
Lecture 8
Hashing



Announcements

• Midterm: Feb 7-8 (Mon-Tue, 48 hours).
• Midterm covers up to (and incl.) lecture 7. This 

week’s lectures are not included.

• No homework this week: use the time to study for 
the exam!

• Pair submissions allowed for HW 4 – HW 8. See Ed 
for details.



Today: hashing
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Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees
• The difference is we can get better performance in 

expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magical.



Goal

• We want to store nodes with keys in a data 
structure that supports fast 
INSERT/DELETE/SEARCH.

• INSERT

• DELETE

• SEARCH

5

data structure
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4
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HERE IT IS

node with key “2”



Today:

• Hash tables:
• O(1) expected time INSERT/DELETE/SEARCH

• Worse worst-case performance, but often great in practice.

Last time

• Self balancing trees:
• O(log(n)) deterministic INSERT/DELETE/SEARCH

#prettysweet

#evensweeterinpractice
eg, Python’s dict, Java’s HashSet/HashMap, C++’s unordered_map

Hash tables are used for databases, caching, object representation, …



One way to get O(1) time
• Say all keys are in the set {1,2,3,4,5,6,7,8,9}. 
• INSERT:

• DELETE:

• SEARCH:

9 6 3 5

4 5 6 7 8 9

963 5

1 2 3

6

3 2
3 is here.

2 isn’t in 
the data 

structure.

This is called 
“direct addressing”

Are we delegating to 
hardware/memory? 
What are the 
assumptions behind our 
model of computation?



That should look familiar

• Kind of like COUNTINGSORT from Lecture 6.
• Same problem: if the keys may come from a 

“universe” U = {1,2, …., 10000000000}, it takes a lot 
of space.

The universe is really big!



Solution?

1 2 3 4 5 6 7 8 90

345
50 1321

101

1 234

21 345 13 101 50 234 1

INSERT:

Now SEARCH 21

It’s in this bucket somewhere…
go through until we find it.

Put things in buckets based on one digit



22 342 12 102 52 232 2

INSERT:

Problem…

1 2 3 4 5 6 7 8 90

342

52

12

22
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2
232

Now SEARCH 22
….this hasn’t made 
our lives easier…



Hash tables

• That was an example of a hash table.
• not a very good one, though.

• We will be more clever (and less deterministic) about 
our bucketing.

• This will result in fast (expected time) 
INSERT/DELETE/SEARCH.



But first!  Terminology.
• U is a universe of size M.

• M is really big.

• But only a few (at most n) elements of U are ever going 
to show up.
• M is waaaayyyyyyy bigger than n.

• But we don’t know which ones will show up in advance.

All of the keys in the 
universe live in this 

blob.

Universe U

22
13

Only n keys will ever show up.

Example: U is the set of all strings of at most 
280 ascii characters.  (128280 of them).

The only ones which I care about are those 
which appear as trending hashtags on 
twitter.  #hashinghashtags
There are way fewer than 128280 of these.



Hash Functions

• A hash function ℎ: 𝑈 → 1,… , 𝑛
is a function that maps elements 
of U to buckets 1, ..., n.

All of the keys in the 
universe live in this 

blob.

Universe U

n buckets22
13

1

2

3

Example: 
h(x) = least significant 
digit of x.

h(13) = 3

h(22) = 2

For this lecture, we are assuming that 
the number of things that show up is 
the same as the number of buckets, 

both are n.  

This doesn’t have to be the case, 
although we do want:

#buckets = O( #things which show up )



Hash Tables (with chaining)
• Array of n buckets.
• Each bucket stores a linked list.

• We can insert into a linked list in time O(1) 
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1,… , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=9)
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9

13 22 43

For demonstration 
purposes only!

This is a terrible hash 
function!  Don’t use this!

9

INSERT:

13
22

43

9

…SEARCH 43:
Scan through all the elements in 
bucket h(43) = 3.

DELETE 43:
Search for 43 and remove it.



Aside: Hash tables with open addressing

• The previous slide is about hash tables with chaining.
• There’s also something called “open addressing”
• You don’t need to know about it for this class.

n=9 buckets

1
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9

13 43

…

This is a “chain”

n=9 buckets

1
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3

9

…

13

43

bounce!

\end{Aside}



Hash Tables (with chaining)
• Array of n buckets.
• Each bucket stores a linked list.

