
Lecture 12
Bellman-Ford, Floyd-Warshall,
and Dynamic Programming!

1

Announcements

• HW5 due Wednesday
• Some problems worth 0pts. These are ungraded, and

just for extra practice.

2

Today

• Bellman-Ford Algorithm
• Bellman-Ford is a special case of Dynamic

Programming!
• What is dynamic programming?
• Warm-up example: Fibonacci numbers

• Another example:
• Floyd-Warshall Algorithm

3

Recall
• A weighted directed graph:

u

v

a

b

t

3 32

5

2

13

16

1

• Weights on edges
represent costs.

• The cost of a path is the
sum of the weights
along that path.

• A shortest path from s
to t is a directed path
from s to t with the
smallest cost.

• The single-source
shortest path problem is
to find the shortest path
from s to v for all v in
the graph.

1

21

This is a
path from
s to t of
cost 22.

s

This is a path from s to t of
cost 10. It is the shortest
path from s to t. 4

Last time

• Dijkstra’s algorithm!
• Solves the single-source shortest path problem in weighted

graphs.

u

v

a

b

t

3 32
5

2

13

16

1
1

2
1

s

5

Dijkstra Drawbacks

• Needs non-negative edge weights.
• If the weights change, we need to re-run the

whole thing.

6

Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
• Can be useful if you want to say that some edges are

actively good to take, rather than costly.
• Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
• We’ll see what this means later

7

Aside: Negative Cycles

• A negative cycle is a cycle whose edge weights sum to
a negative number.
• Shortest paths aren’t defined when there are negative

cycles!

8

A

B

C

-10

1

2 The shortest path from A to B
has cost…negative infinity?

Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
• Can detect negative cycles!
• Can be useful if you want to say that some edges are

actively good to take, rather than costly.
• Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
• We’ll see what this means later

9

Bellman-Ford vs. Dijkstra

• Dijkstra:
• Find the u with the smallest d[u]
• Update u’s neighbors: d[v] = min(d[v], d[u] + w(u,v))

• Bellman-Ford:
• Don’t bother finding the u with the smallest d[u]
• Everyone updates!

10

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

How far is a node from Gates?

0

∞

∞

∞

∞

=

• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min(d(i)[v] , d(i)[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

∞0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

d(1)

d(2)

d(3)

d(4)

11

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

How far is a node from Gates?

0

∞

∞

25

1

∞

25

0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

d(2)

d(3)

d(4)

12

• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min(d(i)[v] , d(i)[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

How far is a node from Gates?

0

2

45

23

1

∞

25

0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

d(3)

d(4)

13

• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min(d(i)[v] , d(i)[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

How far is a node from Gates?

0

2

6

23

1

∞

25

0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

d(4)

14

• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min(d(i)[v] , d(i)[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

How far is a node from Gates?

0

2

6

23

1

∞

25

0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

These are the final distances!

15

• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min(d(i)[v] , d(i)[u] + w(u,v))
where we are also taking the min over all u in v.inNeighbors

Interpretation of d(i)

∞

25

0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

d(i)[v] is equal to the cost of the
shortest path between s and v
with at most i edges.

Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

0

2

6

23

1

16

Why does Bellman-Ford work?

• Inductive hypothesis:
• d(i)[v] is equal to the cost of the shortest path between s

and v with at most i edges.

• Conclusion:
• d(n-1)[v] is equal to the cost of the shortest path between

s and v with at most n-1 edges.
Do the base case and

inductive step!

17

Aside: simple paths
Assume there is no negative cycle.
• Then there is a shortest path from s to t, and

moreover there is a simple shortest path.

• A simple path in a graph with n vertices has at most
n-1 edges in it.

• So there is a shortest path with at most n-1 edges

“Simple” means
that the path has
no cycles in it.v

s u

x

t
s v

y

-2

2

3

-5

10

t
Can’t add another edge
without making a cycle!

This cycle isn’t helping.
Just get rid of it.

18

Why does it work?

• Inductive hypothesis:
• d(i)[v] is equal to the cost of the shortest path between s

and v with at most i edges.

