
Lecture 18
what we’ve done and what’s to come
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Announcements

• HW8 (last one) due today

• Don’t forget about the final exam on March 16 
(from 3:30pm – 6:30pm).

• Two pages of handwritten notes (front and back) 
allowed for the final exam.
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Today

• What just happened?
• A whirlwind tour of CS161

• What’s next?
• A few gems from future algorithms classes
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It’s been a fun ride…

Sorting and 

friends!

O() a
nd 

worst-
case 

analysis

Divide-and-conquer
and recurrence 

relations Randomized 
algorithms

Data structures: 
BSTs and Hashing!

Graphs!

BFS, DFS, SCCs

Dijkstra’s algorithm

Bellman-Ford,Floyd-Warshall

Dynamic Programming!

LCS, Knapsack(s)

Greedy algorithms!

MinCuts and MaxFlows

MSTs: Prim 

and Kruskal

Scheduling 

and etc.

Ford-
Fulkerson

Stable Matchings

4



What have we learned?
17 lectures in 12 slides.
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General approach 
to algorithm design and analysis

Can I do better?

Plucky the 
Pedantic Penguin

Lucky the 
Lackadaisical Lemur

Algorithm designer Detail-oriented
Precise

Rigorous

Big-picture
Intuitive

Hand-wavey

To answer this question we need 
both rigor and intuition:
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We needed more details

Here is an 
input!

Worst-case analysis big-Oh notation

𝑇 𝑛 = 𝑂 𝑓 𝑛
⟺

∃𝑐, 𝑛! > 0 𝑠. 𝑡. ∀𝑛 ≥ 𝑛!,

0 ≤ 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑓(𝑛)

Does it work?
Is it fast?

What 
does that 
mean??
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Algorithm design paradigm: 
divide and conquer
• Like MergeSort!
• Or Karatsuba’s algorithm!
• Or SELECT!
• How do we analyze these?

Big 
problem

Smaller 
problem

Smaller 
problem

Yet 
smaller 

problem

Yet 
smaller 

problem

Yet 
smaller 

problem

Yet 
smaller 

problem

By careful 
analysis!

Useful shortcut, the 
master method is.

Jedi master Yoda
Plucky the 

Pedantic Penguin
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While we’re on the topic of sorting
Why not use randomness?
• We analyzed QuickSort!
• Still worst-case input, but we use randomness after 

the input is chosen.
• Always correct, usually fast.
• This is a Las Vegas algorithm
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All this sorting is making me wonder…
Can we do better?
• Depends on who you ask:

• RadixSort takes time O(n) if 
the objects are, for 
example, small integers!

• Can’t do better in a 
comparison-based model.

≤
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beyond sorted arrays/linked lists:
Binary Search Trees!
• Useful data structure! 
• Especially the self-balancing ones!

Red-Black tree!

42 8

73

5

6
Maintain balance by stipulating that 
black nodes are balanced, and that 
there aren’t too many red nodes.

It’s just good sense!
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Another way to store things
Hash tables!

The universe

Some buckets

hash function h

All of the hash functions 

h:U →{1,…,n}

Choose h randomly from a 
universal hash family.

It’s better if the hash 
family is small!  
Then it takes less 
space to store h. 12



OMG GRAPHS

• BFS, DFS, and applications!
• SCCs, Topological sorting, …
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A fundamental graph problem:
shortest paths
• E.g., transit planning, 

packet routing, …
• Dijkstra!
• Bellman-Ford!
• Floyd-Warshall!
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• Not programming in an action movie.

• Step 1: Identify optimal substructure.
• Step 2: Find a recursive formulation 

for the value of the optimal solution.
• Steps 3-5: Use dynamic programming: 

fill in a table to find the answer!

Bellman-Ford and Floyd-Warshall

were examples of…

Big 
problem

sub
problem

sub
problem

sub
problem

sub 
sub 

prob

sub 
sub 

prob

sub
sub 

prob
sub 
sub 

prob

sub
problem

We saw many other 
examples, including Longest 
Common Subsequence and 

Knapsack Problems.

