
Lecture 6
Sorting lower bounds and O(n)-time sorting

1

Announcements

• See “In-person Logistics” Ed post for changes to the
course
• About that homework 2 …

Tarsiers à Quokkas

2

Everyone can succeed in this class!

1. Work hard
2. Work smart
3. Ask for help

Roadmap

Sorting

Graphs!
Longest, Shortest, Max and Min…

Data

structures

Asymptotic
Analysis

Recurrences

Randomized
Algs

Dynamic
ProgrammingGreedy Algs

5 lectures 2 lectures

9 lectures

Divide and
conquer

1 lecture

The
Future!

More detailed schedule on the website!

FINAL

MIDTERM

Sorting

• We’ve seen a few O(n log(n))-time algorithms.
• MERGESORT has worst-case running time O(nlog(n))
• QUICKSORT has expected running time O(nlog(n))

Can we do better?

Depends on who
you ask…

5

An O(1)-time algorithm for sorting:
StickSort

• Problem: sort these n sticks by length.

• Algorithm:
• Drop them on a table.

• Now they
are sorted
this way.

6

That may have been unsatisfying

• But StickSort does raise some important questions:
• What is our model of computation?

• Input: array
• Output: sorted array
• Operations allowed: comparisons

-vs-

• Input: sticks
• Output: sorted sticks in vertical order
• Operations allowed: dropping on tables

• What are reasonable models of computation?
7

Today: two (more) models

• Comparison-based sorting model
• This includes MergeSort, QuickSort, InsertionSort
• We’ll see that any algorithm in this model must take at

least Ω(n log(n)) steps.

• Another model (more reasonable than the stick model…)

• CountingSort and RadixSort
• Both run in time O(n)

8

Comparison-based sorting

9

Comparison-based sorting algorithms

• You want to sort an array of items.
• You can’t access the items’ values directly: you can

only compare two items and find out which is
bigger or smaller.

10

Comparison-based sorting algorithms

There is a genie who knows what
the right order is.

The genie can answer YES/NO
questions of the form:

is [this] bigger than [that]?Algorithm

Want to sort these items.
There’s some ordering on them, but we don’t know what it is.

Is bigger than ?

YES

The algorithm’s job is to
output a correctly sorted

list of all the objects.

is shorthand for

“the first thing in the input list”

11

All the sorting algorithms we
have seen work like this.

7 6 3 5 1 4 2
eg, QuickSort:

Is bigger than ? 7 5

Is bigger than ?

Is bigger than ?

6

3

5

5

YES

YES

NO

7 6 3

5 etc.

Pivot!

12

Lower bound of Ω(n log(n)).

• Theorem:
• Any deterministic comparison-based sorting algorithm must

take Ω(n log(n)) steps.
• Any randomized comparison-based sorting algorithm must

take Ω(n log(n)) steps in expectation.

• How might we prove this?

1. Consider all comparison-based algorithms, one-by-one,
and analyze them.

2. Don’t do that.

This covers all the
sorting algorithms

we know!!!

Instead, argue that all comparison-based sorting
algorithms give rise to a decision tree.
Then analyze decision trees. 13

Decision trees

Sort these three things. ?≤

YES NO

≤

YES

?
NO

≤ ?
YES NO

etc…

14

Decision trees

YES NO
?

??
YES NOYES NO

????

• Internal nodes
correspond to yes/no
questions.

• Each internal node has
two children, one for
“yes” and one for “no.”

• Leaf nodes correspond
to outputs.
• In this case, all possible

orderings of the items.
• Running an algorithm

on a particular input
corresponds to a
particular path through
the tree. 15

Comparison-based algorithms look like decision trees.

Example: Sort these
three things using

QuickSort.

≤
NO

?
YES

L RRL

≤ ?
NOYES

L RL R
Return ≤

NOYES
?Then we’re done

(after some base-
case stuff)

Now
recurse

on R

Pivot!

L R L R

Pivot!

