Lecture 12

Bellman-Ford, Floyd-Warshall, and Dynamic Programming!
Announcements

• HW5 due Wednesday
 • Some problems worth 0pts. These are ungraded, and just for extra practice.
Today

• Bellman-Ford Algorithm
• Bellman-Ford is a special case of *Dynamic Programming*
• What is dynamic programming?
 • Warm-up example: Fibonacci numbers
• Another example:
 • Floyd-Warshall Algorithm
Recall

- A weighted directed graph:

- Weights on edges represent **costs**.

- The **cost of a path** is the sum of the weights along that path.

- A **shortest path** from \(s \) to \(t \) is a directed path from \(s \) to \(t \) with the smallest cost.

- The **single-source shortest path problem** is to find the shortest path from \(s \) to \(v \) for all \(v \) in the graph.

This is a path from \(s \) to \(t \) of cost 22.

This is a path from \(s \) to \(t \) of cost 10. It is the shortest path from \(s \) to \(t \).
Last time

• Dijkstra’s algorithm!
 • Solves the single-source shortest path problem in weighted graphs.
Dijkstra Drawbacks

• Needs non-negative edge weights.
• If the weights change, we need to re-run the whole thing.
Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
 • Can be useful if you want to say that some edges are actively good to take, rather than costly.
 • Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
 • We’ll see what this means later
Aside: Negative Cycles

• A **negative cycle** is a cycle whose edge weights sum to a negative number.
• Shortest paths aren’t defined when there are negative cycles!

The shortest path from A to B has cost...negative infinity?
Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
 • Can detect negative cycles!
 • Can be useful if you want to say that some edges are actively good to take, rather than costly.
 • Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
 • We’ll see what this means later
Bellman-Ford vs. Dijkstra

• Dijkstra:
 • Find the u with the smallest d[u]
 • Update u’s neighbors: \(d[v] = \min(d[v], d[u] + w(u,v)) \)

• Bellman-Ford:
 • Don’t bother finding the u with the smallest d[u]
 • Everyone updates!
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$
 where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$

where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$

where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i)}[u] + w(u,v))$

where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

These are the final distances!

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$
 where we are also taking the min over all u in v.inNeighbors
Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

<table>
<thead>
<tr>
<th>$d^{(0)}$</th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d^{(1)}$</th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d^{(2)}$</th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d^{(3)}$</th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d^{(4)}$</th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
Why does Bellman-Ford work?

• Inductive hypothesis:
 • \(d^{(i)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) \textbf{with at most i edges}.

• Conclusion:
 • \(d^{(n-1)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) \textbf{with at most n-1 edges}.

Do the base case and inductive step!
Aside: simple paths
Assume there is no negative cycle.

• Then there is a shortest path from s to t, and moreover there is a simple shortest path.

• A simple path in a graph with n vertices has at most n-1 edges in it.

• So there is a shortest path with at most n-1 edges
Why does it work?

• Inductive hypothesis:
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

• Conclusion:
 • $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.
 • If there are no negative cycles, $d^{(n-1)}[v]$ is equal to the cost of the shortest path.

Notice that negative edge weights are fine. Just not negative cycles.
Bellman-Ford* algorithm

Bellman-Ford*(G,s):

- Initialize arrays $d^{(0)}, \ldots, d^{(n-1)}$ of length n
- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- For $i=0, \ldots, n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.inNbrs}(d^{(i)}[u] + w(u,v)))$
- Now, dist$(s,v) = d^{(n-1)}[v]$ for all v in V.
 - (Assuming no negative cycles)

*Slightly different than some versions of Bellman-Ford...but this way is pedagogically convenient for today’s lecture.

$G = (V,E)$ is a graph with n vertices and m edges.
Note on implementation

- Don’t actually keep all n arrays around.
- Just keep two at a time: “last round” and “this round”

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

We don’t even need two, just one array is fine. Why?

Only need these two in order to compute $d^{(4)}$
Bellman-Ford take-aways

• Running time is $O(mn)$
 • For each of n rounds, update m edges.

• Works fine with negative edges.

