Lecture 6

Sorting lower bounds and $O(n)$-time sorting
Announcements

• See “In-person Logistics” Ed post for changes to the course

• About that homework 2 ...
 Tarsiers → Quokkas
Everyone can succeed in this class!

1. Work hard
2. Work smart
3. Ask for help
Roadmap

- **Sorting**
 - 5 lectures
 - Randomized Algs
 - Asymptotic Analysis
 - Recurrences

- **Data structures**
 - 2 lectures
 - More detailed schedule on the website!

- **Greedy Algs**
 - 9 lectures
 - Divide and conquer
 - Longest, Shortest, Max and Min...

- **Dynamic Programming**
 - 1 lecture

- **Graphs!**
 - The Future!

- **Divide and conquer**

- **Randomized Algs**

- **Asymptotic Analysis**

- **Recurrences**

- **MIDTERM**

- **FINAL**
Sorting

• We’ve seen a few $O(n \log(n))$-time algorithms.
 • MERGESORT has worst-case running time $O(n\log(n))$
 • QUICKSORT has expected running time $O(n\log(n))$

Can we do better?

Depends on who you ask...
An O(1)-time algorithm for sorting: **StickSort**

- Problem: sort these n sticks by length.
- Algorithm:
 - Drop them on a table.
- Now they are sorted this way.
That may have been unsatisfying

• But StickSort does raise some important questions:
 • **What is our model of computation?**
 • Input: array
 • Output: sorted array
 • Operations allowed: comparisons

 vs

 • Input: sticks
 • Output: sorted sticks in vertical order
 • Operations allowed: dropping on tables

• **What are reasonable models of computation?**
Today: two (more) models

• Comparison-based sorting model
 • This includes MergeSort, QuickSort, InsertionSort
 • We’ll see that any algorithm in this model must take at least $\Omega(n \log(n))$ steps.

• Another model (more reasonable than the stick model...)
 • CountingSort and RadixSort
 • Both run in time $O(n)$
Comparison-based sorting

NO.

CAN'T BEAT NLOG(N)
Comparison-based sorting algorithms

- You want to sort an array of items.
- You can’t access the items’ values directly: you can only compare two items and find out which is bigger or smaller.
Comparison-based sorting algorithms

There is a genie who knows what the right order is. The genie can answer YES/NO questions of the form: is [this] bigger than [that]?

Want to sort these items. There’s some ordering on them, but we don’t know what it is.

Algorithm

Is bigger than?

Yes

The algorithm’s job is to output a correctly sorted list of all the objects.

The genie can answer YES/NO questions of the form: is [this] bigger than [that]?

is shorthand for “the first thing in the input list”
All the sorting algorithms we have seen work like this.

eg, QuickSort:

```
7 6 3 5 1 4 2
```

Pivot!

- Is 7 bigger than 5? **YES**
- Is 6 bigger than 5? **YES**
- Is 3 bigger than 5? **NO**

etc.
Lower bound of $\Omega(n \log(n))$.

• Theorem:
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.
 • Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

• How might we prove this?
 1. Consider all comparison-based algorithms, one-by-one, and analyze them.
 2. Don’t do that. Instead, argue that all comparison-based sorting algorithms give rise to a decision tree. Then analyze decision trees.

This covers all the sorting algorithms we know!!!
Decision trees

Sort these three things.

1. 😊 ≤ 🚒? YES
2. 😊 ≤ 😏? NO
3. ☕ ≤ 🚒? YES
4. ☕ ≤ 🚒? NO

etc...

14
Decision trees

- Internal nodes correspond to yes/no questions.
- Each internal node has two children, one for “yes” and one for “no.”
- Leaf nodes correspond to outputs.
 - In this case, all possible orderings of the items.
- Running an algorithm on a particular input corresponds to a particular path through the tree.
Comparison-based algorithms look like decision trees.

Example: Sort these three things using QuickSort.

- Return
- Pivot!