• Conclusion:
• d(n-1)[v] is equal to the cost of the shortest path between

s and v with at most n-1 edges.
• If there are no negative cycles, d(n-1)[v] is equal to the

cost of the shortest path.

Notice that negative edge weights are fine.
Just not negative cycles. 19

Bellman-Ford* algorithm

• Initialize arrays d(0),…,d(n-1) of length n

• d(0)[v] = ∞ for all v in V
• d(0) [s] = 0
• For i=0,…,n-2:
• For v in V:
• d(i+1)[v] ←min(d(i)[v] , minu in v.inNbrs{d(i)[u] + w(u,v)})

• Now, dist(s,v) = d(n-1)[v] for all v in V.
• (Assuming no negative cycles)

Bellman-Ford*(G,s):

*Slightly different than some versions of Bellman-Ford…but
this way is pedagogically convenient for today’s lecture.

G = (V,E) is a graph with n
vertices and m edges.

20

Here, Dijkstra picked a special vertex u and
updated u’s neighbors – Bellman-Ford will

update all the vertices.

Note on implementation

• Don’t actually keep all n arrays around.
• Just keep two at a time: “last round” and “this round”

∞

25

0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6 23d(4)

Only need these
two in order to
compute d(4)

21

We don’t even need
two, just one array is
fine. Why?

Bellman-Ford take-aways

• Running time is O(mn)
• For each of n rounds, update m edges.

• Works fine with negative edges.
• Does not work with negative cycles.
• No algorithm can – shortest paths aren’t defined if there

are negative cycles.

• B-F can detect negative cycles!
• See skipped slides to see how, or think about it on your

own!

22

Bellman-Ford algorithm

• d(0)[v] = 𝑈 for all v, where U is a very large number
• d(0)[s] = 0
• For i=0,…,n-1:
• For v in V:
• d(i+1)[v] ←min(d(i)[v] , minu in v.inNeighbors {d(i)[u] + w(u,v)})

• If d(n-1) != d(n) :
• Return NEGATIVE CYCLE L

• Otherwise, dist(s,v) = d(n-1)[v]

Bellman-Ford*(G,s):

Running time: O(mn)

26

SLIDE
SKIPPED
IN CLASS

Important thing about B-F
for the rest of this lecture

∞

25

0 ∞ ∞ ∞
Gates Packard CS161 Union Dish

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

d(i)[v] is equal to the cost of the
shortest path between s and v
with at most i edges.

Gates

Union

Dish

Packard

1

1

4

25
20

22

CS161

0

2

6

23

1

27

Bellman-Ford is an example of…
Dynamic Programming!

• Example of Dynamic programming:
• Fibonacci numbers.
• (And Bellman-Ford)

• What is dynamic programming, exactly?
• And why is it called “dynamic programming”?

• Another example: Floyd-Warshall algorithm
• An “all-pairs” shortest path algorithm

Today:

28

Pre-Lecture exercise:
How not to compute Fibonacci Numbers
• Definition:
• F(n) = F(n-1) + F(n-2), with F(1) = F(2) = 1.
• The first several are:

• 1
• 1
• 2
• 3
• 5
• 8
• 13, 21, 34, 55, 89, 144,…

• Question:
• Given n, what is F(n)?

29

Candidate algorithm

• def Fibonacci(n):
• if n == 0, return 0
• if n == 1, return 1
• return Fibonacci(n-1) + Fibonacci(n-2)

See IPython notebook for lecture 12

Running time?
• T(n) = T(n-1) + T(n-2) + O(1)
• T(n) ≥ T(n-1) + T(n-2) for n ≥ 2
• So T(n) grows at least as fast as

the Fibonacci numbers
themselves…

• This is EXPONENTIALLY QUICKLY!
𝑇 𝑛 ≥ 2𝑇(𝑛 − 2) implies
𝑇 𝑛 ≥ Ω(2!/#).

30

What’s going on?
Consider Fib(8)

8

76

6554

44 543332

2 2 2 2 3 3 42 32 31 1 110

10 10 10 10 10 1021
21 21 21

10 10 10 10

etc

That’s a lot of
repeated

computation!

