Lecture 2

Asymptotic Notation,
Worst-Case Analysis, and MergeSort



Announcements

* Please (continue to) send OAE letters to cs161-
win2122-staff@lists.stanford.edu



Homework!

* HW1 will be released today (Wednesday).

* |t is due the next Wednesday, 11:59pm (in one week), on
Gradescope.

e Gradescope link on Canvas

* Homework comes in two parts:

 Exercises:

* More straightforward.
* Try to do them on your own.

* Problems:
e Less straightforward.
* Try them on your own first, but then collaborate!

» See the website for guidelines on homework:
e Collaboration + Late Day policy (in the “Policies” tab)
* Best practices (in the “Resources” tab)
 Example Homework (in the “Resources” tab)
* LaTeX help (in the “Resources” tab)



Office Hours and Sections

e Office hours calendar is on the course website.
 (under "Staff / Office Hours”)
e Office hours start tomorrow

* Homework parties: will be announced soon.

* Sections have been scheduled.
* See course website
* Thu 11:00am-12:00pm
* Thu 1:30pm-2:30pm
Thu 5:30pm-6:30pm
Fri 11:00am-12:00pm
one will be recorded
Don’t need to formally enroll in sections, just show up!



Huang basement
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Links on Canvas

Winter 2022

Design and Analysis of Algorithms Jump to Today

Home

Gradescope Course website: https:/stanford-cs161.github.io/winter2022/ 2

Ed Discussion Lecture link for first 2 weeks of quarter: https:/stanford.zoom.us/j/29080790842?

People pwd=UElhemRNVWMrYUhZNEpCQzBJZWwrQT09 e

Syllabus *Please make sure you are signing into zoom webinar link with your Stanford credentials.

Panopto Course Link to join Nooks for online office hours: https:/spaces.nooks.in/goto/CS-161-Winter-
Videos 2022~geNoEoCiKZJ6LbPZ?pwd=iBwZyP

Zoom Ed & Gradescope is accessible via tab on the left pane of the course Canvas page.

End of announcements!



Cast

Last time
Philosophy
* Algorithms are awesome! S
.. , Plucky the pedantic Lucky the
e Our motivating questions: oenguin lackadaisical lemur

 Does it work?

e |s it fast? '

* Can | do better?

Think-Pair-Share
Terrapins

Technical content

e Karatsuba integer multiplication

* Example of “Divide and Conquer”

* Not-so-rigorous analysis

Ollie the Siggi the
over-achieving ostrich studious stork



Today

* We are going to ask:
* Does it work?
* |s it fast?

* We'll start to see how to answer these by looking at
some examples of sorting algorithmes.
* [nsertionSort

* MergeSort

SortingHatSort not discussed



The Plan

* Sorting! -

* Worst-case analysis
* |InsertionSort: Does it work?

* Asymptotic Analysis
* InsertionSort: Is it fast?
* MergeSort

e Does it work?
e |s it fast?



Sorting

* Important primitive
* For today, we’ll pretend all elements are distinct.

sfalsfefs]sf2]7
if2]3fe]s]ef7]s
,

\

Y
Length of the listis n



What was the
mystery sort
algorithm?

1. MergeSort
2. QuickSort
3. InsertionSort
4. BogoSort

hope everyone did the
ore-lecture exercise!

def mysteryAlgorithmOne(A):
for x in A:

B = [None for i in range(len(A))]
for i in range(len(B)):
if B[1i] == None or B[i] > x:

j = len(B)-1
while j > i:

return B

def mysteryAlgorithmTwo(A):
for i in range(l,len(A)):
current = A[1]
j = i-1
while j >= 0 and A[j] > current:
A[J+1] = A[]]



| hope everyone did the
pre-\ectu re exercise!

What was the
mystery sort
algorithm?

1. MergeSort

2. QuickSort
4. BogoSort

def mysteryAlgorithmOne(A):
for x in A:

B = [None for i in range(len(A))]
for i in range(len(B)):
if B[1i] == None or B[i] > x:

j = len(B)-1
while j > 1i:
j] = B[j-1]
j =1
B[i] = X
break
return B

def MysteryAlgorithmTwo(A):
for i in range(l,len(A)):
current = A[1]
j = i-1
while j >= 0 and A[]J] > current:
A[J+1] = A[]]



InsertionSort 6|4[3]|8]|5

example

Start by moving A[1] toward
the beginning of the list until
you find something smaller

(or can’t go any further): Then move A[3]:

6l4a]3[8]5 3]4]6/8][5
4l6|3|8]s 3]4l6/8]|s5
!

