Longest Common Subsequence Forensics 1

We are computing the longest common subsequence between two strings of length four $S=X_1X_2X_3X_3$
and $T = Y_1Y_2Y_3Y_4$. We fill the array C where $C_{i,j}$ is the length of the longest common subsequence
between the prefix of length i from S and the prefix of length j from T . The array C can be found
below with some entries masked:

below with some entries masked: $0 1 2 3 4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 2 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 4 & 0 & 1 & \clubsuit & \diamondsuit \end{bmatrix}$
 What can be said about X₁ and Y₄? They are equal. They are different. They could be equal or different.
Correct What can be said about X_2 and Y_3 ? They are equal. They are different.
O They could be equal or different. Correct What can be said about X_2 and Y_4 ? O They are equal.
They are different.They could be equal or different.
What is the value of ♥? O 0 1 O 2 O 3 O 4 O Multiple answers could be correct.
Correct
What is the value of ♠? ○ 0 ○ 1 ○ 2 ○ 3 ○ 4
O Multiple answers could be correct. Correct
What is the value of ♣? ○ 0 ○ 1 ○ 2
O 3 O 4 O Multiple answers could be correct. Correct
What is the value of ♦? ○ 0 ○ 1 ○ 2 ○ 3 ○ 4
O Multiple answers could be correct. Correct
Suppose that in some (possibly different) instance of the longest common subsequence problem, we have $C_{i,j} = C_{i-1,j-1} + 1$. Does that necessarily mean the <i>i</i> -th character of the first string and the <i>j</i> -th character of the second string are equal? O Yes
NoCorrect
2 LCS Space Complexity
Consider the LCS problem from lecture 13 and our dynamic programming algorithm for it. Given inpustings of lengths m and n , what is the memory complexity of this algorithm? O $O(n+m)$ O $O((n+m)^2)$
O((m+m))
Correct When we are filling up the <i>i</i> -th row of our dynamic programming table <i>C</i> , what rows do we need thave access to? O We need to access all the <i>n</i> rows.
O We need to access the first i rows. O We need to access the values in the i -th row and $(i-1)$ -th row.
Given the observation above can we optimize our space Complexity further? O No, the best memory Complexity is $O(nm)$ O Yes we can reduce the memory complexity to $O(n \log(m))$.
O Yes we can reduce the memory complexity to $O(\frac{m}{n})$. O Yes we can reduce the memory complexity to $O(\min(m, n))$. Correct
3 Knapsack Forensics
Suppose we are trying to solve an instance of the unbounded knapsack problem. We fill the array h
whose entry K_i gives us the maximum value we can obtain from a knapsack of capacity i . 0 1 2 3 4 5 6
$\begin{bmatrix} 0 & 0 & 1 & 3 & \spadesuit & \heartsuit & \diamondsuit \end{bmatrix}$

What is the minimum possible value for \spadesuit ?

3

What is the minimum possible value for \heartsuit ?

Correct What is the minimum possible value for \Diamond ? 6

Correct If we fill a knapsack of capacity 3 optimally, how many items do we put in the knapsack?

0 1 O 2

O 3

O Multiple answers could be correct.

Correct Maximum Independent Set on a Tree

	-					
Consider the maximum	independent on	trees problem	from the	lecture 13 sli	des. We s	aw a top-down

dy	namic programming approach to solve this problem. Now we'd like to see how a bottom up approach
to	solve MIS on a tree would look like. Which one of the following statements is correct?
0	In order to solve this problem bottom-up we need to order the vertices by increasing DFS finish
	time.

	me.
0	n order to solve this problem bottom-up we need to order the vertices by decreasing DFS start

Correct

Both of the above. O Any ordering would work.

time.

What is the best run-time for the bottom-up approach to solve the MIS on a tree problem?

 \bigcirc O(n+m) $O((n+m)\log(n))$ O $O((n+m)^2)$

Correct