Lecture 18

what we’ve done and what’s to come

Announcements

* HWS8 (last one) due today

* Don’t forget about the final exam on March 16
(from 3:30pm — 6:30pm).

* Two pages of handwritten notes (front and back)
allowed for the final exam.

Today

* What just happened?

A whirlwind tour of CS161 ﬂ

———

* What'’s next?
* A few gems from future algorithms classes

It’s been a fun ride...

Divide-and-conquer
and recurrence
relations

o
Q
N2 s
30(‘:"@ :

What have we |learned?

17 lectures in 12 slides.

General approach
to algorithm design and analysis

Canl dO bette r? To answer this question we need

both rigor and intuition:

\L/

/\

Algorithm designer

Plucky the Lucky the
Pedantic Penguin Lackadaisical Lemur

Detail-oriented Big-picture
Precise Intuitive

Rigorous Hand-wavey
6

We needed more details

What
does that
mean??

Does it work?
Is it fast?

@, python

Worst-case analysis big-Oh notation

HERE IS AN T(n) = 0(f(n))
INPUT! A =

dc,ng >0 s.t. Vn = n,,
0<Tm)<c-f(n) -~

s’

Algorithm design paradigm:
divide and conquer

* Like MergeSort!
* Or Karatsuba’s algorithm!
e Or SELECT!

* How do we analyze these?

Smaller Smaller
By careful Useful shortcut, the problem oroblem

analysis! master method is.

Yet Yet Yet Yet

smaller smaller smaller smaller
problem problem problem problem
S

Plucky the]
Pedantic Penguin Jedi master Yoda

While we're on the topic of sorting
Why not use randomness?

* We analyzed QuickSort!

* Still worst-case input, but we use randomness after
the input is chosen.

* Always correct, usually fast.
* This is a Las Vegas algorithm

Nl

All this sorting is ma
Can we do bette

* Depends on who you as

" WE CAN DO WAY BETTER!

e RadixSort takes time O(n) if
the objects are, for
example, small integers!

King me wonder...

i

<.

e Can’tdo betterina

comparison-based model.

W

beyond sorted arrays/linked lists:
Binary Search Trees!

e Useful data structure!
* Especially the self-balancing ones!

Maintain balance by stipulating that el
black nodes are balanced, and that 14 065 8 il
there aren’t too many red nodes. TR

Tt ¢ just good sense!

Another way to store things
Hash tables!

All of the hash functions
h:U >{1,...,Nn}
hash function h

Vg

Some buckets

Choose h randomly from a
universal hash family.

It’s better if the hash
family is small!
Then it takes less

space to store h. 12

OMG GRAPHS

* BFS, DFS, and applications!
* SCCs, Topological sorting, ...

i SN O

shortest paths T

i

E.g., transit planning,
packet routing, ...

* Dijkstral

* Bellman-Ford! =" W

AW (23 Cagd

e J

S mtcrass T (W Gl L
M @ Sre s Gy For pacee ISy e VeI e s el
[serare s O e et s b e o 1 o 32 “m,

* Floyd-Warshall
Oy a rs a ! DN@a22a@e3:~ mary$ traceroute -a www.ethz.ch

traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
[ASQ] 10.34.160.2 (10.34.160.2) 38.168 ms 31.272 ms 28.841 ms
[AS@] cwa-vrtr.sunet (10.21.196.28) 33.769 ms 28.245 ms 24.373 ms
[AS32] 171.66.2.229 (171.66.2.229) 24.468 ms 20.115 ms 23.223 ms

; PESNS n [AS32] hpr-svl-rtr-vian8.sunet (171.64.255.235) 24.644 ms 24.962 ms 17.453 ms
;;ﬂ% [AS2152] hpr-svl-hpr2--stan-ge.cenic.net (137.164.27.161) 22.129 ms 4.902 ms 3.642 ms
-;r [AS2152] hpr-lax-hpr3--svl-hpr3-10@ge.cenic.net (137.164.25.73) 12.125 ms 43.361 ms 32.3
ol [AS2152] hpr-i2--lax-hpr2-r&e.cenic.net (137.164.26.201) 40.174 ms 38.399 ms 34.499 ms
[- -y [ASO) et-4-0-0.4079.sdn-sw.lasv.net.internet2.edu (162.252.70.28) 46.573 ms 23.926 ms 17

