Lecture 7

Binary Search Trees and Red-Black Trees
Announcements

• HW4 is out today
 • This is a full-length one!

• No new HW next week

• Midterm: Feb 7-8 (Mon-Tue, 48 hr)

• Midterm covers up to (and incl.) lecture 7 -- today
Roadmap

Sorting
- Randomized Algs
- Recurrences

Asymptotic Analysis

Greedy Algs
- Longest, Shortest, Max and Min...

Dynamic Programming

Data structures

Graphs!

Divide and conquer

1 lecture

MIDTERM

5 lectures

10 lectures

1 lecture

The Future!

More detailed schedule on the website!
But first!

• A brief wrap-up of divide and conquer.
How do we design divide-and-conquer algorithms?

• So far we’ve seen lots of examples.
 • Karatsuba (and Alien Multiplication)
 • MergeSort
 • Select
 • QuickSort
 • Minerals in a Cave (HW1)
 • Math on Mars (HW1)
 • Index Match (HW2)
 • Majority Vote (HW2)
 • Matrix Multiplication (HW2)

• Let’s take a minute to zoom out and look at some general strategies.
One Strategy

1. Identify natural sub-problems
 • Arrays of half the size
 • Things smaller/larger than a pivot

2. Imagine you had the magical ability to solve those natural sub-problems...what would you do?
 • Just try it with all of the natural sub-problems you can come up with! Anything look helpful?

3. Work out the details
 • Write down pseudocode, etc.
One Strategy

1. Identify natural sub-problems
2. Imagine you had the magical ability to solve those natural sub-problems...what would you do?
3. Work out the details

Think about how you could arrive at MergeSort or QuickSort via this strategy!
Other tips

• Small examples.
 • If you have an idea but are having trouble working out the details, try it on a small example by hand.

• Gee, that looks familiar...
 • The more algorithms you see, the easier it will get to come up with new algorithms!

• Bring in your analysis tools.
 • E.g., if I’m doing divide-and-conquer with 2 subproblems of size n/2 and I want an $O(n \log n)$ time algorithm, I know that I can afford $O(n)$ work combining my sub-problems.

• Iterate.
 • Darn, that approach didn’t work! But, if I tweaked this aspect of it, maybe it works better?

• Everyone approaches problem-solving differently...find the way that works best for you.
There is no one algorithm for designing algorithms.

• This can be frustrating on HW....
 • What the heck do dancing ducks have to do with the sorting algorithms we covered in lecture?!??!?!?

• Practice helps!
 • The examples we see in Lecture and in HW are meant to help you practice this skill.

• There are even more algorithms in the book!
 • Check out Algorithms Illuminated Chapter 3, or CLRS Chapter 4, for even more examples of divide and conquer algorithms.
Roadmap

- Sorting
 - Longest, Shortest, Max and Min...
 - Randomized Algs
 - Asymptotic Analysis
 - Recurrences
- Dynamic Programming
 - Greedy Algs
- Data structures
- Graphs!
- The Future!

1st class
Divide and conquer

5 lectures

2 lectures

1 lecture

MIDTERM

More detailed schedule on the website!
Today

- Begin a brief foray into data structures!
 - See CS 166 for more!
- Binary search trees
 - You may remember these from CS 106B
 - They are better when they’re balanced.

this will lead us to...

- Self-Balancing Binary Search Trees
 - **Red-Black** trees.
Some data structures for storing objects like 5 (aka, nodes with keys)

- (Sorted) arrays:

 1 2 3 4 5 7 8

- Linked lists:

 HEAD → 3 → 2 → 1 → 8 → 5 → 7 → 4

- Some basic operations:
 - INSERT, DELETE, SEARCH
Sorted Arrays

- **O(n) INSERT/DELETE:**
 - First, find the relevant element (we’ll see how below), and then move a bunch elements in the array:

 ![Sorted Array](image)

- **O(log(n)) SEARCH:**
 - eg, insert 4.5
 - eg, Binary search to see if 3 is in A.
(Not necessarily sorted)

Linked lists

- **O(1) INSERT:**

 eg, insert 6

 ![Linked lists diagram](image)

- **O(n) SEARCH/DELETE:**

 eg, search for 1 (and then you could delete it by manipulating pointers).
Motivation for Binary Search Trees

<table>
<thead>
<tr>
<th></th>
<th>Sorted Arrays</th>
<th>Linked Lists</th>
<th>(Balanced) Binary Search Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>$O(\log(n))$</td>
<td>$O(n)$</td>
<td>$O(\log(n))$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log(n))$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log(n))$</td>
</tr>
</tbody>
</table>
Binary tree terminology

Each node has two children.
The left child of 3 is 2.
The right child of 3 is 4.
The parent of 3 is 5.
2 is a descendant of 5.

