
CS 161
Design and Analysis of Algorithms

Lecture 1: 
Logistics, introduction, and multiplication!



How was your break?



The big questions

• Who are we?
• Professor, TAs, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?
• Logistics?
• Embedded Ethics?

• Can we multiply integers?
• And can we do it quickly?



Who are we?
• Instructors: 

• Moses Charikar
• Nima Anari

• Course Coordinator:
• Amelie Byun Jose      Manda       Nash        Peter           Sam           Samar

Seiji       Shubham     Teresa          Tim 

Amelie

Yuchen           Ziang   

• Awesome CAs:
• Ziang Liu (Head CA)
• Peter Boennighausen
• Andre Turati
• Amrita Palaparthi
• Seiji Eicher
• Jiazheng Zhao
• June Vuong
• Yuchen Wang
• Emily Wen
• Samar Khanna
• Avery Wang

• Sam Lowe
• Nash Luxsuwong
• Shubham Jain
• Andrew Yang
• Jose Francisco
• Tim Chirananthavat
• Jerry Hong
• Teresa Noyola
• Goli Emami
• Manda Tran

Amrita Andre Goli Jerry Jiazheng



Who are you?

• Aero/Astro
• Archaeology
• Art Practice
• Bioengineering
• Biology
• Biomedical Informatics
• Biophysics
• Chemical Eng.
• Chemistry
• Chinese
• Civil & Env. Eng.
• Classics
• Communication

• Comparative Lit.
• Computer Science
• Creative Writing
• Earth Systems
• East Asian Studies
• Economics
• Education
• EE
• Energy Resources Eng.
• Engineering
• English
• Epidemiology
• Ethics in Society

• Geophysics
• History
• Human Biology
• Human Rights
• Immunology
• International Relat
• Material Sci & Eng
• Math & CS
• Math
• Mech. Eng. 
• MS&E
• Music
• Philosophy

• Philosophy & Rel Stud
• Physics
• Political Science
• Psychology
• Science, Tech. and 

Society
• Slavic Lang & Lit
• Sociology
• Spanish
• Statistics
• Symbolic Systems
• Undeclared

Concentrating in:

• Freshman
• Sophomores

• Juniors
• Seniors

• MA/MS Students
• PhD Students

• NDO Students



Where are you?



Why are we here?

• I’m here because I’m super excited about algorithms!



Why are you here?

• Algorithms are fundamental.
• Algorithms are useful.
• Algorithms are fun!
• CS161 is a required course.

Why is CS161 required?

• Algorithms are fundamental.
• Algorithms are useful.
• Algorithms are fun!

You are better equipped to 
answer this question than I am, 

but I’ll give it a go anyway…



Algorithms are fundamental

Operating Systems (CS 140)

Compilers (CS 143)
Networking (CS 144)

Machine learning (CS 229) Cryptography (CS 255)

Computational Biology (CS 262)

The 
Algorithmic 

Lens



Algorithms are useful

• All those things without 
the course numbers.

• As inputs get bigger and 
bigger, having good 
algorithms becomes more 
and more important!



Algorithms are fun!

• Algorithm design is both an art and a science.
• Many surprises!
• Many exciting research questions!



What’s going on?

• Course goals/overview
• Logistics



Course goals

• The design and analysis of algorithms
• These go hand-in-hand

• In this course you will:
• Learn to think analytically about algorithms
• Flesh out an “algorithmic toolkit”
• Learn to communicate clearly about algorithms



Roadmap

Sorting

Graphs!
Longest, Shortest, Max and Min…

Data 

structures

Asymptotic 
Analysis

Recurrences

Randomized 
Algs

Dynamic 
ProgrammingGreedy Algs

5 lectures 2 lectures

9 lectures

Today

Divide and 
conquer

1 lecture

The
Future!

More detailed schedule on the website!

FINAL

MIDTERM



Our guiding questions:

Does it work?
Is it fast?

Can I do better?



Our internal monologue…

Does it work?
Is it fast?

Can I do better?

Plucky the 
Pedantic Penguin

Lucky the 
Lackadaisical Lemur

Detail-oriented
Precise

Rigorous

Big-picture
Intuitive

Hand-wavey

Dude, this is just like 
that other time.  If you 

do the thing and the 
stuff like you did then, 

it’ll totally work real fast!