Then we’re done (after some base-case stuff)

In either case, we’re done (after some base case stuff and returning recursive calls).
Q: What’s the runtime on a particular input?

A: At least the length of the path from the root to the corresponding leaf.

If we take this path through the tree, the runtime is Ω (length of the path).
Q: What’s the worst-case runtime?
A: At least Ω(length of the longest path).
How long is the longest path?

We want a statement: in all such trees, the longest path is at least _____

• This is a binary tree with at least ____ n! ____ leaves.

• The shallowest tree with n! leaves is the completely balanced one, which has depth ____ log(n!)____.

• So in all such trees, the longest path is at least log(n!).

• n! is about (n/e)^n (Stirling’s approx.*).
• log(n!) is about n log(n/e) = Ω(n log(n)).

Conclusion: the longest path has length at least Ω(n log(n)).

*Stirling’s approximation is a bit more complicated than this, but this is good enough for the asymptotic result we want.
Lower bound of $\Omega(n \log(n))$.

• **Theorem:**
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

• **Proof recap:**
 • Any deterministic comparison-based algorithm can be represented as a decision tree with $n!$ leaves.

 • The worst-case running time is at least the depth of the decision tree.

 • All decision trees with $n!$ leaves have depth $\Omega(n \log(n))$.

 • So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(n \log(n))$.
Aside:
What about randomized algorithms?

• For example, QuickSort?

• Theorem:
 • Any randomized comparison-based sorting algorithm must take \(\Omega(n \log(n)) \) steps in expectation.

• Proof:
 • (same ideas as deterministic case)
 • (you are not responsible for this proof in this class)
So that’s bad news

• **Theorem:**
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

• **Theorem:**
 • Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.
On the bright side, **MergeSort is optimal!**

- This is one of the cool things about lower bounds like this: we know when we can declare victory!
But what about StickSort?

- StickSort can’t be implemented as a comparison-based sorting algorithm. So these lower bounds don’t apply.
- But StickSort was kind of silly.

Can we do better?

- Is there another model of computation that’s less silly than the StickSort model, in which we can sort faster than nlog(n)?
Beyond comparison-based sorting algorithms
Another model of computation

• The items you are sorting have **meaningful values.**

\[
\begin{array}{cccccccc}
9 & 6 & 3 & 5 & 2 & 1 & 2 \\
\end{array}
\]

instead of

\[
\begin{array}{cccccccc}
\text{😊} & \text{🐼} & \text{🐢} & \text{🚒} & \text{☕} & \text{🍕} & \text{🏈} \\
\end{array}
\]
Pre-lecture exercise

• How long does it take to sort n people by their month of birth?

• [discussion]
Another model of computation

• The items you are sorting have meaningful values.

9 6 3 5 2 1 2

instead of

😊️熊猫turtle消防车一杯咖啡比萨足球
Why might this help?

CountingSort:

9 6 3 5 2 1 2

SORTED!

In time O(n).

Implement the buckets as linked lists. They are first-in, first-out. This will be useful later.

Concatenate the buckets!
Assumptions

• Need to be able to know what bucket to put something in.
 • We assume we can evaluate the items directly, not just by comparison
• Need to know what values might show up ahead of time.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12345</td>
<td>13</td>
<td>2^{1000}</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Need to assume there are not too many such values.
RadixSort

• For sorting integers up to size M
 • or more generally for lexicographically sorting strings

• Can use less space than CountingSort

• Idea: CountingSort on the least-significant digit first, then the next least-significant, and so on.
Step 1: CountingSort on least significant digit

21 345 13 101 50 234 1

50
101
21
13
234
345
Step 2: CountingSort on the 2nd least sig. digit

101 1 13 21 234 345 50
Step 3: CountingSort on the 3rd least sig. digit

It worked!!
Why does this work?

Original array:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>345</td>
<td>13</td>
<td>101</td>
<td>50</td>
<td>234</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Next array is sorted by the first digit.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>21</td>
<td>101</td>
<td>1</td>
<td>13</td>
<td>234</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>

Next array is sorted by the first two digits.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>01</td>
<td>13</td>
<td>21</td>
<td>234</td>
<td>345</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Next array is sorted by all three digits.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 001 | 013 | 021 | 050 | 101 | 234 | 345 | Sorted array
To prove this is correct...

