
Lecture 12
Bellman-Ford, Floyd-Warshall, 
and Dynamic Programming!
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Announcements

• HW5 due Wednesday
• Some problems worth 0pts. These are ungraded, and 

just for extra practice.
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Today

• Bellman-Ford Algorithm
• Bellman-Ford is a special case of Dynamic 

Programming!
• What is dynamic programming?
• Warm-up example: Fibonacci numbers

• Another example:
• Floyd-Warshall Algorithm
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Recall
• A weighted directed graph:

u

v

a

b

t

3 32

5

2

13

16

1

• Weights on edges 
represent costs.

• The cost of a path is the 
sum of the weights 
along that path.

• A shortest path from s 
to t is a directed path 
from s to t with the 
smallest cost.

• The single-source 
shortest path problem is 
to find the shortest path 
from s to v for all v in 
the graph.
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This is a 
path from 
s to t of 
cost 22.

s

This is a path from s to t of 
cost 10.  It is the shortest 
path from s to t. 4



Last time

• Dijkstra’s algorithm!
• Solves the single-source shortest path problem in weighted 

graphs.
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Dijkstra Drawbacks

• Needs non-negative edge weights.
• If the weights change, we need to re-run the 

whole thing.
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Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
• Can be useful if you want to say that some edges are 

actively good to take, rather than costly.
• Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
• We’ll see what this means later
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Aside: Negative Cycles

• A negative cycle is a cycle whose edge weights sum to 
a negative number.
• Shortest paths aren’t defined when there are negative 

cycles!
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2 The shortest path from A to B 
has cost…negative infinity?



Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
• Can detect negative cycles!
• Can be useful if you want to say that some edges are 

actively good to take, rather than costly.
• Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
• We’ll see what this means later
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Bellman-Ford vs. Dijkstra

• Dijkstra:
• Find the u with the smallest d[u]
• Update u’s neighbors: d[v] = min( d[v], d[u] + w(u,v) )

• Bellman-Ford:
• Don’t bother finding the u with the smallest d[u]
• Everyone updates!
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Bellman-Ford Gates
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• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min( d(i)[v] , d(i)[u] + w(u,v) )
where we are also taking the min over all u in v.inNeighbors
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• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min( d(i)[v] , d(i)[u] + w(u,v) )
where we are also taking the min over all u in v.inNeighbors
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• For v in V:
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where we are also taking the min over all u in v.inNeighbors
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• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min( d(i)[v] , d(i)[u] + w(u,v) )
where we are also taking the min over all u in v.inNeighbors
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• For i=0,…,n-2:
• For v in V:

• d(i+1)[v] ←min( d(i)[v] , d(i)[u] + w(u,v) )
where we are also taking the min over all u in v.inNeighbors



Interpretation of d(i)
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Why does Bellman-Ford work?

• Inductive hypothesis: 
• d(i)[v] is equal to the cost of the shortest path between s 

and v with at most i edges.

• Conclusion:
• d(n-1)[v] is equal to the cost of the shortest path between 

s and v with at most n-1 edges.
Do the base case and 

inductive step!  
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Aside: simple paths
Assume there is no negative cycle.
• Then there is a shortest path from s to t, and 

moreover there is a simple shortest path.

• A simple path in a graph with n vertices has at most 
n-1 edges in it.

• So there is a shortest path with at most n-1 edges

“Simple” means 
that the path has 
no cycles in it.v

s u
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t
s v

y
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10

t
Can’t add another edge 
without making a cycle!

This cycle isn’t helping.  
Just get rid of it.
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Why does it work?

• Inductive hypothesis: 
• d(i)[v] is equal to the cost of the shortest path between s 

and v with at most i edges.

• Conclusion:
• d(n-1)[v] is equal to the cost of the shortest path between 

s and v with at most n-1 edges.
• If there are no negative cycles, d(n-1)[v] is equal to the 

cost of the shortest path.