Instead, an 
algorithmic 
paradigm!
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Sometimes we can take even better advantage of 
optimal substructure…with 

Greedy algorithms
• Make a series of choices, and commit!

• Intuitively we want to show that our greedy choices never 
rule out success.

• Rigorously, we usually analyzed these by induction.
• Examples!

• Activity Selection
• Job Scheduling
• Huffman Coding
• Minimum Spanning Trees

Prim’s algorithm:

greedily grow a tree Kruskal’s algorithm:
greedily grow a forest
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• Minimum s-t cut:
• is the same as maximum s-t flow!
• Ford-Fulkerson can find them!

• useful for routing
• also assignment problems

Cuts and flows

ts
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6
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Stable matching

Alice

Bob

Charlie

X, Y, Z

Y, X, Z

Y, Z, X

X

Y

Z

B, A, C

A, C, B

B, C, A

Deferred acceptance: a different kind of greedy 
algorithm, this time with recourse. 18

How to convince actors to use our matching?
Where do preferences come from?

Are the incentives set correctly?



And now we’re here
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What have we learned?
• A few algorithm design paradigms:
• Divide and conquer, dynamic programming, greedy

• A few analysis tools:
• Worst-case analysis, asymptotic analysis, recurrence 

relations, probability tricks, proofs by induction

• A few common objects:
• Graphs, arrays, trees, hash functions

• A LOT of examples!
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What have we learned?
We’ve filled out a toolbox
• Tons of examples give us intuition about what 

algorithmic techniques might work when.
• The technical skills make sure our intuition works out.
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But there’s lots more out there

• What’s next???
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A taste of what’s to come
• CS154 – Introduction to Automata and Complexity

• CS163 – The Practice of Theory Research

• CS166 – Data Structures

• CS168 – The Modern Algorithmic Toolbox

• MS&E 212 – Combinatorial Optimization

• CS250 – Error Correcting Codes

• CS252 – Analysis of Boolean Functions

• CS254 – Computational Complexity

• CS255 – Introduction to Cryptography
• CS259Q – Quantum Computing

• CS260 – Geometry of Polynomials in Algorithm Design

• CS261 – Optimization and Algorithmic Paradigms

• CS263 – Counting and Sampling

• CS265 – Randomized Algorithms

• CS269O – Introduction to Optimization Theory

• MS&E 316 – Discrete Mathematics and Algorithms 

• CS352 – Pseudorandomness

• CS366 – Computational Social Choice

• CS368 – Algorithmic Techniques for Big Data

• EE364A/B – Convex Optimization I and II

...and many many more!

findSomeTheoryCourses():
• go to theory.stanford.edu
• Click on “People”
• Look at what we’re teaching!
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Today
A few gems

• Linear programming

• Random projections

• Low-degree polynomials

This will be fluffy, 
without much detail –

take more CS theory 
classes for more detail!
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Linear Programming

• This is a fancy name for optimizing a linear function 
subject to linear constraints.
• For example:

• It turns out the be an extremely general problem.

Maximize
𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to
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We’ve already seen an example!

Maximize 
the sum of the 
flows leaving s

ts
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subject to

• None of the flows 
are bigger than the 
edge capacities
• At every vertex, 

stuff going in =    
stuff going out.
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Linear Programming
Has a really nice geometric intuition

Maximize
𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

𝑥 ≥ 0

𝑦 ≥ 0

4𝑥
+
𝑦
≤
2

𝑥 + 2𝑦 ≤ 1
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Linear Programming
Has a really nice geometric intuition

Maximize
𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

𝑥 ≥ 0

𝑦 ≥ 0

4𝑥
+
𝑦
≤
2

𝑥 + 2𝑦 ≤ 1

29



Linear Programming
Has a really nice geometric intuition

Maximize
𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

𝒙 +
𝒚 =

𝟎

𝒙 +
𝒚 =

1/2
𝒙 +

𝒚 =
5/7 𝒙 +

𝒚 =
1

𝒙 + 𝒚 is 
increasing in 
this direction.

The function 
is maximized 

here!
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In general
• The constraints define a polytope
• The function defines a direction
• We just want to find the vertex that is furthest in 

that direction.