• What is the inductive hypothesis?

Think-Share Terrapins
Think: 1 min (wait)
Share: 1 min (on chat)
RadixSort is correct

• Inductive hypothesis:
 • After the k’th iteration, the array is sorted by the first k least-significant digits.

• Base case:
 • “Sorted by 0 least-significant digits” means not yet sorted, so the IH holds for k=0.

• Inductive step:
 • TO DO

• Conclusion:
 • The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it’s sorted!
Inductive step

- **Need to show:** if IH holds for \(k=i-1 \), then it holds for \(k=i \).
 - Suppose that after the \(i-1 \)’st iteration, the array is sorted by the first \(i-1 \) least-significant digits.
 - Need to show that after the \(i \)’th iteration, the array is sorted by the first \(i \) least-significant digits.

Inductive hypothesis:
After the \(k \)'th iteration, the array is sorted by the first \(k \) least-significant digits.

EXAMPLE: \(i=2 \)

IH: this array is sorted by first digit.

<table>
<thead>
<tr>
<th></th>
<th>050</th>
<th>021</th>
<th>101</th>
<th>002</th>
<th>013</th>
<th>234</th>
<th>345</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>002</th>
<th>101</th>
<th>013</th>
<th>021</th>
<th>234</th>
<th>345</th>
<th>050</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Want to show: this array is sorted by 1\(^{st}\) and 2\(^{nd}\) digits.
Proof sketch...

proof on next (skipped) slide

Want to show: after the i’th iteration, the array is sorted by the first i least-significant digits.

• Let \(x = [x_d x_{d-1} \ldots x_2 x_1] \) and \(y = [y_d y_{d-1} \ldots y_2 y_1] \) be any \(x, y \).

• Suppose \([x_i x_{i-1} \ldots x_2 x_1] < [y_i y_{i-1} \ldots y_2 y_1] \).

• Want to show that \(x \) appears before \(y \) at end of i’th iteration.

• **CASE 1**: \(x_i < y_i \)

 • \(x \) is in an earlier bucket than \(y \).

Aka, we want to show that for any \(x \) and \(y \) so that \(x \) belongs before \(y \), we put \(x \) before \(y \).
Proof sketch...
proof on next (skipped) slide

- Let \(x = [x_d x_{d-1} \ldots x_2 x_1] \) and \(y = [y_d y_{d-1} \ldots y_2 y_1] \) be any \(x, y \).
- Suppose \([x_i x_{i-1} \ldots x_2 x_1] < [y_i y_{i-1} \ldots y_2 y_1]\).
- Want to show that \(x \) appears before \(y \) at end of \(i \)'th iteration.

 - **CASE 1**: \(x_i < y_i \)
 - \(x \) is in an earlier bucket than \(y \).

 - **CASE 2**: \(x_i = y_i \)
 - \([x_{i-1} \ldots x_2 x_1] < [y_{i-1} \ldots y_2 y_1]\),
 - \(x \) and \(y \) in same bucket, but \(x \) was put in the bucket first.

Aka, we want to show that for any \(x \) and \(y \) so that \(x \) belongs before \(y \), we put \(x \) before \(y \).

IH: this array is sorted by first digit.

EXAMPLE: \(i=2 \)

Want to show: after the \(i \)'th iteration, the array is sorted by the first \(i \) least-significant digits.

Want to show: this array is sorted by \(1^{\text{st}} \) and \(2^{\text{nd}} \) digits.
Want to show: after the i’th iteration, the array is sorted by the first i least-significant digits.

- Let \(x = [x_d x_{d-1} \ldots x_2 x_1] \) and \(y = [y_d y_{d-1} \ldots y_2 y_1] \) be any \(x, y \).
- Suppose \([x_i x_{i-1} \ldots x_2 x_1] < [y_i y_{i-1} \ldots y_2 y_1] \).
- Want to show that \(x \) appears before \(y \) at end of i’th iteration.