[ASO) et-5-1-0.4079.rtsw.salt.net.internet2.edu (162.252.70.31) 30.424 ms 25.770 ms 23.1
[ASO) et-4-0-0.4079.sdn-sw.denv.net.internet2.edu (162.252.70.8) 47.454 ms 57.273 ms 73.
[ASQ) et-4-1-0.4079.rtsw.kans.net.internet2.edu (162.252.70.11) 70.825 ms 67.809 ms 62.1
[ASO] et-4-1-0.4070.rtsw.chic.net.internet2.edu (198.71.47.206) 77.937 ms 57.421 ms 63.6
[ASO] et-0-1-0.4079.sdn-sw.ashb.net.internet2.edu (162.252.70.60) 77.682 ms 71,993 ms 73
[ASO] et-4-1-0.4079.rtsw.wash.net.internet2.edu (162.252.70.65) 71.565 ms 74.988 ms 71.0
[AS21320] internet2-gw.mxl.lon.uk.geant.net (62.40.124.44) 154.926 ms 145.606 ms 145.872
[AS21320] ae@.mx1.lon2.uk.geant.net (62.40.98.79) 146.565 ms 146.604 ms 146.801 ms
[AS21320] ae@.mx1.par.fr.geant.net (62.40.98.77) 153.289 ms 184.995 ms 152.682 ms
[AS21320] ae2.mxl.gen.ch.geant.net (62.40.98.153) 160.283 ms 160.104 ms 164.147 ms
[AS21320] swicel-100ge-0-3-0-1.switch.ch (62.40.124.22) 162.068 ms 160.595 ms 163.095 ms
[AS559] swizh1-100ge-0-1-0-1.switch.ch (130.59.36.94) 165.824 ms 164.216 TS 163.983 ms
[AS559] swiez3-100ge-0-1-0-4.switch.ch (130.59.38.109) 164.269 ms 164.370 Ak 163.929 ms
[AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 164.982 ms 170.645 ms 165.372
[ASS559] rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) 164.773 ms 165.193 ms 172.158 ms

"

Bellman-Ford and Floyd-Warshall
were examples of...

»” Instead, an
algorithmic
paradigm!

» Step 1: Identify optimal substructure.

S sub sub sub

e Step 2: Find a recursive formulation problem coblem proplem __ Problem

for the value of the optimal solution. ‘ ﬁ"
V.

* Steps 3-5: Use dynamic programming:
fill in a table to find the answer!

Sometimes we can take even better advantage of
optimal substructure...with

Greedy algorithms

 Make a series of choices, and commit!

Intuitively we want to show that our greedy choices never
rule out success.

Rigorously, we usually analyzed these by induction.

o
Examples! , 'S,a\%;;\r\l ree

. . prir
* Activity Selection %(eed\N

* Job Scheduling
e Huffman Coding
* Minimum Spanning Trees

Cuts and flows

* Minimum s-t cut:
* is the same as maximum s-t flow!

* Ford-Fulkerson can find them!
 useful for routing
 also assignment problems

How to convince actors to use our matching?

: Where do preferences come from?
Sta b | e m atc h I n g Are the incentives set correctly?

i

Charlie Deferred acceptance: a different kind of greedy
algorithm, this time with recourse. 18

M

Y, Z, X

-

And now we’re here

What have we learned?

* A few algorithm design paradigms:
e Divide and conquer, dynamic programming, greedy

* A few analysis tools:

* Worst-case analysis, asymptotic analysis, recurrence
relations, probability tricks, proofs by induction

* A few common objects:
* Graphs, arrays, trees, hash functions

* A LOT of examples!

What have we learned?
We’ve filled out a toolbox

* Tons of examples give us intuition about what
algorithmic techniques might work when.

* The technical skills make sure our intuition works out.

But there’s lots more out there

e What’s next???

22

A taste of what's to come

CS154 — Introduction to Automata and Complexity flndSomeTheoryCourses():

CS163 — The Practice of Theory Research * go to theory.stanford.edu
CS166 — Data Structures * Click on “People”

CS168 — The Modern Algorithmic Toolbox * Look at what we’re teaching!
MS&E 212 — Combinatorial Optimization STANFORD THEORY GROUP

CS250 — Error Correcting Codes Faculty
CS252 — Analysis of Boolean Functions

CS254 — Computational Complexity

CS255 — Introduction to Cryptography

CS259Q — Quantum Computing

CS260 — Geometry of Polynomials in Algorithm Design
CS261 — Optimization and Algorithmic Paradigms
CS263 — Counting and Sampling

CS265 — Randomized Algorithms

CS2690 - Introduction to Optimization Theory

MS&E 316 — Discrete Mathematics and Algorithms

CS352 — Pseudorandomness

CS366 — Computational Social Choice
CS368 — Algorithmic Techniques for Big Data

EE364A/B — Convex Optimization | and Il @
...and many many more! <

Y
Tengyw Ma

Today
A few gems

* Linear programming

This will be fluffy,
without much detail -
take more CS theory

e Random projections
p J classes for more detail!