Notice that negative edge weights are fine.  
Just not negative cycles. 19



Bellman-Ford* algorithm

• Initialize arrays d(0),…,d(n-1) of length n

• d(0)[v] = ∞ for all v in V
• d(0) [s] = 0
• For i=0,…,n-2:
• For v in V:
• d(i+1)[v] ←min( d(i)[v] , minu in v.inNbrs{d(i)[u] + w(u,v)} )

• Now, dist(s,v) = d(n-1)[v] for all v in V.
• (Assuming no negative cycles)

Bellman-Ford*(G,s):

*Slightly different than some versions of Bellman-Ford…but 
this way is pedagogically convenient for today’s lecture.

G = (V,E) is a graph with n 
vertices and m edges.

20

Here, Dijkstra picked a special vertex u and 
updated u’s neighbors – Bellman-Ford will 

update all the vertices.



Note on implementation

• Don’t actually keep all n arrays around.
• Just keep two at a time: “last round” and “this round”
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Only need these 
two in order to 
compute d(4)
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We don’t even need 
two, just one array is 
fine. Why?



Bellman-Ford take-aways

• Running time is O(mn)
• For each of n rounds, update m edges.

• Works fine with negative edges.
• Does not work with negative cycles.
• No algorithm can – shortest paths aren’t defined if there 

are negative cycles.

• B-F can detect negative cycles!
• See skipped slides to see how, or think about it on your 

own!
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Bellman-Ford algorithm

• d(0)[v] = 𝑈 for all v, where U is a very large number
• d(0)[s] = 0
• For i=0,…,n-1:
• For v in V:
• d(i+1)[v] ←min( d(i)[v] , minu in v.inNeighbors {d(i)[u] + w(u,v)} )

• If d(n-1) != d(n) :
• Return NEGATIVE CYCLE L

• Otherwise, dist(s,v) = d(n-1)[v]

Bellman-Ford*(G,s):

Running time: O(mn)

26

SLIDE 
SKIPPED 
IN CLASS



Important thing about B-F
for the rest of this lecture
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Bellman-Ford is an example of…
Dynamic Programming!

• Example of Dynamic programming: 
• Fibonacci numbers.
• (And Bellman-Ford)

• What is dynamic programming, exactly?
• And why is it called “dynamic programming”?

• Another example: Floyd-Warshall algorithm
• An “all-pairs” shortest path algorithm

Today:

28



Pre-Lecture exercise:
How not to compute Fibonacci Numbers
• Definition:
• F(n) = F(n-1) + F(n-2), with F(1) = F(2) = 1.
• The first several are:

• 1
• 1
• 2
• 3
• 5
• 8
• 13, 21, 34, 55, 89, 144,…

• Question:
• Given n, what is F(n)?
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Candidate algorithm

• def Fibonacci(n):    
• if n == 0, return 0
• if n == 1, return 1    
• return Fibonacci(n-1) + Fibonacci(n-2)

See IPython notebook for lecture 12

Running time?  
• T(n) = T(n-1) + T(n-2) + O(1)
• T(n) ≥ T(n-1) + T(n-2) for n ≥ 2
• So T(n) grows at least as fast as 

the Fibonacci numbers 
themselves…

• This is EXPONENTIALLY QUICKLY! 
𝑇 𝑛 ≥ 2𝑇(𝑛 − 2) implies 
𝑇 𝑛 ≥ Ω(2!/#).
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What’s going on?
Consider Fib(8)
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That’s a lot of 
repeated 

computation!
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Maybe this would be better:
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def fasterFibonacci(n):
• F = [0, 1, None, None, …, None ] 

• \\ F has length n + 1
• for i = 2, …, n:

• F[i] = F[i-1] + F[i-2]
• return F[n]

Much better running time!
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This was an example of…
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What is dynamic programming?

• It is an algorithm design paradigm
• like divide-and-conquer is an algorithm design paradigm.