What	exactly	do	we	
mean	by	better?		And	
what	about	that	corner	
case?		Shouldn’t	we	be	

zero-indexing?

Both sides are necessary!



Aside: the bigger picture

• Does it work?  
• Is it fast?  
• Can I do better?

• Should it work?  
• Should it be fast?  

• We want to reduce crime.
• It would be more “efficient” to put cameras in everyone’s homes/cars/etc.

• We want advertisements to reach to the people to whom they are most 
relevant.

• It would be more “efficient” to make everyone’s private data public.

• We want to design algorithms, that work well, on average, in the population.
• It would be more “efficient” to focus on the majority population.



Course elements and resources

• Course website:
• cs161.stanford.edu

• Lectures
• References
• IPython Notebooks
• Concept Check questions
• Homework
• Exams
• Office hours, recitation sections, and Ed



• Mon/Wed, 9:45-11:15
First 2 weeks: On Zoom (link on canvas)
Later:               In person (Nvidia auditorium)
• Resources available:
• Slides, Videos, Notes, IPython notebooks, concept check qns

Lectures

IPython notebooks 
have implementation 
details that slides may 

omit.

Slides are the 
slides from 

lecture.  

Videos from 
lecture are 
available!

Hand-outs and 
references have mathy
details that slides may 

omit



How to get the most out of lectures
• During lecture:
• Participate live (if you can), ask questions.
• Engage with in-class questions.

• Before lecture:
• Do pre-lecture exercises on the website.

• After lecture:
• Go through the exercises on the slides.

• Do the reading
• either before or after lecture, whatever works best for you.
• do not wait to “catch up” the week before the exam.

Siggi the Studious Stork
(recommended exercises)

Ollie the Over-achieving Ostrich
(challenge questions)

Think-Pair-Share Terrapins 
(in-class questions)



Optional References

• Algorithms Illuminated, Vols 1,2 and 3 by Tim 
Roughgarden
• Additional resources at algorithmsilluminated.org

• We may also refer to to the following (optional) books:

”CLRS”: Introduction to 
Algorithms by Cormen, 

Leiserson, Rivest, and Stein.  
Available FOR FREE ONLINE 
through the Stanford library.

“Algorithm Design” by  
Kleinberg and Tardos



IPython Notebooks

• Lectures will occasionally use IPython notebooks 
(but not homeworks)

• For next lecture, the pre-lecture exercise is to get started 
with Jupyter Notebooks and with Python.
• See course website for details.

• The goal is to make the algorithms (and their runtimes) 
more tangible.



Concept Check questions
• Not part of grade; will not be graded
• Links to question sets part of resources for each lecture (via 

Lectures tab on website)



Homework!
• Weekly assignments, posted Wednesday by 

12:30pm, due the next Wednesday 11:59pm.
• First HW posted this Wednesday!



How to get the most out of homework

• HW has two parts: exercises and problems.
• Do the exercises on your own.
• Try the problems on your own before discussing it 

with classmates.

• If you get help from a CA at office hours:
• Try the problem first.
• Ask: “I was trying this approach and I got stuck here.”
• After you’ve figured it out, write up your solution from 

scratch, without the notes you took during office hours.



Exams
• There will be a midterm and a final
• Midterm: Mon Feb 7 - Tue Feb 8  (48 hr window)
• Final: Wed Mar 16, 3:30pm – 6:30pm

• 8 homeworks, lowest score dropped

• Weighting: HW (50%), Midterm (20%), Final (30%) 

• If you have a conflict with the midterm time, email 
cs161-win2122-staff@lists.stanford.edu ASAP!!!!!

mailto:cs161-win2022-staff@lists.stanford.edu


Talk to us!
• Ed discussion forum:
• Link on top of the course website
• Course announcements will be posted there
• Discuss material with TAs and your classmates

• Office hours (on Nooks):
• See course website for schedule

• Recitation sections (on Zoom):
• Thursdays and Fridays.
• See course website for schedule 
• Technically optional, but highly recommended!
• Extra practice with the material, example problems, etc.



Talk to each other!

• Answer your peers’ questions on Ed!
• We will host Homework Parties (on Nooks).