CASE 1: \(x_i < y_i \).
- \(x \) appears in an earlier bucket than \(y \), so \(x \) appears before \(y \) after the i’th iteration.

CASE 2: \(x_i = y_i \).
- \(x \) and \(y \) end up in the same bucket.
- In this case, \([x_{i-1} \ldots x_2 x_1] < [y_{i-1} \ldots y_2 y_1] \), so by the inductive hypothesis, \(x \) appeared before \(y \) after i-1’st iteration.
- Then \(x \) was placed into the bucket before \(y \) was, so it also comes out of the bucket before \(y \) does.
 - Recall that the buckets are FIFO queues.
 - So \(x \) appears before \(y \) in the i’th iteration.
Inductive step

Inductive hypothesis: After the k’th iteration, the array is sorted by the first k least-significant digits.

• Need to show: if IH holds for k=i-1, then it holds for k=i.
 • Suppose that after the i-1’st iteration, the array is sorted by the first i-1 least-significant digits.
 • Need to show that after the i’th iteration, the array is sorted by the first i least-significant digits.

EXAMPLE: i=2

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.
RadixSort is correct

• Inductive hypothesis:
 • After the k’th iteration, the array is sorted by the first k least-significant digits.

• Base case:
 • “Sorted by 0 least-significant digits” means not sorted, so the IH holds for $k=0$.

• Inductive step:
 • TO DO

• Conclusion:
 • The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it’s sorted!
What is the running time? for RadixSorting numbers base-10.

• Suppose we are sorting n d-digit numbers (in base 10).

e.g., n=7, d=3:

```
| 021 | 345 | 013 | 101 | 050 | 234 | 001 |
```

1. How many iterations are there?

2. How long does each iteration take?

3. What is the total running time?

Think--Share Terrapins
Think: 1 min (wait)
Share: 1 min (on chat)
What is the running time?

Suppose we are sorting \(n \) \(d \)-digit numbers (in base 10).

1. How many iterations are there?
 - \(d \) iterations

2. How long does each iteration take?
 - Time to initialize 10 buckets, plus time to put \(n \) numbers in 10 buckets. \(O(n) \).

3. What is the total running time?
 - \(O(nd) \)
This doesn’t seem so great

• To sort \(n \) integers, each of which is in \{1,2,...,n\}...

• \(d = \lceil \log_{10}(n) \rceil + 1 \)
 • For example:
 • \(n = 1234 \)
 • \(\lceil \log_{10}(1234) \rceil + 1 = 4 \)
 • More explanation on next (skipped) slide.

• Time = \(O(nd) = O(n \log(n)) \).
 • Same as MergeSort!
Aside: why \(d = \lceil \log_{10}(n) \rceil + 1 \) ?

- When we write a number \(x = [x_d x_{d-1} \ldots x_1] \) base 10, that means:
 \[
 x = x_1 + x_2 \cdot 10 + \cdots + x_{d-1} \cdot 10^{d-2} + x_d \cdot 10^{d-1}
 \]
 where \(x_i \in \{0, 1, \ldots, 9\} \)

- Suppose that \(x_d \neq 0 \). Then we have
 - \(x \geq x_d \cdot 10^{d-1} \)
 - \(\log_{10}(x) + 1 - \log_{10}(x_d) \geq d \)
 - \(\log_{10}(x) + 1 > d \)
 - \(\lceil \log_{10}(n) \rceil + 1 \geq d \)

- On the other hand, we also have
 - \(x < (x_d+1) \cdot 10^{d-1} \)
 - \(\log_{10}(x) + 1 - \log_{10}(x_d+1) < d \)
 - \(\log_{10}(x) < d \)
 - \(\lceil \log_{10}(n) \rceil + 1 \leq d \)
Can we do better?