Each node has a pointer to its left child, right child, and parent.

Both children of 1 are NIL. (I won’t usually draw them).

The height of this tree is 3. (Max number of edges from the root to a leaf).

For today all keys are distinct.
Binary Search Trees

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:
Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

```
3               5
 /   \           /   \
4     8    →    7
     /   \       /   \\
    1     2     1     2
```
From your pre-lecture exercise...

Binary Search Trees

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:
Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.
• Example of building a binary search tree:
Binary Search Trees

• A BST is a binary tree so that:
 • Every LEFT descendant of a node has key less than that node.
 • Every RIGHT descendant of a node has key larger than that node.

• Example of building a binary search tree:

Q: Is this the only binary search tree I could possibly build with these values?

A: No. I made choices about which nodes to choose when. Any choices would have been fine.
Aside: this should look familiar
kinda like QuickSort
Binary Search Trees

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.

Which of these is a BST?

1 minute Think-Pair-Share

Binary Search Tree

NOT a Binary Search Tree
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!

- `inOrderTraversal(x)`:
 - if `x!= NIL`:
 - `inOrderTraversal(x.left)`
 - `print(x.key)`
 - `inOrderTraversal(x.right)`
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• `inOrderTraversal(x)`:
 • if x!= NIL:
 • `inOrderTraversal(x.left)`
 • `print(x.key)`
 • `inOrderTraversal(x.right)`
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

• Output all the elements in sorted order!

• inOrderTraversal(x):
 • if x!= NIL:
 • inOrderTraversal(x.left)
 • print(x.key)
 • inOrderTraversal(x.right)
Aside: In-Order Traversal of BSTs

- Output all the elements in sorted order!

- `inOrderTraversal(x)`:
 - if `x != NIL`:
 - `inOrderTraversal(x.left)`
 - `print(x.key)`
 - `inOrderTraversal(x.right)`

- Runs in time $O(n)$.

```
2 3 4 5 7
```

Sorted!
Back to the goal

Fast **SEARCH/INSERT/DELETE**

Can we do these?
SEARCH in a Binary Search Tree

definition by example

EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5
• It turns out it will be convenient to return 4 in this case
• (that is, return the last node before we went off the tree)

How long does this take?
O(length of longest path) = O(height)

Write pseudocode (or actual code) to implement this!

Ollie the over-achieving ostrich
EXAMPLE: Insert 4.5

- **INSERT**(key):
 - \(x = \text{SEARCH}(\text{key}) \)
 - \textbf{Insert} a new node with desired key at \(x \)...

You thought about this on your pre-lecture exercise!
(See skipped slide for pseudocode.)
Example: Insert 4.5

- **INSERT(key):**
 - \(x = \text{SEARCH}(key) \)
 - \(\text{if } key > x.\text{key} \):
 - Make a new node with the correct key, and put it as the right child of \(x \).
 - \(\text{if } key < x.\text{key} \):
 - Make a new node with the correct key, and put it as the left child of \(x \).
 - \(\text{if } x.\text{key} == \text{key} \):
 - return

This slide skipped in class – here for reference
DELETE in a Binary Search Tree

EXAMPLE: Delete 2

- DELETE(key):
 - $x = \text{SEARCH}(\text{key})$
 - if $x\text{.key} == \text{key}$:
 -delete x....

You thought about this in your pre-lecture exercise too!

This is a bit more complicated...see the skipped slides for some pictures of the different cases.
DELETE in a Binary Search Tree

several cases (by example)

say we want to delete 3

Case 1: if 3 is a leaf, just delete it.

[Diagram showing removal of a leaf case]

Case 2: if 3 has just one child, move that up.

[Diagram showing removal of a single child case]

Write pseudocode for all of these!
DELETE in a Binary Search Tree
ctd.

