In the select algorithm, the runtime is represented with the recurrence relation
\[T(n) = O(n) + T\left(\frac{n}{2}\right) + T\left(\frac{7n}{10}\right). \]

Here, \(T\left(\frac{n}{2}\right) \) is for selecting the pivot, and \(T\left(\frac{7n}{10}\right) \) is for the recursive call to select the \(k \)-th element.

Consider the modified version of the select algorithm, where we split our array into \(\lceil \frac{n}{7} \rceil \) groups of size \(\leq 7 \) instead. What would be the recurrence relation for this modified version? Specifically, if we write the recurrence relation as \(T(n) = O(n) + T\left(\frac{n}{7}\right) + T\left(\frac{7n}{10}\right) \), where \(a, b, \) and \(c \) are non-negative integers, what are the smallest possible values of \(a, b, \) and \(c \)?

\(a = \)
\(b = \)
\(c = \)

What is the smallest exponent \(x \) such that the modified version of the select described above on an array of size \(n \) always takes time \(O(n^x) \)?

\(x = 1 \)

Now assume that the \(O(n) \) work per recursive step takes exactly \(n \) units of time on our machine. In other words, suppose that the recurrence relation for the runtime is
\[T(n) = n + T\left(\frac{n}{3}\right) + T\left(\frac{bn}{c}\right). \]

What is the smallest coefficient \(C \) such that we can use the substitution method to prove that the recurrence relation for the modified select algorithm is \(T(n) \leq Cn \)?

\(C = 7 \)

Now consider another modified version of the select algorithm, where we split our array into \(\lceil n/3 \rceil \) groups of size \(\leq 3 \) instead. What would be the recurrence relation for this modified version? Specifically, if we write the recurrence relation as
\[T(n) = n + T\left(\frac{n}{3}\right) + T\left(\frac{bn}{c}\right), \]
where \(a, b, \) and \(c \) are non-negative integers, what are the smallest possible values of \(a, b, \) and \(c \)?

\(a = \)
\(b = \)
\(c = \)

Which one is true for the modified select recurrence relation that you came up with in the last part?

- \(T(n) = \Theta(n) \)
- \(T(n) = \Theta(n \log n) \)
- \(T(n) = \Theta(n^2) \)

\(T(n) = \Theta(n^2) \)