Then move A[2]: i Then move A[4]:

416 3|8]5 3lal6f8]s
3]al6f8]s 3]a 5|6]8

Then we are done!



Insertion Sort

1. Does it work?
2. lsit fast?

What does that
mean???

.

Plucky the
Pedantic Penguin



The Plan

* InsertionSort recap

* Worst-case Analysis
* Back to InsertionSort: Does it work?

* Asymptotic Analysis
e Back to InsertionSort: Is it fast?
* MergeSort

e Does it work?
e |s it fast?



Claim: InsertionSort “works”

e “Proof:” It just worked in this example:

6/4]3]|8]5

a[3]8]s]  [3]ale]8[s]
a(6[3[8][5]  [3]4]6]8[5]

3[8][s5]  [3]a]6]8]s
3/4|1618]|5 5 Sorted!




Claim: InsertionSort “works”

* “Proof:” 1 did it on a bunch of random lists and it
always worked:

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

= YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
A= [11203040516171809010] YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
. YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
for trial in range ( 100 )¢ YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

shuffle (A) YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
c YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
InsertionSort (A) YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
3 YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

if is sorted(A) . YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!
— ' : YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

: 1 YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

print( YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT 1S SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!

YES IT IS SORTED! YES IT IS SORTED! YES IT IS SORTED!



What does it mean to “work”?

* Is it enough to be correct on only one input?
* Is it enough to be correct on most inputs?

* In this class, we will use worst-case analysis:

* An algorithm must be correct on all possible inputs.

* The running time of an algorithm is the worst possible
running time over all inputs.



Worst-case analysis

Think of it like a game:

Here is my algorithm!

Algorithm:
Do the thing
Do the stuff
Return the answer

Algorithm
designer

* Pros: very strong guarantee
very strong guarantee



Insertion Sort

1. Does it work? -

2. lIs it fast?

J < Okay, so it’s pretty obvious that it works.

* HOWEVER! In the future it won’t be so
obvious, so let’s take some time now to
see how we would prove this rigorously.




Why does this work?

e Say you have a sorted list, Hn , and

another element ' 5 |.

* Insert! 5 | right after the largest thing that’s still
smaller than' 5 |. (Aka, right after).

* Then you get a sorted list: 4 5



So just use this logic at every step.

B n E The first element, [6], makes up a sorted list.

So correctly inserting 4 into the list [6] means
3 5 that [4,6] becomes a sorted list.

hI

E B The first two elements, [4,6], make up a
sorted list.
3 H E So correctly inserting 3 into the list [4,6] means
that [3,4,6] becomes a sorted list.

3 4 5 The first three elements, [3,4,6], make up a
sorted list.
nn 8 So correctly inserting 8 into the list [3,4,6] means
that [3,4,6,8] becomes a sorted list.

H B The first four elements, [3,4,6,8], make up a
sorted list.
So correctly inserting 5 into the list [3,4,6,8]
3 4 5 6 means that [3,4,5,6,8] becomes a sorted list.

YAY WE ARE DONE!



This sounds like a job for...

Proof By
Induction!



There is a handout with details!

e See website!

2 Correctness of InsertionSort

Once you figure out what InsertionSort is doing (see the slides/lecture video for the intuition
on this), you may think that it's “obviously” correct. However, if you didn't know what it
was doing and just got the above code, maybe this wouldn't be so obvious. Additionally, for
algorithms that we'll study in the future, it won’t always be obvious that it works, and so
we'll have to prove it. So in this handout we'll carefully go through a proof that InsertionSort
Is correct.

We will do the proof by induction on the number of iterations. Let's go over the informal
idea first, and we'll do the formal proof below. Let A be our input list, and say that it has
size n. Our inductive hypothesis will be that after iteration / of the outer loop, A[:i+1] is
sorted.” This is obviously true after iteration O (aka, before the algorithm begins), because
the one-element list A[: 1] is definitely sorted. Then we'll show that for any k with 0 < k < n,
if the inductive hypothesis holds for i = k — 1, then it holds for i = k. That is, if it is true

LAn inductive hypothesis like this is sometimes called a loop invariant, because it's something that we want
to hold (aka, be “invariant”) at each iteration of the loop.



