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Warmup

For each of the following shortest path problems, choose which algorithm you will use.

1. All-Pairs Shortest Path on a graph with (possibly negative) edge weights

2. All-Pairs Shortest Path on a graph with non-negative edge weights

3. Single Source Shortest Path on a graph with non-negative edges weights

4. Single Source Shortest Path on a graph with (possibly negative) edge weights

Edsger’s Apfelstrudel

You are eating at a cozy little restaurant which serves a prix fixe menu of k + 1 courses, with several
available choices for each course. Each dish belongs to exactly one course (e.g., risotto can only be ordered
as an appetizer, not a main), and you are effectively indifferent between most of the items on the menu
(because they are all so tasty), but the main draw of this particular restaurant is that they serve a delicious
‘bottomless’ dessert: their world-famous Viennese-style apple strudel. They have an unlimited supply of this
apple strudel, but each serving will still cost you $1. The restaurant also has a few interesting rules:

1. You must finish your current dish before ordering another.

2. Each dish after the first course depends on what you ordered in the previous course, e.g., you can
only order salmon for your main if you ordered a Caesar salad or chicken noodle soup for the previous
course. You are told on the menu exactly what these restrictions are before you order anything.

3. Most importantly, you are not allowed to have their unlimited dessert unless you finish one dish from
each of the first k courses!

You are told the cost of each item in each course on the menu, and you plan your meal with a twofold goal:
to be able to order the strudel, but also to save as much money as possible throughout the first k courses
so that you have more money to spend on the unlimited dessert. Design an algorithm to find the smallest
amount of money you can spend on the first k courses and still order the ‘bottomless’ strudel. If you would
like, you may assume the very first course has exactly one choice (e.g., a single complimentary leaf of spinach
that costs 0 dollars).

Currency Exchange

Suppose the various economies of the world use a set of currencies C1, . . . , Cn — think of these as dollars,
pounds, bitcoins, etc. Your bank allows you to trade each currency Ci for any other currency Cj at an
exchange rate rij , that is, you can exchange each unit of Ci for rij > 0 units of Cj . Due to fluctuations in
the markets, it is occasionally possible to find a sequence of exchanges that lets you start with currency A,
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change into currencies, B, C, D, etc., and then end up changing back to currency A in such a way that you
end up with more money than you started with. That is, there are currencies Ci1 , . . . , Cik such that

ri1i2 × ri2i3 × · · · × rik−1ik × riki1 > 1.

This is called an arbitrage opportunity, but to take advantage of it you need to be able to identify it quickly
(before other investors leverage it and the exchange rates balance out again)! Devise an efficient algorithm
to determine whether an arbitrage opportunity exists. Justify the correctness of your algorithm and its
runtime.

Rod Cutting

Suppose we have a rod of length k, where k is a positive integer. We would like to cut the rod into integer-
length segments such that we maximize the product of the resulting segments’ lengths. Multiple cuts may
be made. For example, if k = 8, the maximum product is 18 from cutting the rod into three pieces of length
3, 3, and 2. Write an algorithm to determine the maximum product for a rod of length k.
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