Binary Search Trees

1 Definitions

Suppose that the nodes A, B, C in a binary search tree are arranged as follows.

Which of the following describes the relationship between A, B, C?

- A ≤ B, C
- A ≥ B, C
- A ≤ B ≤ C
- B ≤ A ≤ C

Now suppose that nodes A, B, C are arranged as follows in the binary search tree.

What is the relationship between A, B, C?

- B ≤ A ≤ C
- B ≤ C ≤ A
- C ≤ B ≤ A
- C ≤ A ≤ B

If two different binary search trees contain the same set of values, which of the following is common between them?

- Their pre-order traversals.
- Their in-order traversals.
- Their post-order traversals.
- Their root nodes.

Which of the following describes the height of a binary search tree on n nodes?

- \(O(\log n) \)
- \(\Omega(\log n) \)
- \(\Theta(\log n) \)
- All of the above.

If the length of a path from the root of a red-black tree to one of the leaf NIL nodes is 100, what could be the length of another path from the root to some other NIL node?

- 45
- 180
- 30
- All of the above.

Suppose that \(r \) is the root of a red-black tree on \(n \) nodes. Assume all nodes have distinct values. If we sort the values stored in the tree to get \(x_1 < x_2 < \cdots < x_n \), and find the index \(i \) where \(r = x_i \), what can be said about \(i \)?

- \(i \geq \Omega(\sqrt{n}) \)
- \(i \geq \Omega(\sqrt[3]{n}) \)
- \(i \geq 0.08n \)

What is the worst-case runtime of operations INSERT/DELETE/SEARCH on a red-black tree storing \(n \) nodes?

- \(O(n) \)
- \(O(\log n) \)
- \(O(\sqrt{n}) \)
- \(O(\log n) \)