• We can insert into a linked list in time O(1) 
• To find something in the linked list takes time O(length(list)).

• A hash function ℎ: 𝑈 → 1,… , 𝑛 .
• For example, h(x) = least significant digit of x.

n buckets (say n=9)

1

2

3

9

13 22 43

For demonstration 
purposes only!

This is a terrible hash 
function!  Don’t use this!

9

INSERT:

13
22

43

9

…SEARCH 43:
Scan through all the elements in 
bucket h(43) = 3.

DELETE 43:
Search for 43 and remove it.



What we want from a hash table
1. We want there to be not many buckets (say, n).

• This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.  
• This means it will be fast to SEARCH/INSERT/DELETE

n=9 buckets
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…

n=9 buckets
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vs.



Worst-case analysis

• Goal: Design a function ℎ: 𝑈 → 1,… , 𝑛 so that:
• No matter what n items of U a bad guy chooses, the 

buckets will be balanced.
• Here, balanced means O(1) entries per bucket.

• If we had this, then we’d achieve our dream of O(1) 
INSERT/DELETE/SEARCH
Can you come up with 

such a function?

Think-Share Terrapins
1 min. think.  (wait) 1 min. share



This is impossible!

13
23

43

3
93

No deterministic hash 
function can defeat 
worst-case input!



We really can’t beat the bad guy here.

.

Universe U

h(x)
n buckets

These are all the things that 
hash to the first bucket.

• The universe U has M items
• They get hashed into n buckets
• At least one bucket has at least M/n items hashed to it.
• M is waayyyy bigger than n, so M/n is bigger than n.
• Bad guy chooses n of the items that landed in this 

very full bucket.



Solution:
Randomness



The game

13 22 43 92

1. An adversary chooses any n items 
𝑢!, 𝑢", … , 𝑢# ∈ 𝑈, and any sequence 
of INSERT/DELETE/SEARCH 
operations on those items.

2. You, the algorithm, 
chooses a random hash 
function ℎ: 𝑈 → {1,… , 𝑛}.

3. HASH IT OUT

1

2

3

n

13
22

92

…

43
7

7

What does 
random mean 
here?  Uniformly 
random?

Plucky the pedantic penguin

ui

uj

u k

INSERT 13, INSERT 22, INSERT 43, 
INSERT 92, INSERT 7, SEARCH 43, 
DELETE 92, SEARCH 7, INSERT 92

#hashpuns



Example of a random 
hash function
• Say that ℎ: 𝑈 → 1,… , 𝑛 is a uniformly random 

function.
• That means that h(1) is a uniformly random number 

between 1 and n.
• h(2) is also a uniformly random number between 1 and n, 

independent of h(1).
• h(3) is also a uniformly random number between 1 and n, 

independent of h(1), h(2).

• …

• h(M) is also a uniformly random number between 1 and 
n, independent of h(1), h(2), …, h(M-1).

Universe 
U

n buckets

h



Randomness helps

Intuitively: The bad guy can’t foil a hash 
function that he doesn’t yet know.

Why not?  What if there’s some strategy 
that foils a random function with high 
probability?

We’ll need to do some analysis…

Lucky the 
Lackadaisical Lemur

Plucky the Pedantic 
Penguin



What do we want?
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7 ui 32 5 15

It’s bad if lots of items land in ui’s bucket.
So we want not that. 



More precisely
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𝑢!

• We want:
• For all ways a bad guy could choose 𝑢!,𝑢#, … , 𝑢$ ,

to put into the hash table, and for all 𝑖 ∈ 1, … , 𝑛 ,
E[ number of items in 𝑢%′s bucket ] ≤ 2.

• If that were the case: 
• For each INSERT/DELETE/SEARCH operation 

involving 𝑢%, 
E[ time of operation ] = O(1)

We could replace “2” 
here with any constant; it 

would still be good.  But 
“2” will be convenient. 

This is what we wanted at 
the beginning of lecture!

Note that the expected 
size of 𝑢!’s linked list is 
not the same as the 
expected {maximum size 
of linked lists}. What is 
the latter?



So we want:

• For all i=1, …, n, 
E[ number of items in ui’s bucket ] ≤ 2.



Aside

• For all i=1,…,n:

E[ number of items in bucket i ] ≤ 2

1

2

3

n

14 22 92

…

43 8
this happens with 
probability 1/n

Suppose that:

1

2

3

n

14 22 92

…

43 8
and this happens 
with probability 1/netc.