Outline of a proof by induction

Let A be a list of length n
* Inductive Hypothesis:

e A[:i+1] is sorted at the end of the it" iteration (of the outer loop).
e Base case (i=0):

e A[:1] issorted at the end of the 0’th iteration. v/

* Inductive step:
* For any 0 < k < n, if the inductive hypothesis holds for i=k-1, then it

holds for i=k.
e Aka, if A[:k] is sorted at step k-1, then A[:k+1] is sorted at step k
. This logic
¢ COﬂClUSIOnI (see handout for details)

* The inductive hypothesis holds fori=0, 1, ..., n-1.
* In particular, it holds for i=n-1.

e At the end of the n-1'st iteration (aka, at the end of the algorithm),
A[:n] = A issorted.

e That’s what we wanted! v/

n H E The first two elements, [4,6], make up a
sorted list.
So correctly inserting 3 into the list [4,6] means _
3 4 5 . This was
that [3,4,6] becomes a sorted list. _ T
iteration i=2.




Aside: proofs by induction

* We're gonna see/do/skip over a lot of them.

* I’'m assuming you’re comfortable with them from CS103.
* When you assume...

* If that went by too fast and was confusing:
* GO TO SECTION

* GO TO SECTION
e Handout Make sure you really understand the
. References argument on the previous slide! Check
out the handout for a more formal write-
e Office Hours up, and go to section for an overview of
what we are looking for in proofs by

induction.
Siggi the Studious Stork



What have we |learned?

* In this class we will use worst-case analysis:

 We assume that a “bad guy” comes up with a worst-case
input for our algorithm, and we measure performance
on that worst-case input.

e With this definition, InsertionSort “works”
* Proof by induction!



The Plan

* InsertionSort recap

* Worst-case Analysis
* Back to InsertionSort: Does it work?

* Asymptotic Analysis
* Back to InsertionSort: Is it fast?
* MergeSort

e Does it work?
e |s it fast?



How fast is InsertionSort?

* This fast:

175

Time(ms)

Naive vs. non-naive insertion sort

- Naive version

{ = Less naive version

200 400 600 800 1000




Issues with this answe

* The “same” algorithm can be

slower or faster depending
on the implementations.
* It can also be slower or i

faster depending on the

hardware that we run it on. 0]

o

25 1

e

Naive vs. non-naive insertion sort

—  Naive version
— Less naive version

200 400 600 800 1000
n

With this answer,
running time” isn’t
even well-defined!




How fast is InsertionSort?

* Let’s count the number of operations!

def InsertionSort(A):
for i in range(l,len(A)):

current = A[1]

j = i-1

while j >= 0 and A[]J] > current:
A[j+1] = A[]]
j -=1

A[Jj+1] = current

By my count®...

« 2n%? —n — 1 variable assignments

e 2n? —n — 1increments/decrements
e 2n? — 4n + 1 comparisons

T *Do not pay attention to these formulas, they do not matter.
Also not valid for bug bounty points.



Issues with this answer?

def InsertionSort(A):
for i in range(l,len(A)):

* It’s very tedious! current = A[i]
j = i-
* In order to use this to MRS 17T 0 g AL > current:
understand running pi T current

time, | need to know
how long each operation
takes, plus a whole
bunch of other stuff...

Counting individual
operations is a lot of work and

doesn’t seem very helpful!

Lucky the lackadaisical lemur



In this class we will use...

* Big-Oh notation!

* Gives us a meaningful way to talk about the
running time of an algorithm, independent of
programming language, computing platform, etc.,
without having to count all the operations.



Main idea:

Focus on how the runtime scales with n (the input size).

(Only pay attention to the largest
Some examples°" function of n that appears.)

Number of operations Asymptojclc Running
Time
T@“L 0(n?)

006 Sn+12.7 0(n?)
10000 1.5
100 @ 10 \/ﬁ 0(n™?) We say this algorithm is

/ “asymptotically faster”
11 1 O(n ]og(n)) than the others.



Why is this a good idea?

e Suppose the running time of an algorithm is:

T(n) =10n*+3n+7 ms

This constant factor of 10
depends a lot on my

computing platform... These lower-order

terms don’t really
matter as n gets large.

We're just left with the n2 term!
That’s what’s meaningful.



Pros and Cons of Asymptotic Analysis

Pros:

* Abstracts away from  Only makes sense if n is
hardware- and language- large (compared to the

specific issues. ¢
* Makes algorithm analysis constant factors).

much more tractable.