* Low-degree polynomials

Linear Programming

 This is a fancy name for optimizing a linear function
subject to linear constraints.

* For example:

o x =0

Maximize bject to y >0
Xty dx +y < 2
x+2y <1

* It turns out the be an extremely general problem.

25

We’ve already seen an example!

* None of the flows
are bigger than the

Maximize o
edge capacities

the sum of the subject to

: * At every vertex,
flows leaving s

stuff going in =
stuff going out.

26

Linear Programming
Has a really nice geometric intuition

Maximize
Xty

subject to

x = 0
y =0
dx +y < 2

x+2y <1

Linear Programming
Has a really nice geometric intuition

Maximize
Xty

subject to

x =0
y =0
4x +y < 2
x+2y <1

Linear Programming

Has a really nice geometric intuition

increasing in
this direction.

S
— <+
> § XJ)
'-l‘x Q
2 4
QA X+ yis
J \\\\ y

~<o
~<
~
~
~
~<
~<
~
~~
~<.
~
~<
~<
~
~
~
~<.
~
~

The function
is maximized
here!

~~
~~
S~
~
~.
~
~~
S~
~
~,
~
~~
S~
~
~.
~
~~
~~
~
~<
~
~.

Maximize
Xty

subject to

x =0
y =0

4x +y < 2
x+2y <1

In general

* The constraints define a polytope
* The function defines a direction

* We just want to find the vertex that is furthest in
that direction.

The function
is maximized
here!

31

Duality

How do we know we have an optimal solution?

| claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

1 3 Maximize
-x+y=—(4x+y)+;(x+2y) X+
1
¢ ; 2 + . |
. B E subject to
7
N x =0
You can check this point
~~~~~~~~~~~~~ f has value 5/7...but how y 2 O
would we prove it’s
optimal other than by 4X + y S 2
eyeballing it?

x+2y <1



cute, but

How did you come up with 1/7, 3/77?

| claim that the optimum is 5/7.
Proof: say x and y satisfy the constraints.

. x+)@](4x+y)+ (x + 2y)
subject to

0 x 2 O
* | want to choose things to put her y > ()
e So that | minimize thi o

Subject to these things 4x + y < 2
) x+2y <1

Maximize
Xty

m




Note: it’s not immediately obvious how to
turn that into a linear program, this is just
meant to convince you that it’s plausible.
In this case the dual is:

That’s a linear program!

w+z>1landw+2z>1

* How did | find those special values 1/7, 3/77?

* | solved some linear program.  Minimize the upper bound you get,

, subject to the proof working.
* It’s called the dual program.

Maximize stuff The optimal values are Min_imize other stuft
subject to stuff the same! subject to other stuff

Primal Dual |

4



We’ve actually already seen this too

The Min-Cut Max-Flow Theorem!

Maximize the Minimize the sum

sum of the chi
. The optimal values are of the capacities
flows leaving s the same! on a cut
S.t S.t.
All the flow it’s a legit cut
constraints are
satisfied

Primal =

35



LPs and Duality are really powerful

* This general phenomenon shows up all over the place
* Min-Cut Max-Flow is a special case.

* Duality helps us reason about an optimization problem
* The dual provides a certificate that we’ve solved the primal.

* E.g., if you have a cut and a flow with the same value, you
must have found a max flow and a min cut.

* We can solve LPs quickly!

* For example, by intelligently bouncing around the vertices of
the feasible region.

This is an extremely powerful algorithmic primitive.

36



Today
A few gems

* Linear programming

 Random projections ‘

* Low-degree polynomials

/

‘-
!
2

o

37



A very useful trick
Take a random projection and hope for the best.

o High-dimensional /bsfeadOE;ZZ’WéCfo,,,o
o set of points

P @ Q ror example, each data
point is a vector
‘ (age, height, shoe size, ...)

@ Their shadow is a
@ projection onto the

. . ground.




Why would we do this?

* High dimensional data takes a long time to process.
* Low dimensional data can be processed quickly.

* “THEOREM”: Random projections approximately
preserve properties of data that you care about.

39



Example: nearest neighbors

* | want to find which point is closest to this one.

‘ Johnson-Lindenstrauss Lemma: Find the closest point
Euclidean distance is down here, you're
That takes a really long ,
approximately preserved by probably pretty

time in high dimensions.

random projections. correct.




Another example:
Compressed Sensing

* Start with a sparse vector
* Mostly zero or close to zero

(,0,0,0,0,001,0.01,58,32,14,0,0,0,12,0,0,5,0, .03)

* For example:

This image is sparse This image is sparse after |
take a wavelet transform. 4l



Compressed sensing continued

* Take a random projection of that sparse vector:

n

Random short fat matrix

Short vector

Goal: Given the short

L
vector, recover the Ong Spare D

vector
long sparse vector.

42



Why would | want to do that?

* Image compression and signal processing

* Especially when you never have space to store the
whole sparse vector to begin with.

o, ¢ o O

S
O O o

Randomly sampling (in the time

domain) a signal that is sparse in Random measurements in
: . an fMRI means you spend
the Fourier domain.

less time inside an fMRI

A “single pixel
camera” is a
thing.




All examples of this:

Random short fat matrix

Goal: Given the short
vector, recover the
long sparse vector.

Long sparse
vector

n

Short vector

44



But why should this be possible?

* There are tons of long vectors that map to the

short vector! E

Random short fat matrix

Short vector

Goal: Given the short

L
vector, recover the Ong Spare D

vector
long sparse vector.

45



Back to the geometry

All of the .
sparse 6
vectors
(Infinitely

many of them)

Theorem:

random projections preserve the
geometry of sparse vectors too.

46



If we don’t care about algorithmes,
that’s more than enough.

All of the
sparse
vectors

=)

Multiply by

5 Random short
fat matrix
. There may be tons of vectors
that map to this point, but only
. This means that, in theory, one of them is sparse!

we can invert that arrow.

How do we do this efficiently??

47




Goal: Given the short vector,
recover the long sparse vector.

|
Random short I

An efficient algorithm?

fat matrix A

What we’d like to do is: Short
o vectory
Minimize number of Long
. . s.t. Ax — y sparse
nonzero entries in X vector

This norm is the sum \ ’
of the absolute values Thisisnta  Problem: [ don’t know
of the entries of x \ nice function  how to do that efficiently!

Instead:

Minimize ||x]|, v Ax =y

e It turns out that because the geometry of sparse vectors is
preserved, this optimization problem gives the same answer.
* We can use linear programming to solve this quickly! 48



Today
A few gems

* Linear programming

 Random projections ‘

* Low-degree polynomials

49



Another very useful trick
Polynomial interpolation

e Say we have a few evaluation points of a low-degree
polynomial.
O

* We can recover the polynomial.
e 2 pts determine a line, 3 pts determine a parabola, etc.

* We can recover the whole polynomial really fast.

* Even works if some of the points are wrong.

50



One application:
Communication and Storage ~

* Alice wants to send a message to Bob
“Hi, Bob!”
fX)=H+I-x+B-x*+0-x>+B-x*

,7 i

Noisy channel and figure out what Alice
Alice meant to say!

Bob can do super-fast
polynomial interpolation
Bob
51



This is used in practice

* It’s called “Reed-Solomon Encoding”




Another application:

Designing “random” projections that
are better than random

=

Random.siiost fat matrix

The matrix that treats the big -

| . Alice’ * This s still “random enough”
ong vec .or as Adlees mess.age to make the LP solution work.
polynomial and evaluates it

) * Itis much more efficient to
REALLY FAST at random points. :
manipulate and store!

53



Today

A tew gEMS To learn more:

* Linear programming C5168, C5261,

- CS168, CS261,
 Random projections ¥

CS265, ...
* Low-degree polynomials f CS163, 5250,

54



Tons more cool
algorithms stuff!

55




To see more...

* Take more classes!

 Come hang out with the theory group!
* Theory lunch, most Thursdays at noon.
* Join the theory-seminar mailing list for updates.

theory.stanford.edu

Stanford theory group (circa 2017):
We are very friendly.




A few final messages...



Thanks to our course coordinator
Amelie Byun!

* Amelie has been making all the
logistics work behind the scenes.

58



Thanks to Diana Acosta-Navas!

* Diana has been helping integrate
EthiCS components into the course.




Thanks to our superstar CAs!!!
tell them you appreciate them!

YuShen Avery Manda Amrita Andre Goli Jerry Jiazheng

G . TRTORS
» & 4
- ¥
——
e -
¥
T
-
x| i
// =Y

Carmen June Andrew Jose Manda Nash Peter Sam

X0 28
- A_'L /O

A
718

Emily  Yuchen Ziang Seiji  Shubham Teresa Tim

60