Course elements and resources

• Course website:
• cs161.stanford.edu

• Lectures
• References
• IPython Notebooks
• Homework
• Exams
• Office hours, recitation sections, and Ed



A note on course policies

• Course policies are listed on the website.
• Read them and adhere to them.
• That’s all I’m going to say about course policies

(except for a couple of slides on collaboration and 
the honor code)



Collaboration

• We encourage collaboration on homeworks (but 
strongly recommend you do exercises on your own)
• Valid and invalid modes of collaboration detailed on 

the course website. 
• Briefly, you can exchange ideas with classmates, but 

must write up solutions on your own.

• You must cite all collaborators, as well as all sources 
used (outside of course materials).



Honor code
• Updated last year: “In all cases, it is not permissible for 

students to enter exam questions into any software, apps, 
or websites. Accessing resources that directly explain how 
to answer questions from the actual assignment or exam is 
a violation of the Honor Code.”

https://communitystandards.stanford.edu/bja-guidance-
remote-teaching-and-learning-environment

• Course policy for Homeworks: “In all cases, it is not 
permissible for students to enter homework questions into 
any software, apps, or websites. Accessing resources that 
directly explain how to answer questions from the actual 
assignment or exam is a violation of course policy.”

https://communitystandards.stanford.edu/bja-guidance-remote-teaching-and-learning-environment


Bug bounty!
• We hope all PSETs and slides will be 

bug-free.
• Howover, we sometmes maek typos.
• If you find a typo (that affects 

understanding*) on slides, IPython
notebooks, Section material or PSETs:
• Let us know! (Post on Ed or tell a CA).
• The first person to catch a bug gets a 

bonus point.

*So, typos lke thees onse don’t count, although please 
point those out too.  Typos like 2 + 2 = 5 do count, as does 
pointing out that we omitted some crucial information.

Bug Bounty Hunter



For SCPD Students (and all students)

• All/some office hours held online (on Nooks)
• One of the recitation sections will be recorded.
• See the website for more details!  (Coming soon…)



OAE forms

• Please send OAE forms to
cs161-win2122-staff@lists.stanford.edu

mailto:cs161-win1920-staff@lists.stanford.edu


Feedback!

• We will have an anonymous feedback form on the 
course website (top of the main page).
• Please help us improve the course!



How are you 
approaching CS 161?



Everyone can succeed in this class!

1. Work hard
2. Work smart
3. Ask for help

4. CS 161A
one unit supplementary 
class (deadline to apply: 

Fri Jan 7, 5pm PST)



The big questions

• Who are we?
• Professor, TA’s, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?
• Logistics?
• Embedded Ethics?

• Can we multiply integers?
• And can we do it quickly?



Introducing Embedded Ethics

Diana Acosta-Navas
Postdoctoral Fellow, McCoy Family Center for Ethics in Society 

and Institute for Human Centered Artificial Intelligence



Other big questions

• Who am I?

• Why am I here?

• What is Embedded Ethics?

• What has ethics got to do with 
algorithms?



Who am I?
I’m Diana, a post-doctoral fellow at the McCoy Family Center for Ethics in 
Society and Stanford Institute for Human-Centered Artificial Intelligence

I finished my Ph.D. in Philosophy at Harvard University

I taught ethics at the Harvard Kennedy School of Government

I also became part of Embedded EthiCS@Harvard

Now I’m helping Stanford to develop our Embedded Ethics program



What is Embedded Ethics?

Training the next 
generation of computer 
scientists to “consider 
ethical issues from the 
outset rather than 
building technology and 
letting problems 
surface downstream” 
by integrating skills and 
habits of ethical 
analysis throughout the 
Stanford Computer 
Science curriculum. Elan the Ethical Emu



What is Embedded Ethics?

The Vision 

• Responsible ethical reasoning is a 
highly valuable skill.

• One that needs to be integrated with 
technical, managerial, and other skills 
we apply in our professional lives

• Successfully integrating these skills 
requires a distributed pedagogy 
approach

Elan the Ethical Emu



What is Embedded Ethics?

What we teach

•Issue spotting and ethical sensitivity.
•Recognizing values in design choices. 
•Developing language to talk about moral choices.
•Professional responsibilities of computer 

scientists & software engineers.