• Usually, it is for solving optimization problems
• E.g., shortest path
• (Fibonacci numbers aren’t an optimization problem, but 

they are a good example of DP anyway…)
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Elements of dynamic programming

• Big problems break up into sub-problems.
• Fibonacci: F(i) for i ≤ n
• Bellman-Ford: Shortest paths with at most i edges for i ≤ n  

• The solution to a problem can be expressed in terms of 
solutions to smaller sub-problems.
• Fibonacci: 

F(i+1) = F(i) + F(i-1)
• Bellman-Ford:

d(i+1)[v] ← min{ d(i)[v],  minu {d(i)[u]  + weight(u,v)} }  

1. Optimal sub-structure:

Shortest path with at 
most i edges from s to v 

Shortest path with at most 
i edges from s to u. 35



• The sub-problems overlap.
• Fibonacci:

• Both F[i+1] and F[i+2] directly use F[i].
• And lots of different F[i+x] indirectly use F[i].

• Bellman-Ford:
• Many different entries of d(i+1) will directly use d(i)[v].
• And lots of different entries of d(i+x) will indirectly use d(i)[v].

• This means that we can save time by solving a sub-problem 
just once and storing the answer.

2. Overlapping sub-problems:

36

Elements of dynamic programming



Elements of dynamic programming
• Optimal substructure.
• Optimal solutions to sub-problems can be used to find the 

optimal solution of the original problem.

• Overlapping subproblems.
• The subproblems show up again and again

• Using these properties, we can design a dynamic 
programming algorithm:
• Keep a table of solutions to the smaller problems.
• Use the solutions in the table to solve bigger problems.
• At the end we can use information we collected along the 

way to find the solution to the whole thing.
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Two ways to think about and/or 
implement DP algorithms

• Top down

•Bottom up

38



Bottom up approach
what we just saw.

• For Fibonacci:
• Solve the small problems first
• fill in F[0],F[1]

• Then bigger problems
• fill in F[2]

• …
• Then bigger problems
• fill in F[n-1]

• Then finally solve the real problem.
• fill in F[n]

39



Bottom up approach
what we just saw.

• For Bellman-Ford:
• Solve the small problems first
• fill in d(0)

• Then bigger problems
• fill in d(1)

• …
• Then bigger problems
• fill in d(n-2)

• Then finally solve the real problem.
• fill in d(n-1)

40



Top down approach

• Think of it like a recursive algorithm.
• To solve the big problem:
• Recurse to solve smaller problems

• Those recurse to solve smaller problems
• etc..

• The difference from divide and 
conquer:
• Keep track of what small problems you’ve 

already solved to prevent re-solving the 
same problem twice.
• Aka, “memo-ization”
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Example of top-down Fibonacci
• define a global list F = [0,1,None, None, …, None]

• def Fibonacci(n):
• if F[n] != None:

• return F[n]    
• else:

• F[n] = Fibonacci(n-1) + Fibonacci(n-2)
• return F[n]

Memo-ization: 
Keeps track (in F) 
of the stuff you’ve 

already done.
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Memo-ization visualization
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twice!
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Memo-ization Visualization
ctd
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Collapse 
repeated nodes 
and don’t do the 

same work 
twice!

But otherwise 
treat it like the 

same old 
recursive 
algorithm.

• define a global list F = [0,1,None, None, …, None]

• def Fibonacci(n):
• if F[n] != None:

• return F[n]    
• else:

• F[n] = Fibonacci(n-1) + Fibonacci(n-2)
• return F[n] 44



What have we learned?

• Paradigm in algorithm design.
• Uses optimal substructure
• Uses overlapping subproblems
• Can be implemented bottom-up or top-down.
• It’s a fancy name for a pretty common-sense idea:

Don’t 
duplicate 

work if you 
don’t have to!
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Why “dynamic programming” ?

• Programming refers to finding the optimal “program.” 
• as in, a shortest route is a plan aka a program.

• Dynamic refers to the fact that it’s multi-stage.
• But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?46



Why “dynamic programming” ?