31

Maybe this would be better:
8

7

6

5

4

3

2

1

0

def fasterFibonacci(n):
• F = [0, 1, None, None, …, None]

• \\ F has length n + 1
• for i = 2, …, n:

• F[i] = F[i-1] + F[i-2]
• return F[n]

Much better running time!

32

This was an example of…

33

What is dynamic programming?

• It is an algorithm design paradigm
• like divide-and-conquer is an algorithm design paradigm.

• Usually, it is for solving optimization problems
• E.g., shortest path
• (Fibonacci numbers aren’t an optimization problem, but

they are a good example of DP anyway…)

34

Elements of dynamic programming

• Big problems break up into sub-problems.
• Fibonacci: F(i) for i ≤ n
• Bellman-Ford: Shortest paths with at most i edges for i ≤ n

• The solution to a problem can be expressed in terms of
solutions to smaller sub-problems.
• Fibonacci:

F(i+1) = F(i) + F(i-1)
• Bellman-Ford:

d(i+1)[v] ← min{ d(i)[v], minu {d(i)[u] + weight(u,v)} }

1. Optimal sub-structure:

Shortest path with at
most i edges from s to v

Shortest path with at most
i edges from s to u. 35

• The sub-problems overlap.
• Fibonacci:

• Both F[i+1] and F[i+2] directly use F[i].
• And lots of different F[i+x] indirectly use F[i].

• Bellman-Ford:
• Many different entries of d(i+1) will directly use d(i)[v].
• And lots of different entries of d(i+x) will indirectly use d(i)[v].

• This means that we can save time by solving a sub-problem
just once and storing the answer.

2. Overlapping sub-problems:

36

Elements of dynamic programming

Elements of dynamic programming
• Optimal substructure.
• Optimal solutions to sub-problems can be used to find the

optimal solution of the original problem.

• Overlapping subproblems.
• The subproblems show up again and again

• Using these properties, we can design a dynamic
programming algorithm:
• Keep a table of solutions to the smaller problems.
• Use the solutions in the table to solve bigger problems.
• At the end we can use information we collected along the

way to find the solution to the whole thing.

37

Two ways to think about and/or
implement DP algorithms

• Top down

•Bottom up

38

Bottom up approach
what we just saw.

• For Fibonacci:
• Solve the small problems first
• fill in F[0],F[1]

• Then bigger problems
• fill in F[2]

• …
• Then bigger problems
• fill in F[n-1]

• Then finally solve the real problem.
• fill in F[n]

39

Bottom up approach
what we just saw.

• For Bellman-Ford:
• Solve the small problems first
• fill in d(0)

• Then bigger problems
• fill in d(1)

• …
• Then bigger problems
• fill in d(n-2)

• Then finally solve the real problem.
• fill in d(n-1)

40

Top down approach

• Think of it like a recursive algorithm.
• To solve the big problem:
• Recurse to solve smaller problems

• Those recurse to solve smaller problems
• etc..

• The difference from divide and
conquer:
• Keep track of what small problems you’ve

already solved to prevent re-solving the
same problem twice.
• Aka, “memo-ization”

41

Example of top-down Fibonacci
• define a global list F = [0,1,None, None, …, None]

• def Fibonacci(n):
• if F[n] != None:

• return F[n]
• else:

• F[n] = Fibonacci(n-1) + Fibonacci(n-2)
• return F[n]

Memo-ization:
Keeps track (in F)
of the stuff you’ve

already done.

42

Memo-ization visualization

8

76

6554

44 543332

2 2 2 2 3 3 42 32 31 1 110

10 10 10 10 10 1021
21 21 21

10 10 10 10

etc

Collapse
repeated nodes

and don’t do
the same work

twice!

43

Memo-ization Visualization
ctd

8

7

6

5

4

3

2

1

0

Collapse
repeated nodes
and don’t do the

same work
twice!

But otherwise
treat it like the

same old
recursive
algorithm.

• define a global list F = [0,1,None, None, …, None]

• def Fibonacci(n):
• if F[n] != None:

• return F[n]
• else:

• F[n] = Fibonacci(n-1) + Fibonacci(n-2)
• return F[n] 44

What have we learned?