• Important topics in technology ethics: bias & 
fairness, inequality, privacy, surveillance, data 
control & consent, trust, disinformation, 
participatory design, concentration of power.

Elan the Ethical Emu



Where is Embedded Ethics?

Outside Stanford

• Harvard (2017)
• Georgetown (2017)
• Brown (2019)
• Northeastern (2019)
• MIT (2020)
• Andover (2021)
• … and many other places

At Stanford

• CS106A
• CS106B
• CS107
• CS109
• CS221
• CS247
• CS147
• ... and more over the next two years



And what does
ethics have to do 
with algorithms?



If algorithms are fundamental (which they 
are) … 

Then some of the most consequential choices you will make as computer scientists are:

• Deciding which problem to solve 
Ø This often is a huge ethical question

• Deciding how to turn that problem into something algorithmically tractable 
Ø This also can involve serious ethical decisions

• Deciding which algorithm to use to solve it and what tradeoffs to accept 
Ø Which often requires ethical reasoning



Algorithms & the Good

Turn a real-world 
problem into a 
formal problem

Use an algorithm 
to solve the 
problem

Happiness 
ensues



Algorithms & the Good

Turn a real-world 
problem into a 
formal problem

Use an algorithm 
to solve the 
problem

Happiness 
ensues



Some (potentially impactful) decisions:

We often need to ignore or change aspects of a real-world situation in order to 
turn it into an algorithmically solvable problem. For example, we can write an 
algorithm that sorts a numbered list without knowing what the numbers are 
numbers of.

• Abstraction is when we omit details of the real-world situation. 
• Omit the kind of thing being sorted by our algorithm, or what 

condition it is in, or what color it is, or how long it has been in the 
list. 

• Idealization is when we deliberately change aspects of the real-world 
situation. 
• Round the numbers being sorted to make them whole numbers. 



Turn a real-world 
problem into a 
formal problem

Use an algorithm 
to solve the 
problem

Happiness 
ensues

Real-world 
problem? I 
don’t see you 
all the way 
over there … 



Turn a real-world 
problem into a 
formal problem

Use an algorithm 
to solve the 
problem

Happiness 
ensues

So how do we make sure 
we aren’t losing 
important features of 
the real-world problem 
when we formalize it?



Turn a real-world 
problem into a 
formal problem

Use an algorithm 
to solve the 
problem

Happiness 
ensues

By the time you finish 
161 you will have an 
“algorithmic tool kit”–
which one is right for the 
job?  



Turn a real-world 
problem into a 
formal problem

Use an algorithm 
to solve the 
problem

Happiness –or 
something–
ensues

Did we achieve what we 
set out achieve in the 
first place? What did we 
lose along the way? Is 
this a desirable 
outcome?  



Our guiding questions:

Does it work?
Is it fast?

Can I do better?
Can I do it right?



Thank you!
You can always email me at dacostan@stanford.edu

mailto:dacostan@stanford.edu


The big questions

• Who are we?
• Professor, TA’s, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?
• Logistics?
• Embedded Ethics?

• Can we multiply integers?
• And can we do it quickly?



Today’s goals

• Think analytically about algorithms
• Flesh out an “algorithmic toolkit”
• Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication
• Algorithmic Technique: 
• Divide and conquer

• Algorithmic Analysis tool: 
• Intro to asymptotic analysis



Let’s start at the beginning



Etymology of “Algorithm”
• Al-Khwarizmi was a 9th-century scholar, born in present-

day Uzbekistan, who studied and worked in Baghdad 
during the Abbassid Caliphate.

• Among many other contributions in mathematics, 
astronomy, and geography, he wrote a book about how 
to multiply with Arabic numerals.

• His ideas came to Europe in the 12th century.

Dixit algorizmi
(so says Al-Khwarizmi)

• Originally, “Algorisme” [old French] referred to 
just the Arabic number system, but eventually it 
came to mean “Algorithm” as we know today.



This was kind of a big deal

XLIV × XCVII = ?
44
97x



Integer Multiplication

44
97x



Integer Multiplication

1234567895931413
4563823520395533x



Integer Multiplication

1233925720752752384623764283568364918374523856298
4562323582342395285623467235019130750135350013753x

???

n

About 𝑛! one-digit operations
(How many one-digit operations?)

