1 Recursive Formulae

Suppose that we want to compute $2^n \mod M$ for some numbers $n \geq 0$ and $M \geq 2$. 2^n can require a lot of digits to write down for large n, and we want to avoid that, since the end result is less than M.

Our first attempt avoids multiplication and only uses addition modulo M. We use the fact that $2^{2^n} = 2^{2^n}$ (mod M).

```plaintext
function PowerOf2Mod(M):
    if $n = 0$ then
        return 1
    return (PowerOf2Mod($n - 1$, M) + PowerOf2Mod($n - 1$, M)) mod M
```

What is the runtime of the above algorithm?

$\Theta(2^n)$

$\Theta(\log n)$

Correct

Now let us replace this algorithm with an iterative one that stores the results:

```plaintext
A = array indexed with $0, \ldots, n$
A[0] = 1
for $i = 1, \ldots, \log n$ do
    $A[i] = (A[i - 1] + A[i - 1]) \mod M$
return $A[\log n]$
```

What is the value of $A[i]$ in the above algorithm?

2^i mod M

2^i mod M

Correct

What is the runtime of this algorithm?

$\Theta(n)$

$\Theta(2^n)$

$\Theta(\log n)$

Correct

What if we are allowed to use multiplication? Suppose that n is a power of two.

```plaintext
B = array indexed with $0, \ldots, \log n$
B[0] = 2
for $i = 1, \ldots, \log n$ do
    $B[i] = (B[i - 1] - B[i - 1]) \mod M$
return $B[\log n]$
```

What is the value of $B[i]$ in the above algorithm?

2^i mod M

2^i mod M

Correct

What is the runtime of this algorithm?

$\Theta(n)$

$\Theta(2^n)$

$\Theta(\log n)$

Correct

Remark: A clever algorithm inspired by the above can compute Fibonacci(n) modulo a desired number M, in time $O(\log n)$. As a challenge, try to see the following identity involving Fibonacci numbers and matrix multiplication, to come up with this $O(\log n)$ algorithm.

```plaintext
Fibonacci($n$) = $[0 \ 1] \cdot [Fibonacci(n - 1) \ Fibonacci(n - 2)]$
```

2 Shortest Paths

Suppose that we have a weighted graph with n vertices and m edges and no negative cycles (so shortest paths are well-defined). Suppose for the below questions that our implementation of Dijkstra uses red-black trees (and not Fibonacci heaps).

If $m = \alpha n^3$, and we want to find the shortest path between some u and v which algorithms should we use? We prefer algorithms with the smallest worst-case runtime.

Suppose that we have a weighted graph with n vertices and m edges that all have nonnegative weights. Which algorithm should we use to find the shortest path between all pairs of vertices?

Correct

Suppose that we want to compute Fibonacci(n) modulo a desired number M, in time $O(\log n)$. As a challenge, try to see the following identity involving Fibonacci numbers and matrix multiplication, to come up with this $O(\log n)$ algorithm.