• Does not work with negative cycles.
 • No algorithm can – shortest paths aren’t defined if there are negative cycles.

• B-F can detect negative cycles!
 • See skipped slides to see how, or think about it on your own!
Bellman-Ford algorithm

Bellman-Ford*(G,s):

• \(d^{(0)}[v] = U\) for all \(v\), where \(U\) is a very large number
• \(d^{(0)}[s] = 0\)
• For \(i=0,...,n-1\):
 • For \(v\) in \(V\):
 • \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.inNeighbors} \{d^{(i)}[u] + w(u,v)\})\)
• If \(d^{(n-1)} \neq d^{(n)}\) :
 • Return NEGATIVE CYCLE 😞
• Otherwise, \(\text{dist}(s,v) = d^{(n-1)}[v]\)

Running time: \(O(mn)\)
Important thing about B-F for the rest of this lecture

d\(^{(i)}[v]\) is equal to the cost of the shortest path between s and v with at most i edges.
Bellman-Ford is an example of...

Dynamic Programming!

Today:

- Example of Dynamic programming:
 - Fibonacci numbers.
 - (And Bellman-Ford)

- What is dynamic programming, exactly?
 - And why is it called “dynamic programming”?

- Another example: Floyd-Warshall algorithm
 - An “all-pairs” shortest path algorithm
Pre-Lecture exercise:
How not to compute Fibonacci Numbers

• Definition:
 • $F(n) = F(n-1) + F(n-2)$, with $F(1) = F(2) = 1$.
 • The first several are:
 • 1
 • 1
 • 2
 • 3
 • 5
 • 8
 • 13, 21, 34, 55, 89, 144, ...

• Question:
 • Given n, what is $F(n)$?
Candidate algorithm

- **def** Fibonacci(n):
 - if n == 0, return 0
 - if n == 1, return 1
 - return Fibonacci(n-1) + Fibonacci(n-2)

Running time?
- \(T(n) = T(n-1) + T(n-2) + O(1) \)
- \(T(n) \geq T(n-1) + T(n-2) \) for \(n \geq 2 \)
- So \(T(n) \) grows at least as fast as the Fibonacci numbers themselves...
- This is **EXponentially quickly**!
 \[T(n) \geq 2T(n - 2) \] implies
 \[T(n) \geq \Omega(2^{n/2}). \]
What’s going on?
Consider Fib(8)

That’s a lot of repeated computation!
Maybe this would be better:

```python
def fasterFibonacci(n):
    • F = [0, 1, None, None, ..., None ]
      • \ F has length n + 1
    • for i = 2, ..., n:
      • F[i] = F[i−1] + F[i−2]
    • return F[n]
```

Much better running time!

Computing Fibonacci Numbers

![Graph showing time comparison between Naive Fibonacci and faster Fibonacci methods](image-url)
This was an example of...
What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually, it is for solving *optimization problems*
 - E.g., *shortest* path
 - (Fibonacci numbers aren’t an optimization problem, but they are a good example of DP anyway...)
Elements of dynamic programming

1. Optimal sub-structure:

 - Big problems break up into sub-problems.
 - Fibonacci: $F(i)$ for $i \leq n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \leq n$
 - The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:
 $$F(i+1) = F(i) + F(i-1)$$
 - Bellman-Ford:
 $$d^{(i+1)}[v] \leftarrow \min\{ d^{(i)}[v], \min_u \{d^{(i)}[u] + \text{weight}(u,v)\} \}$$

Shortest path with at most i edges from s to v
Shortest path with at most i edges from s to u.
Elements of dynamic programming

2. Overlapping sub-problems:

• The sub-problems overlap.

 • Fibonacci:
 • Both $F[i+1]$ and $F[i+2]$ directly use $F[i]$.
 • And lots of different $F[i+x]$ indirectly use $F[i]$.

 • Bellman-Ford:
 • Many different entries of $d^{(i+1)}$ will directly use $d^{(i)}[v]$.
 • And lots of different entries of $d^{(i+x)}$ will indirectly use $d^{(i)}[v]$.

• This means that we can save time by solving a sub-problem just once and storing the answer.
Elements of dynamic programming

• Optimal substructure.
 • Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.