Think-pair-share Terrapins

Plucky the 
Pedantic Penguin

At most 𝑛! multiplications,
and then at most 𝑛! additions (for carries) 
and then I have to add n different 2n-digit numbers…

How fast is the grade-school 
multiplication algorithm?



Big-Oh Notation

• We say that Grade-School Multiplication
“runs in time O(n2)”

• Formal definition coming Wednesday!
• Informally, big-Oh notation tells us how the running 

time scales with the size of the input.



Implemented in Python, on my laptop
highly non-optimized 

Looks like it’s roughly
Tlaptop(n) = 0.0063 n2 – 0.5 n + 12.7 ms...

The runtime “scales like” n2



Implemented by hand

Some other 
quadratic 
function of n

Tlaptop(n) ≈
0.0063 n2 – 0.5 n + 12.7 ms

The runtime still “scales like” n2



Why is big-Oh notation meaningful?

≈ .0063𝑛!

≈ "!.#

#$
+ 100

Wizard’s algorithm



Let n get bigger…

≈ .0063𝑛!

≈ "!.#

#$
+ 100

Ti
m

e 
(m

s)

Wizard’s algorithm



Take-away

• An algorithm that runs in time O(n1.6) is “better” 
than an algorithm that runs in time O(n2).

• So the question is…



Can we do better?

𝑛

𝑛!

Can we multiply n-digit integers 
faster than 𝑂 𝑛D ?



Let’s dig in to our algorithmic toolkit…



Divide and conquer
Break problem up into smaller (easier) sub-problems

Big problem

Smaller 
problem

Smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem



Divide and conquer for multiplication

1234 × 5678

Break up an integer:

1234 = 12×100 + 34

= ( 12×100 + 34 ) ( 56×100 + 78 )
= ( 12 × 56 )10000 + ( 34 × 56  +  12 × 78 )100 + ( 34 × 78 )

1 2 3 4

One 4-digit multiply Four 2-digit multiplies



More generally

1 2 3 4

One n-digit multiply Four (n/2)-digit multiplies

Break up an n-digit integer:

Suppose n is even



Divide and conquer algorithm
not very precisely…

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
!
" + 𝑏

• Write 𝑦 = 𝑐 10
!
" + 𝑑

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑:
• ac = Multiply(a, c), etc..

• Add them up to get 𝑥𝑦:
• xy = ac 10n + (ad + bc) 10n/2 + bd

Multiply(𝑥, 𝑦):

a, b, c, d are 
n/2-digit numbers

Base case: I’ve memorized my 
1-digit multiplication tables…

x,y are n-digit numbers (Assume n is a power of 2…)

Siggi the Studious Stork

Make this pseudocode 
more detailed! How 

should we handle odd n?  
How should we implement 

“multiplication by 10n”?

See the Lecture 1 Python notebook for actual code!



Think-Pair-Share

• We saw that this 4-digit multiplication problem 
broke up into four 2-digit multiplication problems

• If you recurse on those 2-digit multiplication 
problems, how many 1-digit multiplications do you 
end up with total?

1234 × 5678



Recursion Tree

4 digits

2 digits

1 
digit

2 digits 2 digits 2 digits

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

1 
digit

16 one-digit 
multiplies!



What is the running time?

• Better or worse than the grade school algorithm?

• How do we answer this question?
1. Try it.
2. Try to understand it analytically.



1. Try it.
Check out the Lecture 1 IPython Notebook

Conjectures about 
running time?

Maybe one implementation 
is slicker than the other?

Maybe if we were to run it 
to n=10000, things would 

look different.

Doesn’t look too good 
but hard to tell…

Something funny is happening at powers of 2…



2. Try to understand the running 
time analytically 

• Proof by meta-reasoning:

It must be faster than the grade school 
algorithm, because we are learning it in 

an algorithms class.

Not sound logic!

Plucky the Pedantic Penguin



2. Try to understand the running 
time analytically 

Think-Pair-Share:
• We saw that multiplying 4-digit numbers resulted in 16 

one-digit multiplications.

• How about multiplying 8-digit numbers?

• What do you think about n-digit numbers?



Recursion Tree

8 digits

4 digits

2 
digit

4 digits 4 digits 4 digits

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

2 
digit

64 one-digit 
multiplies!