Then E[ number of items in bucket i ] = 1 for all i.
But E[ number of items in 43’s bucket ] = n

• For all i=1, …, n, 
E[ number of items in ui ‘s bucket ] ≤ 2.

vs



This distinction came up on your 
pre-lecture exercise!

• Solution to pre-lecture exercise:
• E[number of items in bucket 1] = n/6
• E[number of items that land in the same bucket as item 1] = n



So we want:

• For all i=1, …, n, 
E[ number of items in ui’s bucket ] ≤ 2.



Expected number of items in 𝑢!’s bucket?

Universe U

n buckets

ℎ

𝑢!
𝑢"

𝑢# 𝑢#𝑢!

• 𝐸 = ∑&'!$ 𝑃 ℎ 𝑢% = ℎ 𝑢&
• = 1 + ∑&(% 𝑃 ℎ 𝑢% = ℎ 𝑢&
• = 1 + ∑&(% 1/𝑛

• = 1 + $)!
$

≤ 2. That’s what we wanted!

COLLISION!

h is uniformly random



A uniformly random hash function 
leads to balanced buckets
• We just showed:
• For all ways a bad guy could choose 𝑢!,𝑢#, … , 𝑢$, to 

put into the hash table, and for all 𝑖 ∈ 1, … , 𝑛 ,
E[ number of items in 𝑢% ‘s bucket ] ≤ 2.

• Which implies: 
• No matter what sequence of operations and items the 

bad guy chooses, 
E[ time of INSERT/DELETE/SEARCH ] = O(1)

• So, our solution is:

Pick a uniformly random hash function?



What’s wrong with this plan?

• Hint: How would you implement (and store) and 
uniformly random function ℎ: 𝑈 → {1,… , 𝑛}?

• If h is a uniformly random function:
• That means that h(1) is a uniformly 

random number between 1 and n.
• h(2) is also a uniformly random number 

between 1 and n, independent of h(1).
• h(3) is also a uniformly random number 

between 1 and n, independent of h(1), 
h(2).

• …
• h(n) is also a uniformly random number 

between 1 and n, independent of h(1), 
h(2), …, h(n-1).

Think-Share Terrapins
1 minute think
(wait) 1 minute share



A uniformly random hash function 
is not a good idea.
• In order to store/evaluate a uniformly random hash 

function, we’d use a lookup table:

x h(x)

AAAAAA 1

AAAAAB 5

AAAAAC 3

AAAAAD 3

…

ZZZZZY 7

ZZZZZZ 3

All of the M 
things in the 

universe

• Each value of h(x) takes 
log(n) bits to store.

• Storing M such values 
requires Mlog(n) bits. 

• In contrast, direct addressing 
(initializing a bucket for every 
item in the universe) requires 
only M bits.



Another way to say this

• There are lots of hash functions.
• There are nM of them.
• Writing down a random one of them takes log(nM) 

bits, which is M log(n).

All of the hash functionsh:U →{1,…,n}



Solution
• Pick from a smaller set of functions.

All of the hash functions 
h:U →{1,…,n}

A cleverly chosen subset 
of functions.  We call such 
a subset a hash family.

We need only log|H| bits 
to store an element of H. 

H



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees
• The difference is we can get better performance in 

expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.



Hash families

• A hash family is a collection of hash functions.

All of the hash functions 
h:U →{1,…,n}

“All of the hash functions” is 
an example of a hash family.



Example: 
a smaller hash family
• H = { function which returns the least sig. digit,

function which returns the most sig. digit }
• Pick h in H at random.

All of the hash functions 
h:U →{1,…,n}

• Store just one bit 
to remember 
which we picked.

This is still a terrible idea!  
Don’t use this example!

For pedagogical purposes only!

H



The game

19 22 42 92

1. An adversary (who knows H) chooses any n 
items 𝑢!, 𝑢", … , 𝑢# ∈ 𝑈, and any sequence 
of INSERT/DELETE/SEARCH operations on 
those items.