• RadixSort base 10 doesn’t seem to be such a good idea...
• But what if we change the base? (Let’s say base r)
• We will see there’s a trade-off:
 • Bigger r means more buckets
 • Bigger r means fewer digits
Example: base 100

Original array:

| 21 | 345 | 13 | 101 | 50 | 234 | 1 |
Example: base 100

Original array:

0021 0345 0013 0101 0050 0234 0001

100 buckets:

00 01 02 34 50 98 99

0101 0001 0013 0021 0234 0345 0050
Example: base 100

100 buckets:

Sorted!
Example: base 100

<table>
<thead>
<tr>
<th>Original array</th>
<th>Sorted array</th>
</tr>
</thead>
<tbody>
<tr>
<td>0021 0345 0013 0101 0050 0234 0001</td>
<td>0101 0001 0013 0021 0234 0345 0050</td>
</tr>
<tr>
<td>0001 0013 0021 0050 0101 0234 0345</td>
<td></td>
</tr>
</tbody>
</table>

Base 100:
- $d=2$, so only 2 iterations.
- 100 buckets

Base 10:
- $d=3$, so 3 iterations.
- 10 buckets

Bigger base means more buckets but fewer iterations.
General running time of RadixSort

- Say we want to sort:
 - n integers,
 - maximum size M,
 - in base r.

- Number of iterations of RadixSort:
 - Same as number of digits, base r, of an integer x of max size M.
 - That is \(d = \lceil \log_r(M) \rceil + 1 \)

- Time per iteration:
 - Initialize r buckets, put n items into them
 - \(O(n + r) \) total time.

- Total time:
 - \(O(d \cdot (n + r)) = O((\lceil \log_r(M) \rceil + 1) \cdot (n + r)) \)

Convince yourself that this is the right formula for d.
Trade-offs

• Given \(n, M \), how should we choose \(r \)?
• Looks like there’s some sweet spot:

\[
\text{Running time: } O\left(\left(\left\lfloor \log_r(M) \right\rfloor + 1 \right) \cdot (n + r)\right)
\]
A reasonable choice: \(r=n\)

- Running time:

\[
O\left((\lceil \log_r(M) \rceil + 1) \cdot (n + r) \right)
\]

Intuition: balance \(n\) and \(r\) here.

- Choose \(n=r\):

\[
O\left(n \cdot (\lceil \log_n(M) \rceil + 1) \right)
\]

Choosing \(r=n\) is pretty good. What choice of \(r\) optimizes the asymptotic running time? What if I also care about space?

Ollie the over-achieving ostrich
Running time of RadixSort with r=n

- To sort n integers of size at most M, time is
 \[O(n \cdot (\lceil \log_n(M) \rceil + 1)) \]
- So the running time (in terms of n) depends on how big M is in terms of n:
 - If \(M \leq n^c \) for some constant c, then this is \(O(n) \).
 - If \(M = 2^n \), then this is \(O \left(\frac{n^2}{\log(n)} \right) \)
- The number of buckets needed is r=n.
What have we learned?

• RadixSort can sort n integers of size at most n^{100} in time $O(n)$, and needs enough space to store $O(n)$ integers.

• If your integers have size much much bigger than n (like 2^n), maybe you shouldn’t use RadixSort.

• It matters how we pick the base.
Recap

• How difficult sorting is depends on the model of computation.

• How reasonable a model of computation is is up for debate.

• Comparison-based sorting model
 • This includes MergeSort, QuickSort, InsertionSort
 • Any algorithm in this model must use at least $\Omega(n \log(n))$ operations. 😞
 • But it can handle arbitrary comparable objects. 😊

• If we are sorting small integers (or other reasonable data):
 • CountingSort and RadixSort
 • Both run in time $O(n)$ 😊
 • Might take more space and/or be slower if integers get too big 😞
Next time

• Binary search trees!
• Balanced binary search trees!

Before next time

• Pre-lecture exercise for Lecture 7
 • Remember binary search trees?
CHUCK NORRIS QUICKSORTS STICKS IN TIME $O(1)$