1

11

11

11

11

11

11

11

1 1

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1
1

11

11

11

11

11

11

11

1



2. Try to understand the running 
time analytically 

Claim: 

The running time of this algorithm is 
AT LEAST n2 operations.



There are n2 1-digit problems
1 problem 
of size n

4 problems 
of size n/2

4t problems 
of size n/2t

____ problems 
of size 1

…

• If you cut n in half 
log2(𝑛) times,           
you get down to 1.

• So at level
t = log2(𝑛)

we get…

4*+," - =
𝑛*+," . = 𝑛2
problems of size 1.

…

Note: this is just a 
cartoon – I’m not 
going to draw all 4t

circles!



That’s a bit disappointing
All that work and still (at least) 𝑂 𝑛! …

𝑛

𝑛!

But wait!!



Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

• If only we could recurse on three things instead of four…

Need these three things



Karatsuba integer multiplication

• Recursively compute these THREE things:
• ac 
• bd
• (a+b)(c+d) (a+b)(c+d) = ac + bd + bc + ad

Subtract these off
get this

• Assemble the product:



How would this work?

• If n=1:
• Return xy

• Write 𝑥 = 𝑎 10
!
" + 𝑏 and 𝑦 = 𝑐 10

!
" + 𝑑

• ac = Multiply(a, c)
• bd = Multiply(b, d)
• z = Multiply(a+b, c+d)
• xy = ac 10n + (z – ac - bd) 10n/2 + bd
• Return xy

Multiply(𝑥, 𝑦):

a, b, c, d are 
n/2-digit numbers

x,y are n-digit numbers
(Still not super precise, see IPython
notebook for detailed code.   Also, 

still assume n is a power of 2.)



What’s the running time?
1 problem 
of size n

3 problems 
of size n/2

3t problems 
of size n/2t

____ problems 
of size 1

…

• If you cut n in half 
log2(𝑛) times, you get 
down to 1.

• So at level
t = log2(𝑛)

we get…

3EFG! H = 𝑛EFG! I ≈ 𝑛J.K
problems of size 1.

𝑛!.#
We aren’t accounting for the 

work at the higher levels!  
But we’ll see later that this 

turns out to be okay.

Note: this is just a 
cartoon – I’m not 
going to draw all 3t

circles!

…



This is much better!

𝑛!

𝑛#.'

𝑛



We can even see it in real life!



Can we do better?
• Toom-Cook (1963): instead of breaking into three n/2-

sized problems, break into five n/3-sized problems. 
• Runs in time O 𝑛J.LKM

• Schönhage–Strassen (1971):
• Runs in time O(𝑛 log 𝑛 log log 𝑛 )

• Furer (2007)
• Runs in time 𝑛 log 𝑛 ⋅ 2N(EFG∗ H )

• Harvey and van der Hoeven (2019)
• Runs in time O(𝑛 log 𝑛 )

Ollie the Over-achieving Ostrich

Try to figure out how to break 
up an n-sized problem into five 
n/3-sized problems!  (Hint: start 
with nine n/3-sized problems).

Siggi the Studious Stork

Given that you can break an 
n-sized problem into five 

n/3-sized problems, where 
does the 1.465 come from?

[This is just for fun, you 
don’t need to know 

these algorithms!]



Today’s goals

• Think analytically about algorithms
• Flesh out an “algorithmic toolkit”
• Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication
• Algorithmic Technique: 
• Divide and conquer

• Algorithmic Analysis tool: 
• Intro to asymptotic analysis



How was the pace 
today?



The big questions

• Who are we?
• Professor, TA’s, students?

• Why are we here?
• Why learn about algorithms?

• What is going on?
• What is this course about?
• Logistics?

• Can we multiply integers?
• And can we do it quickly?

• Wrap-up



Wrap up
• cs161.stanford.edu

• Algorithms are fundamental, useful and fun!

• In this course, we will develop both algorithmic 
intuition and algorithmic technical chops

• Karatsuba Integer Multiplication:
• You can do better than grade school multiplication!
• Example of divide-and-conquer in action
• Informal demonstration of asymptotic analysis



• Sorting!
• Asymptotics and (formal) Big-Oh notation
• Divide and Conquer some more

Next time

BEFORE Next time
• Pre-lecture exercise! On the course website!