Case 3: if 3 has two children, replace 3 with it’s **immediate successor.** (aka, next biggest thing after 3)

- Does this maintain the BST property?
 - Yes.
- How do we find the immediate successor?
 - SEARCH for 3 in the subtree under 3.right
- How do we remove it when we find it?
 - If [3.1] has 0 or 1 children, do one of the previous cases.
 - What if [3.1] has two children?
 - It doesn’t.
How long do these operations take?

• **SEARCH** is the big one.
 • Everything else just calls **SEARCH** and then does some small $O(1)$-time operation.

How long does search take?
1 minute think; 1 minute pair+share

Trees have depth $O(\log(n))$. **Done!**

Lucky the lackadaisical lemur.

Plucky the pedantic penguin.

Wait a second…
Search might take time $O(n)$.

- This is a valid binary search tree.
- The version with n nodes has depth n, **not** $O(\log(n))$.
What to do?

• Goal: Fast **SEARCH/INSERT/DELETE**
• All these things take time \(O(\text{height}) \)
• And the height might be big!!! 😞

• Idea 0:
 • Keep track of how deep the tree is getting.
 • If it gets too tall, re-do everything from scratch.
 • At least \(\Omega(n) \) every so often....

• Turns out that’s not a great idea. Instead we turn to...
Self-Balancing Binary Search Trees
Idea 1: Rotations

- Maintain Binary Search Tree (BST) property, while moving stuff around.

Note: A, B, C, X, Y are variable names, not the contents of the nodes.

CLAIM: this still has BST property.

No matter what lives underneath A, B, C, this takes time O(1). (Why?)
This seems helpful
Strategy?

- Whenever something seems unbalanced, do rotations until it’s okay again.

Even for Lucky this is pretty vague. What do we mean by “seems unbalanced”? What’s “okay”?
Idea 2: have some proxy for balance

• Maintaining perfect balance is too hard.

• Instead, come up with some proxy for balance:
 • If the tree satisfies [SOME PROPERTY], then it’s pretty balanced.
 • We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to do this, but today we’ll see...
Red-Black Trees

• A Binary Search Tree that balances itself!
• No more time-consuming by-hand balancing!
• Be the envy of your friends and neighbors with the time-saving...

Red-Black tree!

Maintain balance by stipulating that black nodes are balanced, and that there aren’t too many red nodes.

It’s just good sense!
Red-Black Trees obey the following rules (which are a proxy for balance)

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
 - all paths from x to NIL’s have the same number of black nodes on them.

I’m not going to draw the NIL children in the future, but they are treated as black nodes.
Examples?

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
 - all paths from x to NIL’s have the same number of black nodes on them.

Which of these are red-black trees?
(NIL nodes not drawn)

Yes!

No!

No!

No!
Why these rules???

• This is pretty balanced.
 • The **black nodes** are balanced
 • The **red nodes** are “spread out” so they don’t mess things up too much.

• We can maintain this property as we insert/delete nodes, by using rotations.

This is the really clever idea!

This **Red-Black** structure is a **proxy for balance**. It’s just a smidge weaker than perfect balance, but we can actually maintain it!
This is “pretty balanced”

• To see why, intuitively, let’s try to build a Red-Black Tree that’s unbalanced.

Conjecture:
the height of a red-black tree with n nodes is at most 2 \log(n)

One path can be at most twice as long another if we pad it with red nodes.

Note, this is just a conjecture to build intuition! We’ll prove a rigorous statement on the next slide.
The height of a RB-tree with n non-NIL nodes is at most $2\log(n + 1)$

- Define $b(x)$ to be the number of black nodes in any path from x to NIL.
 - (excluding x, including NIL).

- Claim:
 - There are at least $2^{b(x)} - 1$ non-NIL nodes in the subtree underneath x.
 (Including x).
 - [Proof by induction – on board if time]

Then:

$$n \geq 2^{b(root)} - 1$$

using the Claim

$$\geq 2^{\frac{\text{height}}{2}} - 1$$

b(root) \geq height/2 because of RBTree rules.

Rearranging:

$$n + 1 \geq 2^{\frac{\text{height}}{2}} \Rightarrow \text{height} \leq 2\log(n + 1)$$
This is great!

• SEARCH in an RBTree is immediately $O(\log(n))$, since the depth of an RBTree is $O(\log(n))$.

• What about INSERT/DELETE?
 • Turns out, you can INSERT and DELETE items from an RBTree in time $O(\log(n))$, while maintaining the RBTree property.
 • That’s why this is a good property!
I expect we are out of time...

