ’s immediate
successor z and have z take x ’s position in the tree. Notice that z is in the subtree
under x ’s right child c2 and we can find it by running z ← search(c2, key(x)). Note that
since z is x ’s successor, it doesn’t have a left child, but it might have a right child. If z
has a right child, then we make z ’s parent point to that child instead of z (also fixing
the child’s parent pointer). Then we replace x with z , fixing up all relevant pointers:
the rest of x ’s original right subtree becomes z ’s new right subtree, and x ’s left subtree
becomes z ’s new left subtree.

(Note that alternatively, we could have used x ’s immediate predecessor y and followed
the same analysis in a mirrored fashion.)

In the following algorithm, if p is the parent of x , child(p) refers to left(p) if x was the left
child of p and to right(p) otherwise.

3.1.4 Runtimes

The worst-case runtime for search is O(height of tree). As both insert and delete call search a
constant number of times (once or twice) and otherwise perform O(1) work on top of that,
their runtimes are also O(height of tree).

In the best case, the height of the tree is O(log n), e.g., when the tree is completely balanced.
However, in the worst case it can be O(n) (a long rightward path, for example). This could
happen because insert can increase the height of the tree by 1 every time it is called. Currently
our operations do not guarantee logarithmic runtimes. To get O(log n) height we would need
to rebalance our tree. There are many examples of self-balancing BSTs, including AVL trees,
red-black trees, splay trees (somewhat different but super cool!), etc. Today, we will talk
about red-black trees.

4 Red-Black Trees

One of the most popular balanced BST is the red-black tree developed by Guibas and Sedgewick
in 1978. In a red-black tree, all leaves are assumed to have NILs as children.

8



Algorithm 6: delete(i)

x ← search(i)

if key(x) 6= i then return
if NIL = left(x) and NIL = right(x) then

child(p(x))← NIL
delete-node(x)

if NIL = left(x) then
y ← right(x)

p(y)← p(x)

child(p(y))← y

delete-node(x)

else if NIL = right(x) then
y ← left(x)

p(y)← p(x)

child(p(y))← y

delete-node(x)

else x has two children
z ← search(right(x), key(x))

z ′ ← right(z)

left(p(z))← z ′

p(z ′)← p(z)

replace x with z
delete-node(x)

9



Definition 9. A red-black tree is a BST with the following additional properties:

1. Every node is red or black

2. The root is black

3. NILs are black

4. The children of a red node are black

5. For every node x , all x to NIL paths have the same number of black nodes on them
Example 10. (B means a node is black, R means a node is red.) The following tree is not a
red-black tree since property 5 is not satisfied:

B

B B

B

Example 11. (B means a node is black, R means a node is red.) The following tree is a
red-black tree since all the properties are satisfied:

B

B B

R

Example 12. (B means a node is black, R means a node is red.) The following tree is not a
red-black tree since property 4 is not satisfied:

B

B R

R

B

Example 13. (B means a node is black, R means a node is red.) The following tree is a
red-black tree:

B

R R

BB B B

R

Remark 14. Intuitively, red nodes represent when a path is becoming too long.
Claim 2. Any valid red-black tree on n nodes (non-NIL) has height ≤ 2 log2(n+ 1) = O(log n).

10



Proof. For some node x , let b(x) be the “black height" of x , which is the number of black
nodes on a x → NIL path excluding x . We first show that the number of non-NIL descendants
of x is at least 2b(x) − 1 (including x) via induction on the height of x .

Base case: NIL node has b(x) = 0 and 20 − 1 = 0 non-NIL descendants. X

For our inductive step, let d(x) be the number of non-NIL descendants of x . Then

d(x) = 1 + d(left(x)) + d(right(x))

≥ 1 + (2b(x)−1 − 1) + (2b(x)−1 − 1) (by induction)

= 2b(x) − 1X

Notice that b(x) ≥ h(x)
2

(where h(x) is the height of x) since on any root to NIL path there
are no two consecutive red nodes, so the number of black nodes is at least the number of
red nodes, and hence the black height is at least half of the height. We apply this and the
above inequality to the root r (letting h = h(r)) to obtain n ≥ 2b(r) − 1 ≥ 2

h
2 − 1, and hence

h ≤ 2 log(n + 1).

Here is some intuition on why the tree is roughly balanced.

Intuition: By Property (5) of a red-black tree, all r → NIL paths have b(r) black nodes
(excluding the root). Therefore, all these paths have length ≥ b(r). However, they also have
length ≤ 2 · b(r): by Property (4), the number of red nodes is limited to half of the path,
since every red node must be followed by a black node, and hence the number of black nodes
is at least half of the length of the path. Hence, the lengths of all paths from r to a NIL are
within a factor of 2 of each other, and the tree must be reasonably balanced.

Today we will take a brief look at how the red-black tree properties are maintained. Our
coverage here is detailed, but not comprehensive, and meant as a case study. For complete
coverage, please refer to Ch. 13 of CLRS.