The function 
is maximized 

here!
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Duality
How do we know we have an optimal solution?

Maximize
𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

I claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.
• 𝒙 + 𝒚 = 𝟏

𝟕
𝟒𝒙 + 𝒚 + 𝟑

𝟕
𝒙 + 𝟐𝒚

• ≤ 𝟏
𝟕
⋅ 𝟐 + 𝟑

𝟕
⋅ 𝟏

• = 𝟓
𝟕

You can check this point 
has value 5/7...but how 
would we prove it’s 
optimal other than by 
eyeballing it?
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cute, but
How did you come up with 1/7, 3/7?

Maximize
𝑥 + 𝑦

𝑥 ≥ 0
𝑦 ≥ 0

4𝑥 + 𝑦 ≤ 2
𝑥 + 2𝑦 ≤ 1

subject to

I claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.
• 𝒙 + 𝒚 ≤ 𝟏

𝟕
𝟒𝒙 + 𝒚 + 𝟑

𝟕
𝒙 + 𝟐𝒚

• ≤ 𝟏
𝟕
⋅ 𝟐 + 𝟑

𝟕
⋅ 𝟏

• = 𝟓
𝟕

• I want to choose things to put here
• So that I minimize this
• Subject to these things
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That’s a linear program!

• How did I find those special values 1/7, 3/7?
• I solved some linear program.
• It’s called the dual program.

Minimize the upper bound you get, 
subject to the proof working.

Primal

Maximize stuff 
subject to stuff

Dual

Minimize other stuff 
subject to other stuff

The optimal values are 
the same!

Note: it’s not immediately obvious how to 
turn that into a linear program, this is just 
meant to convince you that it’s plausible.

In this case the dual is:
min 2𝑤 + 𝑧 s.t. 𝑤, 𝑧 ≥ 0, 

4𝑤 + 𝑧 ≥ 1 and 𝑤 + 2𝑧 ≥ 1
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We’ve actually already seen this too
The Min-Cut Max-Flow Theorem!

Primal

Maximize the 
sum of the 

flows leaving s
s.t

All the flow 
constraints are 

satisfied

Dual

Minimize the sum 
of the capacities 

on a cut 
s.t.

it’s a legit cut

The optimal values are 
the same!
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LPs and Duality are really powerful
• This general phenomenon shows up all over the place
• Min-Cut Max-Flow is a special case.

• Duality helps us reason about an optimization problem
• The dual provides a certificate that we’ve solved the primal.
• E.g., if you have a cut and a flow with the same value, you 

must have found a max flow and a min cut.

• We can solve LPs quickly!  
• For example, by intelligently bouncing around the vertices of 

the feasible region.
• This is an extremely powerful algorithmic primitive.
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Today
A few gems

• Linear programming

• Random projections

• Low-degree polynomials
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A very useful trick
Take a random projection and hope for the best.

High-dimensional 
set of points
For example, each data 
point is a vector
(age, height, shoe size, … )
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Why would we do this?

• High dimensional data takes a long time to process.
• Low dimensional data can be processed quickly.
• “THEOREM”: Random projections approximately 

preserve properties of data that you care about.
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Example: nearest neighbors
• I want to find which point is closest to this one.

That takes a really long
time in high dimensions.

Johnson-Lindenstrauss Lemma:  
Euclidean distance is 

approximately preserved by 
random projections.

Find the closest point 
down here, you’re 

probably pretty 
correct. 40



Another example:
Compressed Sensing
• Start with a sparse vector
• Mostly zero or close to zero

• For example:

(5 , 0 , 0 , 0 ,0 , 0.01 , 0.01 , 5.8 , 32 , 14 , 0 , 0 , 0 , 12 , 0 , 0 , 5 , 0 , .03)

This image is sparse This image is sparse after I 
take a wavelet transform. 41



Compressed sensing continued
• Take a random projection of that sparse vector:

Random short fat matrix

Long sparse 
vector

Short vector

=

Goal: Given the short 
vector, recover the 
long sparse vector.
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Why would I want to do that?
• Image compression and signal processing 
• Especially when you never have space to store the 

whole sparse vector to begin with.