Return ReturnIn either case, we’re done
(after some base case stuff and

returning recursive calls).

etc...

16

Q: What’s the runtime on a particular input?

YES NO
?

??
YES NOYES NO

????

If we take this path through
the tree, the runtime is
Ω(length of the path).

A: At least the length of
the path from the root to
the corresponding leaf.

17

Q: What’s the worst-case runtime?

YES NO
?

??
YES NOYES NO

????

A: At least Ω(length of the longest path).

18

How long is the longest path?

YES NO

?

??
YES NOYES NO

????

• This is a binary tree with at
least _____ leaves.

• The shallowest tree with n!
leaves is the completely
balanced one, which has
depth ______.

• So in all such trees, the
longest path is at least log(n!).

n!

log(n!)

• n! is about (n/e)n (Stirling’s approx.*).
• log(n!) is about n log(n/e) = Ω(n log(n)).

Conclusion: the longest path
has length at least Ω(n log(n)).

being sloppy about
floors and ceilings!

We want a statement: in all such trees,
the longest path is at least _____

*Stirling’s approximation is a bit more complicated than this, but this is good enough for the asymptotic result we want.
19

Lower bound of Ω(n log(n)).
• Theorem:
• Any deterministic comparison-based sorting algorithm must

take Ω(n log(n)) steps.

• Proof recap:
• Any deterministic comparison-based algorithm can be

represented as a decision tree with n! leaves.

• The worst-case running time is at least the depth of the decision
tree.

• All decision trees with n! leaves have depth Ω(n log(n)).

• So any comparison-based sorting algorithm must have worst-
case running time at least Ω(n log(n)). 20

\end{Aside}

• For example, QuickSort?
• Theorem:
• Any randomized comparison-based sorting algorithm

must take Ω(n log(n)) steps in expectation.

• Proof:
• (same ideas as deterministic case)
• (you are not responsible for this proof in this class)

Try to prove this
yourself!

Ollie the over-achieving ostrich

Aside:
What about randomized algorithms?

21

• Theorem:
• Any deterministic comparison-based sorting algorithm must

take Ω(n log(n)) steps.

• Theorem:
• Any randomized comparison-based sorting algorithm must take

Ω(n log(n)) steps in expectation.

So that’s bad news

22

• This is one of the cool things about lower bounds like this:
we know when we can declare victory!

On the bright side,
MergeSort is optimal!

23

But what about StickSort?
• StickSort can’t be implemented as a comparison-based

sorting algorithm. So these lower bounds don’t apply.
• But StickSort was kind of silly.

Especially if I have
to spend time

cutting all those
sticks to be the

right size!

• Is there another model of computation
that’s less silly than the StickSort model, in
which we can sort faster than nlog(n)?

Can we do better?

24

Beyond comparison-based
sorting algorithms

25

Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of

26

Pre-lecture exercise

• How long does it take to sort n people by their
month of birth?
• [discussion]

1 (Jan) 1 (Jan) 4 (Apr) 5 (May)
27

Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of

28

Why might this help?

CountingSort: 9 6 3 5 2 1 2

1 2 3 4 5 6 7 8 9

963 521

2

SORTED!
In time O(n).

Implement the buckets as linked
lists. They are first-in, first-out.
This will be useful later.

Concatenate
the buckets!

29

Assumptions
• Need to be able to know what bucket to put something in.

• We assume we can evaluate the items directly, not just by comparison

• Need to know what values might show up ahead of time.

• Need to assume there are not too many such values.

2 12345 13 21000 50 100000000 1

30

RadixSort

• For sorting integers up to size M
• or more generally for lexicographically sorting strings

• Can use less space than CountingSort

• Idea: CountingSort on the least-significant digit
first, then the next least-significant, and so on.