* Allows us to meaningfully
compare how algorithms will
perform on large inputs.

1000000000 n
is “better” than n2 ?1?!



pronounced “big-oh of ...” or sometimes “oh of ...”

Informal definition for O?...)

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* We say “T'(n) is O(g(n))” if:
for large enough n,
T (n) is at most some constant multiple of g(n).

Here, “constant” means “some number
that doesn’t depend on n”



for large enough n,
Exa m p ‘ e T'(n) is at most some constant
an _I_ 1 O — 0 (nZ) multiple of g(n).
250

= T(n)=2x"2 + 10
=== g(n)=x"2

200 -

150

100 -

10




for large enough n,
Exa M p ‘ e T (n) is at most some constant
an _I_ 10 — 0 (nZ) multiple of g(n).
250
— T(n)=2x"2 + 10 /
-== gln)=x"2 3g(n)=3n2
200 { === 3*g(n) = 3x"2 /

150 -

100 -

10



for large enough n,
Exa m p ‘ e T'(n) is at most some constant
an _I_ 1 O — 0 (nZ) multiple of g(n).
No=4
250
— T(n)=2x"2 + 10 ,,’
-== gn)=x"2 3g(n) =3n2
200 { === 3*g(n) = 3x"2 J/
x=n0=4 s

150 -

100 H

10



Formal definition of Of...) ﬂ

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* Formally,

T(n) = 0(g(n))

“If and only if” PR / “For all”
/Elc,no >0 s.t. Vn = n,,
“There exists” T(Tl) ScC- g

“such that”



T(n) =0(g(n))

Example e
2 — 2 ¢, Ny s.t. Vn = n,,

Zn T 10 - O(n ) T(n) <c-g(n)
250

= T(n)=2x"2 + 10
=== g(n)=x"2

200 -

150

100 -

10



T(n) =0(g(n))

Example e
2 . 2 3c,ng > 0 s.t. Vn = n,,
2n® +10 = 0(n?) T(n) < c - g(n)
250
— Tin)=2x"2 + 10 //
=== gin)=x"2 3g(n) =3n2
200 _ === 3*g(n) = 3x"2 (=3) /!

150 -

100 -

10




T(n) =0(g(n))

Example -
2 . 2 dc,nyg > 0 s.t. Vn = n,,
2n” +10 = 0(n%) T(n) < ¢~ g(n)
n0:4
250
— T(n)=2x"2 + 10 ,,’
-l 3g(n)=3n2
2004 === 3*g(n) =3x"2 ) /
x=n0=4 (c=3) S/

150 -

100 H

10




Example
2n% 4+ 10 = 0(n%)

n024
250
— T(n)=2x"2 + 10 PSP
s 3g(n) =302
200 1 === 3*g(n) = 3x"2 /!
x=n0=4 e

150 A

100 ~

10

T(n) = 0(g(n))
=
dc,ng >0 s.t. Vn = ny,

T(n) <c-gn)

Formally:

* Choosec=3
* Chooseny=4
* Then:

Vn = 4,
2n% +10 < 3 -n?



Same example

2n% + 10 = 0(n?)

250

200

150 -

100 ~

T(n) = 0(g(n))
=3
dc,ng >0 s.t. Vn = ny,

T(n) <c-gn)

= T(n)=2x"2 + 10

—== gin)=x"2

=== J*g(n) = 7x"2
x=n0=2

Formally:
* Choosec=7

* Chooseny=2
* Then:

Vn = 2,

2n2 +10<7-n?

10




| T(n) = 0(g(m)
O(...) isan upper bound: . . .5 v.on

n = 0(7’12) T(n) <c-g(n)

T(n) = O(g(n))

40 A

= T(n)=n
35 {|— eli(n: ; n"2 g(n) = n2 * Choosec=1
*g(n

30 - * Chooseny=1
75 | * Then
20 -

vn = 1,
15 -

< 2

10 - n=n
0.5 -
0.0 -

000 025 050 075 100 125 150 175 200



()(...) means a lower bound

* Wesay “T'(n) is Q(g(n))” if, for large enough n,
T(n) is at least as big as a constant multiple of g(n).

* Formally,

T(n) =Q(gm))
=
dc,ng > 0 s.t. Vn = n,,

c-gn) <T(n)
N /

Switched these!!