• Richard Bellman invented the name in the 1950’s.
• At the time, he was working for the RAND 

Corporation, which was basically working for the 
Air Force, and government projects needed flashy 
names to get funded.
• From Bellman’s autobiography:
• “It’s impossible to use the word, dynamic, in the 

pejorative sense…I thought dynamic programming was 
a good name.  It was something not even a 
Congressman could object to.”

47



Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for All-Pairs Shortest Paths (APSP)
• That is, I want to know the shortest path from u to v for ALL 

pairs u,v of vertices in the graph.
• Not just from a special single source s.
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v ∞ ∞ 0 -2
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Destination
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• This is an algorithm for All-Pairs Shortest Paths (APSP)
• That is, I want to know the shortest path from u to v for ALL 

pairs u,v of vertices in the graph.
• Not just from a special single source s.

• Naïve solution (if we want to handle negative edge weights):
• For all s in G:
• Run Bellman-Ford on G starting at s.

• Time O(n⋅nm) = O(n2m), 
• may be as bad as n4 if m=n2

Can we do better?

Floyd-Warshall Algorithm
Another example of DP

49



Optimal substructure
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Label the vertices 1,2,…,n
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Optimal substructure

k-1
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…

1

3

k
k+1

u
v

n

Label the vertices 1,2,…,n
(We omit some edges in the 

picture below – meant to be a 
cartoon, not an example).

Let D(k-1)[u,v] be the solution 
to Sub-problem(k-1). 

Our DP algorithm 
will fill in the 
n-by-n arrays 
D(0), D(1), …, D(n)

iteratively and 
then we’ll be done.

This is the shortest 
path from u to v 

through the blue set.  
It has cost D(k-1)[u,v]

Vertices 1, …, k-1

Sub-problem(k-1): 
For all pairs, u,v, find the cost of the  shortest 
path from u to v, so that all the internal 
vertices on that path are in {1,…,k-1}. 
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Optimal substructure
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Let D(k-1)[u,v] be the solution 
to Sub-problem(k-1). 

Our DP algorithm 
will fill in the 
n-by-n arrays 
D(0), D(1), …, D(n)

iteratively and 
then we’ll be done.

This is the shortest 
path from u to v 

through the blue set.  
It has cost D(k-1)[u,v]

Vertices 1, …, k-1

Sub-problem(k-1): 
For all pairs, u,v, find the cost of the  shortest 
path from u to v, so that all the internal 
vertices on that path are in {1,…,k-1}. 

Question: How can we find D(k)[u,v] using D(k-1)?

Label the vertices 1,2,…,n
(We omit some edges in the 

picture below – meant to be a 
cartoon, not an example).
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Vertices 1, …, k

How can we find D(k)[u,v] using D(k-1)?
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D(k)[u,v] is the cost of the shortest path from u to v so 
that all internal vertices on that path are in {1, …, k}.

Vertices 1, …, k-1
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How can we find D(k)[u,v] using D(k-1)?
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D(k)[u,v] is the cost of the shortest path from u to v so 
that all internal vertices on that path are in {1, …, k}.

Vertices 1, …, k-1

Case 1: we don’t 
need vertex k.

D(k)[u,v] = D(k-1)[u,v] 

This path was the shortest before, so it’s still the shortest now.

Vertices 1, …, k
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Vertices 1, …, k

How can we find D(k)[u,v] using D(k-1)?

k-1

2
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k
k+1

u
v

n

D(k)[u,v] is the cost of the shortest path from u to v so 
that all internal vertices on that path are in {1, …, k}.

Vertices 1, …, k-1

Case 2: we need 
vertex k.
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Vertices 1, …, k

Case 2 continued

k-1

2

…

1

3

k

u
v

n
Vertices 1, …, k-1

• Suppose there are no negative 
cycles.
• Then WLOG the shortest path from 

u to v through {1,…,k} is simple.

• If that path passes through k, it 
must look like this:

• This path is the shortest path 
from u to k through {1,…,k-1}.
• sub-paths of shortest paths are 

shortest paths
• Similarly for this path.