2. You, the algorithm, chooses a random hash 
function ℎ: 𝑈 → {0,… , 9}.  Choose it 
randomly from H.

3. HASH IT OUT

0

1

2

9 19

22 92

…

42

0
0

ui

uj

u k

INSERT 19, INSERT 22, INSERT 42, 
INSERT 92, INSERT 0, SEARCH 42, 
DELETE 92, SEARCH 0, INSERT 92

#hashpuns

h0 =  Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h1



This is not a very good hash family

• H = { function which returns least sig. digit,
function which returns most sig. digit }

• On the previous slide, the adversary could have 
been a lot more adversarial…



The game

1. An adversary (who knows H) chooses any n 
items 𝑢!, 𝑢", … , 𝑢# ∈ 𝑈, and any sequence 
of INSERT/DELETE/SEARCH operations on 
those items.

2. You, the algorithm, chooses a random hash 
function ℎ: 𝑈 → {0,… , 9}.  Choose it 
randomly from H.

3. HASH IT OUT

0

1

2

9

11

…

101

ui

uj

u k

#hashpuns

h0 =  Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h1

11101 121 131141

141

121
131



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees
• The difference is we can get better performance in 

expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.



How to pick the hash family?

• Definitely not like in that example.
• Let’s go back to that computation from earlier….

H



Expected number of items in ui’s bucket?

Universe U

n buckets

h

u i
uk

u j ujui

• 𝐸 = ∑&'!$ 𝑃 ℎ 𝑢% = ℎ 𝑢&
• = 1 + ∑&(% 𝑃 ℎ 𝑢% = ℎ 𝑢&
• = 1 + ∑&(% 1/𝑛

• = 1 + $)!
$

≤ 2.

COLLISION!

All that we needed 
was that this is 1/n



Strategy
• Pick a small hash family H, so that when I choose h 

randomly from H,

for all 𝑢% , 𝑢& ∈ 𝑈 with 𝑢% ≠ 𝑢& ,

𝑃.∈/ ℎ 𝑢% = ℎ 𝑢& ≤
1
𝑛

H

h

• A hash family H that satisfies this is 
called a universal hash family.

In English: fix any 
two elements of U.  

The probability 
that they collide 

under a random h 
in H is small.



So the whole scheme will be

n buckets

h
u i

uk

u j

ui

Universe U

u1

Choose h randomly 
from a universal hash 
family H

We can store h using 
log|H| bits.

Probably 
these 

buckets will 
be pretty 

balanced.



Universal hash family

• H is a universal hash family if, when h is chosen 
uniformly at random from H,

for all 𝑢% , 𝑢& ∈ 𝑈 with 𝑢% ≠ 𝑢& ,

𝑃.∈/ ℎ 𝑢% = ℎ 𝑢& ≤
1
𝑛



Example

• H = the set of all functions ℎ: 𝑈 → 1,… , 𝑛
• We saw this earlier – it corresponds to picking a 

uniformly random hash function.
• Unfortunately, this H is really really large.

• Pick a small hash family H, so that when I 
choose h randomly from H,

for all 𝑢! , 𝑢" ∈ 𝑈 with 𝑢! ≠ 𝑢" ,

𝑃#∈% ℎ 𝑢! = ℎ 𝑢" ≤
1
𝑛



Non-example

• h0 =  Most_significant_digit
• h1 = Least_significant_digit
• H = {h0, h1}

• Pick a small hash family H, so that when I 
choose h randomly from H,

for all 𝑢! , 𝑢" ∈ 𝑈 with 𝑢! ≠ 𝑢" ,

𝑃#∈% ℎ 𝑢! = ℎ 𝑢" ≤
1
𝑛

Prove that this choice of H is 
NOT a universal hash family!

1 minutes think
1 minute share



Non-example

• h0 =  Most_significant_digit
• h1 = Least_significant_digit
• H = {h0, h1}

• Pick a small hash family H, so that when I 
choose h randomly from H,

for all 𝑢! , 𝑢" ∈ 𝑈 with 𝑢! ≠ 𝑢" ,

𝑃#∈% ℎ 𝑢! = ℎ 𝑢" ≤
1
𝑛

NOT a universal hash family:

𝑃$∈& ℎ 101 = ℎ(111) = 1 >
1
10



A small universal hash family??
• Here’s one:
• Pick a prime 𝑝 ≥ 𝑀.
• Define

𝑓8,9 𝑥 = 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

ℎ8,9 𝑥 = 𝑓8,9 𝑥 𝑚𝑜𝑑 𝑛
• Define:
𝐻 = { ℎ8,9 𝑥 ∶ 𝑎 ∈ {1,… , 𝑝 − 1}, 𝑏 ∈ {0,… , 𝑝 − 1} }

• Claim:
H is a universal hash family.