T(n) = Q(g(n))
Example =

dc,nyg > 0 s.t. Vn = n,,

nlog,(n) = Q(3n) c-gm) <T(

T(n) = Omegalg(n))

— T(n)=nl
= 2 g((',',), =';,zg‘") * Choosec=1/3
— 13*g(n) * Chooseny=2
n=2
15 - * Then
Vn = 2,
10 -
3n
5 - 3 < nlog,(n)
0 -




©(...) means both!

* We say “T'(n) is ©(g(n))” iff both:

T(n)=0(gm))

and

T(n) =0Q(g(m))



T(n) = 0(g(n))
Non-Example: 36m> 0 5.6, v g

n4is not 0(n) T < e g
* Proof by contradiction:

* Suppose that n? = 0(n).
* Then there is some positive ¢ and n,so that:

vhn>n, n®*<c-n
* Divide both sides by n:
Vn = n,, n<c

* That’s not true!!l What about, say, nyg +c+ 1?
* Thenn =ng, but, n >c

e Contradiction!



Take-away from examples

* To prove T(n) = O(g(n)), you have to come up with c
and nyso that the definition is satisfied.

* To prove T(n) is NOT O(g(n)), one way is proof by
contradiction:

e Suppose (to get a contradiction) that someone gives you
a ¢ and an n, so that the definition is satisfied.

* Show that this someone must by lying to you by deriving
a contradiction.



Another example: polynomials

e Sayp(n) = aqpn® + a,_n* 1+ +an+aq
is a polynomial of degree k > 1.

Try to prove it
* Then: yourself first!

1. p(n) =0(n*)
2. p(n)isnot 0(nk1)

* See the notes/references for a proof.

Siggi the Studious Stork



SLIDE SKIPPED IN CLASS! (Note this is also in the reading).

Another example: polynomials

e Suppose the p(n) is a polynomial of degree k:

p(n) =ay, +an+a,n?+ -+ aygn

» Then p(n) = 0(n*)

* Proof:

* Choose ng = 1.

* Choose ¢ = |ag| + |laq| + -+ + |ag|

* Then for alln = ny:

» p(n) < IpM)| < lagl + lagIn + -+ + |ag|n®
< |lag|n® + |a{|[n® + -+ + |ag|n”

:C'le

T Definition of ¢

k

Triangle
inequality!

—

\ Because n < n*
forn >2ny = 1.



SLIDE SKIPPED IN CLASS! (Note this is also in the reading).

Example: more polynomials

* Forany k > 1,n* is NOT 0(nk=1).

* Proof:
* Suppose that it were. Then there is some ¢, ny > 0 so that
n® <c-nf1foralln > n,
* Aka,n < ¢ foralln = ny
* But that’s not true! What aboutn =ngy + ¢ + 11?
 We have a contradiction! It can’t be that n® = O(nk_l).



More examples

*n3+3n=0(n*>-n?)
* n3+3n=Q(n3-n?)

*n3+3n=0(n3-n?)

« 3nis NOT O(2")
+ 10g,(n) = Q(In(n))
+ 10g,(n) = O( 2logogin) )

Work through these
on your own! Also
look at the examples
in the reading!

Siggi the Studious Stork



Some brainteasers

* Are there functions f, g so that NEITHER f=0(g)
nor f = Q(g)?

* Are there non-decreasing functions f, g so that
the above is true?

Ollie the Over-achieving Ostrich



This is my
happy face!

Recap: Asymptotic Notation

* This makes both Plucky and Lucky happy.
* Plucky the Pedantic Penguin is happy because
there is a precise definition.

* Lucky the Lackadaisical Lemur is happy because we
don’t have to pay close attention to all those pesky

constant factors.

e But we should always be careful not to abuse it.

* In the course, (almost) every algorithm we see
will be actually practical, without needing to
take n > n, = 219000000,



Back Insertion Sort

1. Does it work?

2. s it fast? -

175

150

Time(ms)

Naive vs. non-naive insertion sort

- Naive version
- L ess naive version

200 400 600 800 1000




Insertion Sort: running time

* Operation count was:

2n? —n — 1 variable assignments
2n% —n — 1 increments/decrements
2n? — 4n + 1 comparisons

* The running time is 0(n?)