- There are some slides which you can check out to see how to do INSERT/DELETE in RB TREES if you are curious.
- See CLRS Ch 13. for even more details.

You are **not responsible** for the details of INSERT/DELETE for RB TREES for this class.

- You should know what the “proxy for balance” property is and why it ensures approximate balance.
- You should know that this property can be efficiently maintained, but you do not need to know the details of how.
• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.
INSERT: Case 1

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

Example: insert 0
• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.
INSERT: Case 2

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

Example: insert 0

What if it looks like this?

No!
INSERT: Case 2

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

Example: insert 0

Can’t we just insert 0 as a black node?

No!
We need a bit more context

What if it looks like this?

Example: insert 0
We need a bit more context

• Add 0 as a red node.

What if it looks like this?

Example: insert 0
We need a bit more context

- Add 0 as a red node.
- **Claim:** RB-Tree properties still hold.

What if it looks like this?

Example: insert 0

Flip colors!
But what if **that** was red?

What if it looks like this?

Example: insert 0
More context...

Example: insert 0

What if it looks like this?
More context...

What if it looks like this?

Example: insert 0

Now we’re basically inserting 6 into some smaller tree. Recurse!

This one!
Example, part I

-3

-4

-2

-1

6

3

7

Want to insert 0 here.
Example, part I
Example, part I

Flip colors!
Example, part I

Need to know how to insert into trees that look like this...

Want to insert 6 here.
INSERT: Many cases

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.

That’s this case!
INSERT: Case 3

- Make a new **red node**.
- Insert it as you would normally.
- Fix things up if needed.

Example: Insert 0.

- Maybe with a subtree below it.
Recall Rotations

- Maintain Binary Search Tree (BST) property, while moving stuff around.

YOINK!

That's not binary!!

CLAIM: this still has BST property.
Inserting into a Red-Black Tree

• Make a new red node.
• Insert it as you would normally.
• Fix things up if needed.

What if it looks like this?

YOINK!

Argue that this is a good thing to do!
Example, part 2

Want to insert 6 here.
Example, part 2
Example, part 2

YOINK!
Example, part 2

```
-1
-3
-4
-2
3
0
6
7
```

TA-DA!
Many cases

• Suppose we want to insert 0 here.

• There are 3 “important” cases for different colorings of the existing tree, and there are 9 more cases for all of the various symmetries of these 3 cases.
Deleting from a Red-Black tree

Fun exercise!

Ollie the over-achieving ostrich
That’s a lot of cases!

• You are **not responsible** for the nitty-gritty details of Red-Black Trees. (For this class)
 • Though implementing them is a great exercise!

• You should know:
 • What are the properties of an RB tree?
 • And (more important) why does that guarantee that they are balanced?
What have we learned?

• Red-Black Trees always have height at most $2\log(n+1)$.
• As with general Binary Search Trees, all operations are $O(\text{height})$.
• So all operations with RBTrees are $O(\log(n))$.
Conclusion: The best of both worlds

<table>
<thead>
<tr>
<th></th>
<th>Sorted Arrays</th>
<th>Linked Lists</th>
<th>Binary Search Trees*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>O(log(n)) 😊</td>
<td>O(n) 😞</td>
<td>O(log(n)) 😊</td>
</tr>
<tr>
<td>Delete</td>
<td>O(n) 😞</td>
<td>O(n) 😞</td>
<td>O(log(n)) 😊</td>
</tr>
<tr>
<td>Insert</td>
<td>O(n) 😞</td>
<td>O(1) 😊</td>
<td>O(log(n)) 😊</td>
</tr>
</tbody>
</table>
Today

• Begin a brief foray into data structures!
 • See CS 166 for more!

• Binary search trees
 • You may remember these from CS 106B
 • They are better when they’re balanced.

this will lead us to...

• Self-Balancing Binary Search Trees
 • Red-Black trees.

Recap
Recap

• Balanced binary trees are the best of both worlds!
• But we need to keep them balanced.
• **Red-Black Trees** do that for us.
 • We get $O(\log(n))$-time INSERT/DELETE/SEARCH
 • Clever idea: have a proxy for balance
Next time

- Hashing!

Before next time

- Pre-lecture exercise for Lecture 8
- More probability yay!