31

1 2 3 4 5 6 7 8 9

21 345 13 101 50 234 1

0

345
50 1321

101

1 234

50 21 101 1 13 234 345

Step 1: CountingSort on least significant digit

32

Step 2: CountingSort on the 2nd least sig. digit

1 2 3 4 5 6 7 8 90

50 21 101 1 13 234 345

502113101

234

1 345

101 1 13 21 234 345 50

33

Step 3: CountingSort on the 3rd least sig. digit

1 2 3 4 5 6 7 8 90

50

21
13

101

2341

345
1 13 21 50 101 234 345

101 1 13 21 234 345 50

It worked!!34

Why does this work?

21 345 13 101 50 234 1

50 21 101 1 13 234 345

1 13 21 50 101 234 345

101 1 13 21 234 345 50

Original array:

Next array is sorted by the first digit.

Next array is sorted by the first two digits.

Next array is sorted by all three digits.

Sorted array

50 21 101 1 13 234 345

101 01 13 21 234 345 50

001 013 021 050 101 234 345

35

To prove this is correct…

• What is the inductive hypothesis?

21 345 13 101 50 234 1

50 21 101 1 13 234 345

1 13 21 50 101 234 345

101 1 13 21 234 345 50

Original array:

Next array is sorted by the first digit.

Next array is sorted by the first two digits.

Next array is sorted by all three digits.

Sorted array

50 21 101 1 13 234 345

101 01 13 21 234 345 50

001 013 021 050 101 234 345

Think-Share Terrapins
Think: 1 min (wait)
Share: 1 min (on chat)

36

RadixSort is correct

• Inductive hypothesis:
• After the k’th iteration, the array is sorted by the first k

least-significant digits.
• Base case:
• “Sorted by 0 least-significant digits” means not yet

sorted, so the IH holds for k=0.
• Inductive step:
• TO DO

• Conclusion:
• The inductive hypothesis holds for all k, so after the last

iteration, the array is sorted by all the digits. Hence, it’s
sorted!

37

Inductive step

• Need to show: if IH holds for k=i-1, then it holds for k=i.
• Suppose that after the i-1’st iteration, the array is sorted by

the first i-1 least-significant digits.
• Need to show that after the i’th iteration, the array is sorted

by the first i least-significant digits.

Inductive hypothesis:
After the k’th iteration, the array is sorted
by the first k least-significant digits.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2

38

• Let x=[xdxd-1…x2x1] and y=[ydyd-1…y2y1] be any x,y.
• Suppose [xixi-1…x2x1] < [yiyi-1…y2y1].
• Want to show that x appears before y at end of i’th iteration.
• CASE 1: xi<yi

• x is in an earlier bucket than y.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

Want to show: after the i’th
iteration, the array is sorted by

the first i least-significant digits.

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2

Proof sketch…
proof on next (skipped) slide

xy

yx

x y

Aka, we want to show that for any x and y so
that x belongs before y, we put x before y.

39

• Let x=[xdxd-1…x2x1] and y=[ydyd-1…y2y1] be any x,y.
• Suppose [xixi-1…x2x1] < [yiyi-1…y2y1].
• Want to show that x appears before y at end of i’th iteration.
• CASE 1: xi<yi

• x is in an earlier bucket than y.
• CASE 2: xi=yi

• [xi-1…x2x1] < [yi-1…y2y1],
• x and y in same bucket, but x was put in the bucket first.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

Want to show: after the i’th
iteration, the array is sorted by

the first i least-significant digits.

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2

Proof sketch…
proof on next (skipped) slide

x
y

y

x

x y

Aka, we want to show that for any x and y so
that x belongs before y, we put x before y.

40

• Let x=[xdxd-1…x2x1] and y=[ydyd-1…y2y1] be any x,y.
• Suppose [xixi-1…x2x1] < [yiyi-1…y2y1].
• Want to show that x appears before y at end of i’th iteration.
• CASE 1: xi<yi.
• x appears in an earlier bucket than y, so x appears before y

after the i’th iteration.
• CASE 2: xi=yi.
• x and y end up in the same bucket.
• In this case, [xi-1…x2x1] < [yi-1…y2y1], so by the inductive

hypothesis, x appeared before y after i-1’st iteration.
• Then x was placed into the bucket before y was, so it also

comes out of the bucket before y does.
• Recall that the buckets are FIFO queues.