Naive vs. non-naive insertion sort

- Naive version

150 { = Less naive version
Go back to the pseudocode 125 -
and convince yourself of this! g 100 Seems

E 75 plausible

200 400 €00 800 1000



Insertion

SLIDE SKIPPED IN CLASS

Sort: running time

As you get more used to this, you won’t have to count up operations anymore.
For example, just looking at the pseudocode below, you might think...

def InsertionSort(A):

for i in range(l,len(A))

current
j = i-1

A[J+1]
J 1
A[J+1]

+

In the worst case,
about n iterations
of this inner loop

while j >= 0 and A[]J] > current:

A[1]

= n-1 iterations
of the outer
loop

A[J]

current

“There’s O(1) stuff going on inside the inner loop, so
each time the inner loop runs, that’s O(n) work. Then
the inner loop is executed O(n) times by the outer
loop, so that’s O(n?).”




What have we |learned?

InsertionSort is an algorithm that
correctly sorts an arbitrary n-element
array in time 0 (n?).



The Plan

* InsertionSort recap

* Worst-case analyisis
* Back to InsertionSort: Does it work?

* Asymptotic Analysis
 Back to InsertionSort: Is it fast?

* MergeSort -

e Does it work?
e |s it fast?




Can we do better?

* MergeSort: a divide-and-conquer approach
* Recall from last time:

Divide and
Conquer:

Big problem

Smaller SENET
problem problem

Recurse! Recurse!

Yet smaller Yet smaller Yet smaller Yet smaller
problem problem problem problem



MergeSort

sfalsfefs]sfa]|7

Recursive magic! Recursive magic!

46

A A
How would

do thi
e [1l2]sfals|e|7]s] "t

Code for the MIERGE step is given in the
Lecture2 IPython notebook, or the textbook Ollie the over-achieving Ostrich




See Lecture 2 IPython notebook for MergeSort Python Code.

MergeSort Pseudocode

MERGESORT(A):
* n = length(A)
cifn < 1: If A has length 1,
. return A It is already sorted!

Sort the left half

* L= MERGESORT(A[ 0 : n/2])
* R = MERGESORT(A[n/2 :n]) ~ >orttherenthal
° return MERGE(L,R) Merge the two halves



What actually happens?

First, recursively break up the array all the way down to the
base cases

EELEEED
pononEng
aoinn
{E BE

This array of
length 1 is
sorted!



hen, merge them all back up!

Sorted sequence!

f2]sfafs|sf7]s
Merge!

3fale]s

A bunch of sorted lists of length 1 (in the order of the original sequence).



Two gquestions

1. Does this work?

, IPython notebook says...
2. Is it fast?

All sorts of sorts

175 A - - . .
—— Naive version of insertion sort

—— Less naive version of insertion sort
150 1 Not very slick implementation of mergeSort

V- =
o N
o w

Time(ms)
~J
(9]

Empirically:
1. Seems to work.
2. Seems fast.

w
o
L

N
w
Il

o
Il
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It works

* Yet another job for...

Proof By
Induction!

Work this out! There’s a skipped slide

with an outline to help you get started. @



THIS SLIDE SKIPPED IN CLASS

It works

* Inductive hypothesis:

Assume that n is a power of 2
for convenience.

“In every recursive call on an array of length at most i,
MERGESORT returns a sorted array.”

e Base case (i=1): a 1-element
array is always sorted.

* Inductive step: Need to show: if
the inductive hypothesis holds
for k<i, then it holds for k=i.

 Aka, need to show thatif Land R

are sorted, then MERGE(L,R) is

sorted.

* Conclusion: In the top recursive
call, MERGESORT returns a sorted
array.

 MERGESORT(A):

n = length(A)
ifn<1:
* return A
L = MERGESORT(A[1 : n/2])
R = MERGESORT(A[n/2+1 : n])
return VIERGE(L,R)

Fill in the inductive step!

HINT: You will need to prove that the
MERGE algorithm is correct, for which
you may need...another proof by

induction!



Assume that n is a power of 2

It’s fast

for convenience.

CLAIM:

MergeSort runs in time O(nlog(n))

Proof coming soon.

But first, how does this compare to InsertionSort?
 Recall InsertionSort ran in time O(n?).



[See Lecture 2 IPython Notebook for code]

0(nlog(n)) vs. 0(n*)? (Empirically)

All sorts of sorts

175: . . > .
—— Naive version of insertion sort

— Less naive version of insertion sort
150 - Not very slick implementation of mergeSort

125 ~
100 A

75 -

Time(ms)

50 A

Supposedly O(n logn)

T

200 400 600 800 1000



0(nlog(n)) vs. 0(n%)?



