1 Insertion sort example

Suppose that we want to sort the following array according to the alphabetical order using Insertion Sort.

C A B

In the first iteration, Insertion Sort starts moving C. Where does C end up after this iteration?

- Position 1
- Position 2
- Position 3

Correct

Now we start moving A. Where does A end up after we are done with this iteration?

- Position 1
- Position 2
- Position 3

Correct

In the next iteration, we move B. Where does it end up?

- Position 1
- Position 2
- Position 3

Correct

The final array looks as follows.

A B C

2 Insertion sort questions

Can you see a pattern? When sorting an array using Insertion Sort, which of the following is correct after having iterated over the first i items.

- Item i is in its final position and will never move again.
- The first i items are in sorted order.
- The first i items are in their final positions.
- All of the above.

Correct

What is the smallest exponent x such that Insertion Sort on an array of size n always takes time $O(n^x)$?

- 2

Correct

What if we run insertion sort on an already-sorted array. What is the smallest exponent x such that Insertion Sort on a sorted array takes time $O(n^x)$?

- 1

Correct

Which of the following describes the worst case runtime of Insertion Sort?

- $O(n^2)$
- $O(n^3)$
- $O(n)$
- All of the above

Correct

3 Merge sort

The Merge operation takes two arrays A and B of size n which are already sorted and outputs the union of the two in sorted order. What is the smallest bound on the runtime of the Merge algorithm?

- $O(n \log n)$
- $O(n)$
- $O(n^2)$

Correct

In Merge Sort run on array of size n, how many calls (in total across all levels of recursion) are made to the Merge subroutine?

- $O(n \log n)$
- $O(n \log n)$
- $O(n)$

Correct

Is Merge Sort faster than Insertion Sort on all input arrays?

- Yes
- No

Correct

Is Merge Sort faster than Insertion Sort on some arrays?

- Yes
- No

Correct

If algorithm A is faster than algorithm B on some inputs, does that mean A’s worst case runtime is better than B’s worst case runtime?

- Yes
- No

Correct

Is Merge Sort’s worst case runtime asymptotically faster than Insertion Sort’s worst case runtime?

- Yes
- No

Correct