• Paradigm in algorithm design.
• Uses optimal substructure
• Uses overlapping subproblems
• Can be implemented bottom-up or top-down.
• It’s a fancy name for a pretty common-sense idea:

Don’t
duplicate

work if you
don’t have to!

45

Why “dynamic programming” ?

• Programming refers to finding the optimal “program.”
• as in, a shortest route is a plan aka a program.

• Dynamic refers to the fact that it’s multi-stage.
• But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?46

Why “dynamic programming” ?

• Richard Bellman invented the name in the 1950’s.
• At the time, he was working for the RAND

Corporation, which was basically working for the
Air Force, and government projects needed flashy
names to get funded.
• From Bellman’s autobiography:
• “It’s impossible to use the word, dynamic, in the

pejorative sense…I thought dynamic programming was
a good name. It was something not even a
Congressman could object to.”

47

Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for All-Pairs Shortest Paths (APSP)
• That is, I want to know the shortest path from u to v for ALL

pairs u,v of vertices in the graph.
• Not just from a special single source s.

t
-2

s

u

v

5

2

2

1

s u v t

s 0 2 4 2

u 1 0 2 0

v ∞ ∞ 0 -2

t ∞ ∞ ∞ 0

So
ur

ce

Destination

48

• This is an algorithm for All-Pairs Shortest Paths (APSP)
• That is, I want to know the shortest path from u to v for ALL

pairs u,v of vertices in the graph.
• Not just from a special single source s.

• Naïve solution (if we want to handle negative edge weights):
• For all s in G:
• Run Bellman-Ford on G starting at s.

• Time O(n⋅nm) = O(n2m),
• may be as bad as n4 if m=n2

Can we do better?

Floyd-Warshall Algorithm
Another example of DP

49

Optimal substructure

k-1

2

…

1

3

k
k+1

u
v

n

Label the vertices 1,2,…,n

50

Optimal substructure

k-1

2

…

1

3

k
k+1

u
v

n

Label the vertices 1,2,…,n
(We omit some edges in the

picture below – meant to be a
cartoon, not an example).

Let D(k-1)[u,v] be the solution
to Sub-problem(k-1).

Our DP algorithm
will fill in the
n-by-n arrays
D(0), D(1), …, D(n)

iteratively and
then we’ll be done.

This is the shortest
path from u to v

through the blue set.
It has cost D(k-1)[u,v]

Vertices 1, …, k-1

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest
path from u to v, so that all the internal
vertices on that path are in {1,…,k-1}.

51

Optimal substructure

k-1

2

…

1

3

k
k+1

u
v

n

Let D(k-1)[u,v] be the solution
to Sub-problem(k-1).

Our DP algorithm
will fill in the
n-by-n arrays
D(0), D(1), …, D(n)

iteratively and
then we’ll be done.

This is the shortest
path from u to v

through the blue set.
It has cost D(k-1)[u,v]

Vertices 1, …, k-1

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest
path from u to v, so that all the internal
vertices on that path are in {1,…,k-1}.

Question: How can we find D(k)[u,v] using D(k-1)?

Label the vertices 1,2,…,n
(We omit some edges in the

picture below – meant to be a
cartoon, not an example).

52

Vertices 1, …, k

How can we find D(k)[u,v] using D(k-1)?

k-1

2

…

1

3

k
k+1

u
v

n

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, …, k}.

Vertices 1, …, k-1

53

How can we find D(k)[u,v] using D(k-1)?

k-1

2

…

1

3

k
k+1

u
v

n

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, …, k}.

Vertices 1, …, k-1

Case 1: we don’t
need vertex k.

D(k)[u,v] = D(k-1)[u,v]

This path was the shortest before, so it’s still the shortest now.

Vertices 1, …, k

54

Vertices 1, …, k

How can we find D(k)[u,v] using D(k-1)?

k-1

2

…

1

3

k
k+1

u
v

n

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, …, k}.

Vertices 1, …, k-1

Case 2: we need
vertex k.