• Overlapping subproblems.
 • The subproblems show up again and again

• Using these properties, we can design a dynamic programming algorithm:
 • Keep a table of solutions to the smaller problems.
 • Use the solutions in the table to solve bigger problems.
 • At the end we can use information we collected along the way to find the solution to the whole thing.
Two ways to think about and/or implement DP algorithms

• Top down

• Bottom up
Bottom up approach
what we just saw.

• For Fibonacci:
 • Solve the small problems first
 • fill in F[0], F[1]
 • Then bigger problems
 • fill in F[2]
 • ...
• Then bigger problems
 • fill in F[n-1]
• Then finally solve the real problem.
 • fill in F[n]
Bottom up approach
what we just saw.

• For Bellman-Ford:
 • Solve the small problems first
 • fill in $d^{(0)}$
 • Then bigger problems
 • fill in $d^{(1)}$
 • ...
 • Then bigger problems
 • fill in $d^{(n-2)}$

• Then finally solve the real problem.
 • fill in $d^{(n-1)}$
Top down approach

• Think of it like a recursive algorithm.

• To solve the big problem:
 • Recurse to solve smaller problems
 • Those recurse to solve smaller problems
 • etc..

• The difference from divide and conquer:
 • Keep track of what small problems you’ve already solved to prevent re-solving the same problem twice.
 • Aka, “memo-ization”
Example of top-down Fibonacci

- define a global list $F = [0,1,None, None, \ldots, None]$
- **def** Fibonacci(n):
 - **if** $F[n] \neq None$:
 - **return** $F[n]$
 - **else**:
 - $F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)$
 - **return** $F[n]$

Memo-ization:
Keeps track (in F) of the stuff you’ve already done.
Memo-ization visualization

Collapse repeated nodes and don’t do the same work twice!
MEMO-IZATION VISUALIZATION CTD

- Collapse repeated nodes and don’t do the same work twice!
- But otherwise treat it like the same old recursive algorithm.

• define a global list F = [0, 1, None, None, ..., None]
• def Fibonacci(n):
 • if F[n] != None:
 • return F[n]
 • else:
 • F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 • return F[n]
What have we learned?

Dynamic programming:

- Paradigm in algorithm design.
- Uses *optimal substructure*
- Uses *overlapping subproblems*
- Can be implemented *bottom-up* or *top-down*.
- It’s a fancy name for a pretty common-sense idea:

 Don’t duplicate work if you don’t have to!
Why “*dynamic programming*”?

- Programming refers to finding the optimal “program.”
 - as in, a shortest route is a *plan* aka a *program*.
- Dynamic refers to the fact that it’s multi-stage.
- But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?
Why “dynamic programming”?

• Richard Bellman invented the name in the 1950’s.
• At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
• From Bellman’s autobiography:
 • “It’s impossible to use the word, dynamic, in the pejorative sense… I thought dynamic programming was a good name. It was something not even a Congressman could object to.”
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for All-Pairs Shortest Paths (APSP)
 • That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
 • Not just from a special single source s.

<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>t</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 - That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 - Not just from a special single source s.

• Naïve solution (if we want to handle negative edge weights):
 - For all s in G:
 - Run Bellman-Ford on G starting at s.

 • Time $O(n \cdot nm) = O(n^2m)$,
 • may be as bad as n^4 if $m=n^2$

Can we do better?
Optimal substructure

Label the vertices 1, 2, ..., n
Optimal substructure

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1,...,k-1\}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Label the vertices 1,2,...,n (We omit some edges in the picture below – meant to be a cartoon, not an example). Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, ..., D^{(n)}$ iteratively and then we’ll be done.

This is the shortest path from u to v through the blue set. It has cost $D^{(k-1)}[u,v]$.
Optimal substructure

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1,...,k-1\}.

Let \(D^{(k-1)}[u,v]\) be the solution to Sub-problem(k-1).

Question: How can we find \(D^{(k)}[u,v]\) using \(D^{(k-1)}\)?