4.1 Rotations

Red-black trees, as do other balanced BSTs, use a concept called rotation. A tree rotation
restructures the tree shape locally, usually for the purpose of balancing the tree better. A
rotation preserves the BST property (as shown in the following two diagrams). Notably, tree
rotations can be performed in O(1) time.

x

y γ

α β

11



y

α x

β γ

Moving from the first tree to the second is known as a right rotation of x . The other direction
(from the second tree to the first) is a left rotation of y . Notice that we only move the β
subtree, which is why we preserve the BST property.

4.2 Insertion in a Red-Black Tree

Let’s see how we can perform Insert(i) on a red-black tree while still maintaining all of its
properties. The process for inserting a new node is initially similar to that of insertion into
any BST.

12



Algorithm 7: insert_rb(i)

p ← search(i)

x ← new node with key(x)← i , left(x)← NIL, right(x)← NIL, p(x)← p

if i < key(p) then
left(p)← x

else
right(p)← x

color(x)← red
recolor if needed

Note that when x is inserted as a red node: Property (1) is satisfied, as we colored the new
node red; Property (2) is satisfied, as we did not touch the root; Property (3) is satisfied,
as we can color the new NILs black; and Property (5) is satisfied, as we did not change the
number of black nodes in the tree. Thus, the only invariant we have to worry about is Property
(4), that red nodes have black children.

The recoloring step is broken down into multiple cases. We consider each of them:

1. p is black. In this case, Property (4) is also maintained. So, we simply add x as a new
red child of p, and the red-black tree properties are maintained.

x Red

p Black

2. p is red, and x ’s uncle u is red. In this case, we insert a red x , change p and u to
black, and change p′ to red. Because we switched the colors of two nodes on each of
these paths (one red→black and one black→red), the number of black nodes on each
path is unchanged, so Property (5) remains unchanged. If the parent of p′, p′′, is black,
then Property (4) is maintained. Otherwise, if p′′ is red and breaks Property (4) by
introducing a “double-red" pair of nodes (p′ and p′′), then we have to recolor recursively
starting at p′.

pRed

p′Black

xRed

u Red

. . .
becomes

pBlack

p′Red

xRed

u Black

. . .

3. p is red, and u is black. There are two possibilities here:

(a) We are inserting x as a leaf node. Then, u must be NIL for the red-black tree to
have been valid before inserting x . We insert a red x .

(b) We are not inserting x ; rather, we are recoloring the tree at x from the recursive
call in Case 2. We aim to recolor the tree and maintain the number of black nodes
on each path from the root to NIL. Note that in this case, x actually has nodes
under it.

13



In both cases, x is red, so we make p black, make p′ red, and do a right rotation at
p′. We can see that this also maintains the same number of black nodes on each path
from the root to NIL, and satisfies Property (4) below p because the original tree was a
red-black tree.

pRed

p′Black

xRed

u Black

. . .
becomes

p Black

p′ RedxRed

u Black. . .

If we end up in Case 2 and recursively call recolor, then in the worst case the recursion will
bottom out when we hit the root, with a constant number of relabelings and rotations at each
level. So, it will be an O(h) operation overall, where h is the height of the tree.

In the analysis above, we considered the cases where x is a left child of p and u is a right
child of its parent p′. These cases are representative, showing most of the machinery that
we’ll need to insert an arbitrary element into an arbitrary red-black tree. (Within Case 2 and
Case 3, there are actually a total of four cases each, where p’s tree and p′’s children could
each be swapped, but the recoloring procedure is similar. You are encouraged to read the text
for details.)

To summarize, the following is the algorithm for recoloring, in the case where x is a left child
and u is a right child.

Algorithm 8: recolor(x) // x is a left child, u is a right child
p ← parent(x)

if black = color(p) then
return

p′ ← parent(p)

u ← right(p′)
if red = color(u) then

color(p)← black
color(u)← black
color(p′)← red
recolor(p′)

else if black = color(u) then
color(p)← black
color(p′)← red
right_rotate(p′)

Based on our analysis above, we can update our red-black trees in O(h) time upon insertion,
where h is the height of the tree. The other operations are similar, and also give the guarantee
of worst-case performance of O(h) search, insertion, and deletion. Together with Claim 2,
which states that h = O(log n), we get:

14



Claim 3. Red-black trees support insert, delete, and search in O(log n) time.

As we have seen, BSTs are very nice – they allow us to maintain a set and report membership,
insert, and delete in O(log n) time. In addition to these basic underlying operations, we can
also support other types of queries efficiently. Because the elements are stored maintaining
the binary search tree property, we can search for the next largest element or the elements on
a range very efficiently. But what if we don’t care about these properties? What if we only
need to support membership queries? Can we improve our performance of O(log n) time to
nearly constant time? This question motivates our discussion of hash tables, which we will
cover in the next lecture.

15


	Data Structures
	Heaps
	Basic Operations on Heaps
	insert(i)
	extract-min


	Binary Search Trees
	Basic Operations on BSTs
	search
	insert
	delete
	Runtimes


	Red-Black Trees
	Rotations
	Insertion in a Red-Black Tree


