1 3-Wise Comparisons

Assume you have a function called 3-sort that takes as input an array of size 3 of comparable objects and returns them in sorted order. You want to sort an array of size $n \geq 3$ objects only using calls to 3-sort. How many function calls of 3-sort are required to sort an array of size n? Choose the asymptotically largest applicable lower bound.

- $\Omega(\log n)$
- $\Omega(\sqrt{n})$
- $\Omega(n)$
- $\Omega(n \log n)$

Correct

2 Possible or Impossible

Is it possible to implement the following algorithms or data structures?

A data structure that stores comparable objects and supports the following operations:

- Insert new objects in $O(1)$ time per insertion.
- Remove objects in $O(1)$ time per removal.
- Return the smallest object currently in the collection in $O(1)$ time.

Is it possible to implement such a data structure?

- Possible
- Impossible

Correct

An algorithm that runs in $O(n)$ time and takes an array A of size n of comparable objects, i, and j ($1 \leq i < j \leq n$) as inputs and returns all the elements that are greater than the ith smallest element in A and less than the jth smallest element in A?

- Possible
- Impossible

Correct

Which algorithm would be a good choice to use for the last part?

- k-Select
- Radix Sort
- Quick Sort
- Merge Sort

Correct

An algorithm that runs in $O(n)$ time and takes an array A of size n of comparable objects and partitions A into $\frac{n}{\log n}$ groups of size $\log n$ each, where for every $i < j$, members of group i are smaller than or equal to members of group j.

- Possible
- Impossible

Correct

3 Radix Sort and Counting Sort

Assume you have an array A of size n with positive integer element with all elements in the range $[1, n^3]$.

What is the runtime of Counting Sort run on A?

- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n^2)$
- $\Theta(n^3)$

Correct

What is the runtime of Radix Sort, using base 10, run on A?

- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n^2)$
- $\Theta(n^3)$

Correct

Which base for Radix Sort will result in the fastest Radix Sort algorithm to sort A with?

- 2
- 10
- n
- n^2

Correct