All logarithms in this course are base 2

Aside:

Quick log refresher

» Def: log(n) is the number so that 21°8(™ = p,

* Intuition: log(n) is how many times you need to divide n
by 2 in order to get down to 1.

32,16, 8, 4, 2, 1/ = log(32)=5
|

Halve 5 times

64,\32, 16, §, 4, 2, 1) = |og(64) =6

\

|
Halve 6 times |Og(128) =7
log(256) = 8
* log(n) grows log(512) =9

very slowly!
log(# particles in the universe) < 280



O(nlog n) vs. 0(n%)?

* log(n) grows much more slowly than n
 nlog(n) grows much more slowly than n?

Punchline: A running time of O(n log n) is a
lot better than O(n?)!



Now let’s prove the claim

Assume that n is a power of 2
for convenience.

CLAIM:

MergeSort runs in time O(nlog(n))




Let’s prove the claim

@ Level O
Focus on just one of M

these sub-problems cee
Level t
2tsubproblems
at level t.

(Size 1) Level log(n)




How much work in this sub-problem?

Time spent MERGE-ing

the two subproblems

-+

Time spent within the
two sub-problems




How much work in this sub-problem?

Let k=n/2t...

Time spent MERGE-ing

the two subproblems

-+

Time spent within the
two sub-problems




How long ¢

oes It

take to ME

k/2
A

o o

k/2

RGE?

Code for the MIERGE
step is given in the
Lecture2 notebook.

( \
STele]s

\
( \
A

M nnanEann
|
k



How long ¢

oes It

take to ME

RGE?

Code for the MIERGE
step is given in the
Lecture2 notebook.

How long does it take to run MERGE on

/

N

Think-Pair-Share Terrapins

two lists of size k/27?

Answer: It takes time O(k), since we just walk across the list once.



Recursion tree

(Size 1)

There are O(k) operations
done at this node.

oo




Recursion tree Think, Pair,
Share!
How many operations are done at this level of the
tree? (Just MERGE-ing subproblems).
) How about at this level of the tree?
(between both n/2-sized problems)
@ @ @ @ «— This level?

L This level?

There are O(k) operations
done at this node.

2090 ®
(Size 1)




_ ' Work this out yourself! I
Recursion tree Size of

# each
Level | problems problem

Amount of work
at this level

0 1 n O(n)

2 n/2 O(n)
4 n/4 O(n)

2t n/2t O(n)

.‘.‘Q‘Q‘Q‘. log(n) n 1 O(n)
(Size 1)




Total runtime...

* O(n) steps per level, at every level

* log(n) + 1 levels

*O( nlog(n) ) total!

That was the claim!



What have we |learned?

* MergeSort correctly sorts a list of n integers in time
O(n log(n) ).

* That’s (asymptotically) better than InsertionSort!



The Plan

* InsertionSort recap
* Worst-case analyisis

* Back to InsertionSort: Does it work?
* Asymptotic Analysis

e Back to InsertionSort: Is it fast?

* MergeSort
* Does it work?

* Is it fast? [

Wrap-Up




Recap

* InsertionSort runs in time O(n?)

* MergeSort is a divide-and-conquer algorithm that runs
in time O(n log(n))

* How do we show an algorithm is correct?
* Today, we did it by induction

* How do we measure the runtime of an algorithm?
* Worst-case analysis
e Asymptotic analysis
* How do we analyze the running time of a recursive
algorithm?
 One way is to draw a recursion tree.



Next time

* A more systematic approach to analyzing the
runtime of recursive algorithms.

Before next time

* Pre-Lecture Exercise:
* A few recurrence relations (see website)



SIGACT News Apr.=-June 1976

BIG OMICRON AND BIG OMEGA AND BIG THETA

Donald E. Knuth
Computer Science Department
Stanford University
Stanford, California 94305

Most of us have gotten accustomed to the idea of using the notation
0(f(n)) to stand for any function whose magnitude is upper-bounded by a
constant times f(n) , for all large n . Sometimes we also need a
corresponding notation for'lower-bounded functions, i.e., those functions
which are at least as large as a constant times f(n) for all large n .
Unfortunately, people have occasionally been using the O-notation for

lower bounds, for example when they feject a particular sorting method

"because its running time is O(n2) ." I have seen instances of this in

print quite often, and finally it has prompted me to sit down and write
a Letter to the Editor about the situation.