This is the shortest path from u to v through the blue set. It has cost \(D^{(k-1)}[u,v]\)

Our DP algorithm will fill in the n-by-n arrays \(D^{(0)}, D^{(1)}, \ldots, D^{(n)}\) iteratively and then we’ll be done.

Label the vertices 1,2,...,n (We omit some edges in the picture below – meant to be a cartoon, not an example).
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in \{1, ..., k\}.

![Diagram showing vertices and shortest path concept](image)
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 1: we don’t need vertex k.

$D^{(k)}[u,v] = D^{(k-1)}[u,v]$

This path was the shortest before, so it’s still the shortest now.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in \{1, ..., k\}.

Case 2: we need vertex k.

Vertices 1, ..., k
Case 2 continued

- Suppose there are no negative cycles.
 - Then WLOG the shortest path from u to v through \{1,\ldots,k\} is simple.

- If that path passes through k, it must look like this:

- This path is the shortest path from u to k through \{1,\ldots,k-1\}.
 - sub-paths of shortest paths are shortest paths

- Similarly for this path.

\[D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \]
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

Case 1: we don’t need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

Case 2: we need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

 Case 1: Cost of shortest path through $\{1,...,k-1\}$
 Case 2: Cost of shortest path from u to k and then from k to v through $\{1,...,k-1\}$

- **Optimal substructure**: We can solve the big problem using solutions to smaller problems.

- **Overlapping sub-problems**: $D^{(k-1)}[k,v]$ can be used to help compute $D^{(k)}[u,v]$ for lots of different u’s.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

 Case 1: Cost of shortest path through \{1,...,k-1\}

 Case 2: Cost of shortest path from u to k and then from k to v through \{1,...,k-1\}

- Using our **Dynamic programming** paradigm, this immediately gives us an algorithm!
Floyd-Warshall algorithm

• Initialize n-by-n arrays $D^{(k)}$ for $k = 0,\ldots,n$
 • $D^{(k)}[u,u] = 0$ for all u, for all k
 • $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 • $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.
• For $k = 1, \ldots, n$:
 • For pairs u,v in V^2:
 • $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$
• Return $D^{(n)}$

This is a bottom-up dynamic programming algorithm.
We’ve basically just shown

• Theorem:
 If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix $D^{(n)}$ so that:
 $$D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G.$$

• Running time: $O(n^3)$
 • Better than running Bellman-Ford n times!

• Storage:
 • Need to store two n-by-n arrays, and the original graph.

 As with Bellman-Ford, we don’t really need to store all n of the $D^{(k)}$.

Work out the details of a proof!

We don’t even need two, just one array is fine. Why?
What if there *are* negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 - “Negative cycle” means that there’s some \(v \) so that there is a path from \(v \) to \(v \) that has cost \(< 0\).
 - Aka, \(D^{(n)}[v,v] < 0 \).

- Algorithm:
 - Run Floyd-Warshall as before.
 - If there is some \(v \) so that \(D^{(n)}[v,v] < 0 \):
 - return *negative cycle.*
What have we learned?

• The Floyd-Warshall algorithm is another example of *dynamic programming*.

• It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.
Can we do better than $O(n^3)$?

Nothing on this slide is required knowledge for this class

• There is an algorithm that runs in time $O(n^3 / \log^{100}(n))$.
 • [Williams, “Faster APSP via Circuit Complexity”, STOC 2014]
• If you can come up with an algorithm for All-Pairs-Shortest-Path that runs in time $O(n^{2.99})$, that would be a really big deal.
 • Let me know if you can!
• See [Abboud, Vassilevska-Williams, “Popular conjectures imply strong lower bounds for dynamic problems”, FOCS 2014] for some evidence that this is a very difficult problem!
Recap

• Two shortest-path algorithms:
 • Bellman-Ford for single-source shortest path
 • Floyd-Warshall for all-pairs shortest path

• *Dynamic programming*!
 • This is a fancy name for:
 • Break up an optimization problem into smaller problems
 • The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 • Build the optimal solution iteratively by filling in a table of sub-solutions.
 • Take advantage of overlapping sub-problems!
Next time

• More examples of *dynamic programming*!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

• No pre-lecture exercise for next time