55

Vertices 1, …, k

Case 2 continued

k-1

2

…

1

3

k

u
v

n
Vertices 1, …, k-1

• Suppose there are no negative
cycles.
• Then WLOG the shortest path from

u to v through {1,…,k} is simple.

• If that path passes through k, it
must look like this:

• This path is the shortest path
from u to k through {1,…,k-1}.
• sub-paths of shortest paths are

shortest paths
• Similarly for this path.

Case 2: we need
vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v] 56

How can we find D(k)[u,v] using D(k-1)?

Vertices 1, …, k

k-1

2

…

1

3

k

u
v

Vertices 1, …, k-1

Case 2: we need vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v]

k-1

2

…

1

3

k

u
v

Vertices 1, …, k-1

Vertices 1, …, k

Case 1: we don’t need vertex k.

D(k)[u,v] = D(k-1)[u,v]
57

How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Optimal substructure:
• We can solve the big problem using solutions to smaller

problems.
• Overlapping sub-problems:
• D(k-1)[k,v] can be used to help compute D(k)[u,v] for lots

of different u’s.

Case 1: Cost of
shortest path

through {1,…,k-1}

Case 2: Cost of shortest path
from u to k and then from k to v

through {1,…,k-1}

58

How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Using our paradigm, this
immediately gives us an algorithm!

Case 1: Cost of
shortest path

through {1,…,k-1}

Case 2: Cost of shortest path
from u to k and then from k to v

through {1,…,k-1}

59

Floyd-Warshall algorithm

• Initialize n-by-n arrays D(k) for k = 0,…,n
• D(k)[u,u] = 0 for all u, for all k
• D(k)[u,v] = ∞ for all u ≠ v, for all k
• D(0)[u,v] = weight(u,v) for all (u,v) in E.

• For k = 1, …, n:
• For pairs u,v in V2:
• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Return D(n)

The base case
checks out: the

only path through
zero other vertices
are edges directly

from u to v.

This is a bottom-up algorithm. 60

We’ve basically just shown
• Theorem:

If there are no negative cycles in a weighted directed graph G,
then the Floyd-Warshall algorithm, running on G, returns a
matrix D(n) so that:

D(n)[u,v] = distance between u and v in G.

• Running time: O(n3)
• Better than running Bellman-Ford n times!

• Storage:
• Need to store two n-by-n arrays, and the original graph.

Work out the
details of a proof!

As with Bellman-Ford, we don’t really need to store all n of the D(k). 61

We don’t even need
two, just one array is
fine. Why?

What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect
negative cycles:
• “Negative cycle” means that there’s some v so that there

is a path from v to v that has cost < 0.
• Aka, D(n)[v,v] < 0.

• Algorithm:
• Run Floyd-Warshall as before.
• If there is some v so that D(n)[v,v] < 0:
• return negative cycle.

62

What have we learned?

• The Floyd-Warshall algorithm is another example of
dynamic programming.
• It computes All Pairs Shortest Paths in a directed

weighted graph in time O(n3).

63

Can we do better than O(n3)?
Nothing on this slide is required knowledge for this class

• There is an algorithm that runs in time O(n3/log100(n)).
• [Williams, “Faster APSP via Circuit Complexity”, STOC 2014]

• If you can come up with an algorithm for All-Pairs-
Shortest-Path that runs in time O(n2.99), that would be
a really big deal.
• Let me know if you can!
• See [Abboud, Vassilevska-Williams, “Popular conjectures

imply strong lower bounds for dynamic problems”, FOCS
2014] for some evidence that this is a very difficult problem!

64

Recap

• Two shortest-path algorithms:
• Bellman-Ford for single-source shortest path
• Floyd-Warshall for all-pairs shortest path

• Dynamic programming!
• This is a fancy name for:

• Break up an optimization problem into smaller problems
• The optimal solutions to the sub-problems should be sub-

solutions to the original problem.
• Build the optimal solution iteratively by filling in a table of

sub-solutions.
• Take advantage of overlapping sub-problems!

65

Next time

• More examples of dynamic programming!

• No pre-lecture exercise for next time

We will stop bullets with our
action-packed coding skills,
and also maybe find longest

common subsequences.

66