• So x appears before y in the i’th iteration.

Want to show: after the i’th iteration, the array is sorted by the
first i least-significant digits.

SLIDE SKIPPED
IN CLASS. Here

for reference.

41

Inductive step
Inductive hypothesis:

After the k’th iteration, the array is sorted
by the first k least-significant digits.

• Need to show: if IH holds for k=i-1, then it holds for k=i.
• Suppose that after the i-1’st iteration, the array is sorted by

the first i-1 least-significant digits.
• Need to show that after the i’th iteration, the array is sorted

by the first i least-significant digits.

1 2 3 4 5 6 7 8 90

050 021 101 002 013 234 345

050021013101 234
002

345

101 002 013 021 234 345 050

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EX
AM

PL
E:

 i=
2

42

RadixSort is correct

• Inductive hypothesis:
• After the k’th iteration, the array is sorted by the first k

least-significant digits.
• Base case:
• “Sorted by 0 least-significant digits” means not sorted,

so the IH holds for k=0.
• Inductive step:
• TO DO

• Conclusion:
• The inductive hypothesis holds for all k, so after the last

iteration, the array is sorted by all the digits. Hence, it’s
sorted!

43

What is the running time?

• Suppose we are sorting n d-digit numbers (in base 10).

1. How many iterations are there?

2. How long does each iteration take?

3. What is the total running time? Think--Share Terrapins
Think: 1 min (wait)
Share: 1 min (on chat)

021 345 013 101 050 234 001
e.g., n=7, d=3:

for RadixSorting
numbers base-10.

44

What is the running time?

• Suppose we are sorting n d-digit numbers (in base 10).

1. How many iterations are there?
• d iterations

2. How long does each iteration take?
• Time to initialize 10 buckets, plus time to put n numbers in

10 buckets. O(n).

3. What is the total running time?
• O(nd)

Think-Share Terrapins

021 345 013 101 050 234 001
e.g., n=7, d=3:

for RadixSorting
numbers base-10.

45

This doesn’t seem so great

• To sort n integers, each of which is in {1,2,…,n}…
• d = log!" 𝑛 + 1
• For example:

• n = 1234
• log!" 1234 + 1 = 4

• More explanation on next (skipped) slide.

• Time = 𝑂 𝑛𝑑 = 𝑂 𝑛 log 𝑛 .
• Same as MergeSort!

46

Aside: why d = log!" 𝑛 + 1 ?
• When we write a number x = x!x!"#…x# base 10, that means:

𝑥 = 𝑥# + 𝑥$ ⋅ 10 +⋯+ 𝑥%"# ⋅ 10%"$ + 𝑥% ⋅ 10%"#

where 𝑥& ∈ {0,1, … , 9}
• Suppose that 𝑥% ≠ 0. Then we have

• 𝑥 ≥ 𝑥# ⋅ 10#$!

• log!" 𝑥 + 1 − log!" 𝑥# ≥ 𝑑
• log!" 𝑥 + 1 > 𝑑
• log!" 𝑛 + 1 ≥ 𝑑

• On the other hand, we also have
• 𝑥 < (𝑥#+1) ⋅ 10#$!
• log!" 𝑥 + 1 − log!"(𝑥# + 1) < 𝑑
• log!" 𝑥 < 𝑑
• log!" 𝑛 + 1 ≤ 𝑑

Slide
skipped
in class

Since x is bigger than just
the last term in that sum!

Since if 𝑥 ≥ (𝑥!+1) ⋅ 10!"#
then the d’th digit would have
been xd +1 instead of xd

(take logs of both sides and rearrange)

log#$ 𝑥! + 1 ≤ 1 since 𝑥! < 10

Since d is an integer

log#$ 𝑥! > 0 since 𝑥! > 0

Since d is an integer

(take logs of both sides and rearrange)

47

Can we do better?