Case 2: we need 
vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v] 56



How can we find D(k)[u,v] using D(k-1)?

Vertices 1, …, k
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…

1
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k

u
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Vertices 1, …, k-1

Case 2: we need vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v] 
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…

1
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k

u
v

Vertices 1, …, k-1

Vertices 1, …, k

Case 1: we don’t need vertex k.

D(k)[u,v] = D(k-1)[u,v] 
57



How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Optimal substructure:
• We can solve the big problem using solutions to smaller 

problems.
• Overlapping sub-problems:
• D(k-1)[k,v] can be used to help compute D(k)[u,v] for lots 

of different u’s.

Case 1: Cost of 
shortest path 

through {1,…,k-1}

Case 2: Cost of shortest path 
from u to k and then from k to v

through {1,…,k-1}
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How can we find D(k)[u,v] using D(k-1)?

• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Using our paradigm, this 
immediately gives us an algorithm!

Case 1: Cost of 
shortest path 

through {1,…,k-1}

Case 2: Cost of shortest path 
from u to k and then from k to v

through {1,…,k-1}
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Floyd-Warshall algorithm

• Initialize n-by-n arrays D(k) for k = 0,…,n
• D(k)[u,u] = 0 for all u, for all k
• D(k)[u,v] = ∞ for all u ≠ v, for all k 
• D(0)[u,v] = weight(u,v) for all (u,v) in E.

• For k = 1, …, n:
• For pairs u,v in V2:
• D(k)[u,v] = min{ D(k-1)[u,v], D(k-1)[u,k] + D(k-1)[k,v] }

• Return D(n)

The base case 
checks out: the 

only path through 
zero other vertices 
are edges directly 

from u to v.

This is a bottom-up algorithm. 60



We’ve basically just shown
• Theorem:

If there are no negative cycles in a weighted directed graph G, 
then the Floyd-Warshall algorithm, running on G, returns a 
matrix D(n) so that: 

D(n)[u,v] = distance between u and v in G.

• Running time: O(n3)
• Better than running Bellman-Ford n times!

• Storage: 
• Need to store two n-by-n arrays, and the original graph.

Work out the 
details of a proof!

As with Bellman-Ford, we don’t really need to store all n of the D(k). 61

We don’t even need 
two, just one array is 
fine. Why?



What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect 
negative cycles:
• “Negative cycle” means that there’s some v so that there 

is a path from v to v that has cost < 0.
• Aka, D(n)[v,v] < 0.

• Algorithm:
• Run Floyd-Warshall as before.
• If there is some v so that D(n)[v,v] < 0:
• return negative cycle.
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What have we learned?

• The Floyd-Warshall algorithm is another example of 
dynamic programming.
• It computes All Pairs Shortest Paths in a directed 

weighted graph in time O(n3).
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Can we do better than O(n3)?
Nothing on this slide is required knowledge for this class

• There is an algorithm that runs in time O(n3/log100(n)).
• [Williams, “Faster APSP via Circuit Complexity”, STOC 2014]

• If you can come up with an algorithm for All-Pairs-
Shortest-Path that runs in time O(n2.99), that would be 
a really big deal.
• Let me know if you can!
• See [Abboud, Vassilevska-Williams, “Popular conjectures 

imply strong lower bounds for dynamic problems”, FOCS 
2014] for some evidence that this is a very difficult problem!
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Recap

• Two shortest-path algorithms:
• Bellman-Ford for single-source shortest path
• Floyd-Warshall for all-pairs shortest path

• Dynamic programming!
• This is a fancy name for:

• Break up an optimization problem into smaller problems
• The optimal solutions to the sub-problems should be sub-

solutions to the original problem.
• Build the optimal solution iteratively by filling in a table of 

sub-solutions.
• Take advantage of overlapping sub-problems!
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Next time

• More examples of dynamic programming!

• No pre-lecture exercise for next time

We will stop bullets with our 
action-packed coding skills, 
and also maybe find longest 

common subsequences.
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