Randomly sampling (in the time 
domain) a signal that is sparse in 
the Fourier domain.

Random measurements in 
an fMRI means you spend 

less time inside an fMRI

A “single pixel 
camera” is a 
thing.
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All examples of this:

Random short fat matrix

Long sparse 
vector

Short vector

=

Goal: Given the short 
vector, recover the 
long sparse vector.
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But why should this be possible?
• There are tons of long vectors that map to the 

short vector!

Random short fat matrix

Long sparse 
vector

Short vector

=

Goal: Given the short 
vector, recover the 
long sparse vector.
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Back to the geometry

Theorem: 
random projections preserve the 
geometry of sparse vectors too.

All of the 
sparse 
vectors

(Infinitely 
many of them)
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If we don’t care about algorithms, 
that’s more than enough.

All of the 
sparse 
vectors

Random short 
fat matrix

Multiply by

This means that, in theory, 
we can invert that arrow.
How do we do this efficiently??

There may be tons of vectors 
that map to this point, but only 
one of them is sparse!
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An efficient algorithm?

Random short 
fat matrix A

Long 
sparse 
vector

Short 
vector y

=

Goal: Given the short vector, 
recover the long sparse vector.

Minimize 𝑥 !

𝐴𝑥 = 𝑦

s.t.

This norm is the sum 
of the absolute values 

of the entries of x

• It turns out that because the geometry of sparse vectors is 
preserved, this optimization problem gives the same answer.

• We can use linear programming to solve this quickly!

What we’d like to do is:

Minimize number of 
nonzero entries in x s.t.

Problem: I don’t know 
how to do that efficiently!

This isn’t a 
nice function

𝐴𝑥 = 𝑦
Instead:
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Today
A few gems

• Linear programming

• Random projections

• Low-degree polynomials
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Another very useful trick
Polynomial interpolation
• Say we have a few evaluation points of a low-degree 

polynomial.

• We can recover the polynomial.
• 2 pts determine a line, 3 pts determine a parabola, etc.

• We can recover the whole polynomial really fast.
• Even works if some of the points are wrong.

f(x)
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One application:
Communication and Storage

Alice Bob

“Hi, Bob!”

𝑓 𝑥 = 𝑯 + 𝑰 ⋅ 𝑥 + 𝑩 ⋅ 𝑥% +𝑶 ⋅ 𝑥& + 𝑩 ⋅ 𝑥'

f(x)

• Alice wants to send a message to Bob

Noisy channel

Bob can do super-fast 
polynomial interpolation 
and figure out what Alice 

meant to say!
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This is used in practice

• It’s called “Reed-Solomon Encoding”
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Another application:
Designing “random” projections that 
are better than random

Random short fat matrix =

The matrix that treats the big 
long vector as Alice’s message 
polynomial and evaluates it 
REALLY FAST at random points.

• This is still “random enough” 
to make the LP solution work.

• It is much more efficient to 
manipulate and store!
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Today
A few gems

• Linear programming

• Random projections

• Low-degree polynomials

To learn more:

CS168, CS261, …

CS168, CS261, 
CS265, …

CS168, CS250, …
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What have we learned?
CS161

Tons more cool 
algorithms stuff!
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To see more…
• Take more classes!
• Come hang out with the theory group!
• Theory lunch, most Thursdays at noon.
• Join the theory-seminar mailing list for updates.

Stanford theory group (circa 2017): 
We are very friendly.

theory.stanford.edu
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A few final messages…
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Thanks to our course coordinator 
Amelie Byun!
• Amelie has been making all the 

logistics work behind the scenes.
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Thanks to Diana Acosta-Navas!

• Diana has been helping integrate 
EthiCS components into the course.
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Thanks to our superstar CAs!!!
tell them you appreciate them!
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Seiji       Shubham     Teresa          Tim Yuchen           ZiangEmilyAditya

Amrita Andre Goli Jerry JiazhengMandaAveryYu Shen

Jose      Manda       Nash        Peter           Sam           SamarAndrewJuneCarmen



THANKS
to you!!!!!!

4.
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