• RadixSort base 10 doesn’t seem to be such a good
idea…
• But what if we change the base? (Let’s say base r)
• We will see there’s a trade-off:
• Bigger r means more buckets
• Bigger r means fewer digits

48

Example: base 100

21 345 13 101 50 234 1

Original array:

49

Example: base 100

0021 0345 0013 0101 0050 0234 0001

Original array:

00 01 02 34 999850

100 buckets:

………

0101 0001 0013 0021 0234 0345 0050

0101

0001

00500234

50

Example: base 100

00 01 02 03 999850

0001

0013

0234

100 buckets:

……
0101

0101 0001 0013 0021 0234 0345 0050

0021

0050

0345

0001 0013 0021 0050 0101 0234 0345
Sorted!51

Example: base 100

0101 0001 0013 0021 0234 0345 0050

0001 0013 0021 0050 0101 0234 0345

0021 0345 0013 0101 0050 0234 0001

Base 100:
• d=2, so only 2 iterations.
• 100 buckets

Base 10:
• d=3, so 3 iterations.
• 10 buckets

vs.

Bigger base means more buckets but fewer iterations.

Original array

Sorted array

52

General running time of RadixSort
• Say we want to sort:
• n integers,
• maximum size M,
• in base r.

• Number of iterations of RadixSort:
• Same as number of digits, base r, of an integer x of max size M.
• That is d = log5 𝑀 + 1

• Time per iteration:
• Initialize r buckets, put n items into them
• 𝑂(𝑛 + 𝑟) total time.

• Total time:
• 𝑂 𝑑 ⋅ 𝑛 + 𝑟 = 𝑂 log5 𝑀 + 1 ⋅ 𝑛 + 𝑟

Convince yourself that
this is the right formula
for d.

53

Trade-offs
• Given n, M, how should we choose r?
• Looks like there’s some sweet spot:

IPython Notebook for Lecture 6

Running time: 𝑂 log% 𝑀 + 1 ⋅ 𝑛 + 𝑟

54

A reasonable choice: r=n

Ollie the over-achieving ostrich

Choosing r = n is pretty good. What choice of r optimizes the
asymptotic running time? What if I also care about space?

• Running time:

𝑂 log! 𝑀 + 1 ⋅ 𝑛 + 𝑟

• Choose n=r:
𝑂 𝑛 ⋅ log" 𝑀 + 1

Intuition: balance n and r here.

55

Running time of RadixSort with r=n

• To sort n integers of size at most M, time is
𝑂 𝑛 ⋅ log8 𝑀 + 1

• So the running time (in terms of n) depends on how big
M is in terms of n:
• If 𝑀 ≤ 𝑛: for some constant c, then this is O(n).

• If 𝑀 = 2;, then this is 𝑂 ;%

<=>(;)

• The number of buckets needed is r=n.

56

What have we learned?

• RadixSort can sort n integers of size at most n100 in
time O(n), and needs enough space to store O(n)
integers.
• If your integers have size much much bigger than n

(like 2n), maybe you shouldn’t use RadixSort.
• It matters how we pick the base.

You can put any
constant here
instead of 100.

57

Recap
• How difficult sorting is depends on the model of

computation.
• How reasonable a model of computation is is up for debate.

• Comparison-based sorting model
• This includes MergeSort, QuickSort, InsertionSort
• Any algorithm in this model must use at least Ω(n log(n))

operations. L
• But it can handle arbitrary comparable objects. J

• If we are sorting small integers (or other reasonable data):
• CountingSort and RadixSort
• Both run in time O(n) J
• Might take more space and/or be slower if integers get too big L

58

Next time

• Binary search trees!
• Balanced binary search trees!

• Pre-lecture exercise for Lecture 7
• Remember binary search trees?

Before next time

59

60