??

How do you pick the 
prime number p that’s 
not too larger than M?



Say what?
• Example:  M = p = 5, n = 3
• To draw h from H: 
• Pick a random a in {1,…,4}, b in {0,…,4}

• As per the definition:
• 𝑓",! 𝑥 = 2𝑥 + 1 𝑚𝑜𝑑 5
• ℎ",! 𝑥 = 𝑓",! 𝑥 𝑚𝑜𝑑 3

1,2,3,4,5 a = 2, b = 1

1
23

4 0

𝑓',) 𝑥
1

23

4 0

𝑓&,( 1

𝑓&,( 0

𝑓&,( 3

𝑓&,( 4
𝑓&,( 2U =

1

2

3

mod 3

This step just 
scrambles stuff up.  
No collisions here!

This step is the one 
where two different 
elements might collide.



h takes O(log M) bits to store
• Just need to store two numbers: 
• a is in {1,…,p-1}
• b is in {0,…,p-1}
• So about 2log(p) bits
• By our choice of p (close to M), that’s O(log(M)) bits.

• Also, given a and b, h is fast to evaluate!
• It takes time O(1) to compute h(x).

• Compare: direct addressing was M bits!
• Twitter example: 2log(M) =2*280 log(128) = 3920 vs M = 128280

1,2,3,4,5 a = 2, b = 1



Why does this work?

• This is actually a little complicated.
• See lecture note if you are curious.
• You are NOT RESPONSIBLE for the proof in this class.
• But you should know that a universal hash family of size 

O(M2) exists.

Try to prove that this is a 
universal hash family!



But let’s check that it does work
• Check out the Python notebook for lecture 8

Empirical probability of collision out of 100 trials
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) 

M=200, n=10



So the whole scheme will be

n buckets

ha,bu i

uk

u j

ui

Universe U

u1

Choose a and b at random 
and form the function ha,b

We can store h in space 
O(log(M)) since we just need 

to store a and b.

Probably 
these 

buckets will 
be pretty 

balanced.



Outline

• Hash tables are another sort of data structure that 
allows fast INSERT/DELETE/SEARCH.
• like self-balancing binary trees
• The difference is we can get better performance in 

expectation by using randomness. 

• Hash families are the magic behind hash tables.

• Universal hash families are even more magic.

Recap



Want O(1) 
INSERT/DELETE/SEARCH
• We are interested in putting nodes with keys into a 

data structure that supports fast 
INSERT/DELETE/SEARCH.

• INSERT

• DELETE

• SEARCH

5

data structure

2

4
52

5

4

52
HERE IT IS



We studied 
this game

13 22 43 92

1. An adversary chooses any n items 
𝑢!, 𝑢", … , 𝑢# ∈ 𝑈, and any sequence 
of L INSERT/DELETE/SEARCH 
operations on those items.

2. You, the algorithm, 
chooses a random hash 
function ℎ: 𝑈 → {1,… , 𝑛}.

3. HASH IT OUT

1

2

3

n

13
22

92

…

43
7

7ui

uj

u k

INSERT 13, INSERT 22, INSERT 43, 
INSERT 92, INSERT 7, SEARCH 43, 
DELETE 92, SEARCH 7, INSERT 92



Uniformly random h was good
• If we choose h uniformly at random,

for all 𝑢?, 𝑢@ ∈ 𝑈 with 𝑢? ≠ 𝑢@,

𝑃A∈B ℎ 𝑢? = ℎ 𝑢@ ≤
1
𝑛

• That was enough to ensure that all 
INSERT/DELETE/SEARCH operations took O(1) 
time in expectation, even on adversarial inputs.



Uniformly random h was bad

• If we actually want to implement this, we have to 
store the hash function h.

All of the hash functions 

h:U →{1,…,n}

• That takes a lot of space!
• We may as well have just 

initialized a bucket for every 
single item in U.

• Instead, we chose a function 
randomly from a smaller set.



Universal Hash Families 

• If we choose h uniformly at random in H,
for all 𝑢?, 𝑢@ ∈ 𝑈 with 𝑢? ≠ 𝑢@,

𝑃A∈B ℎ 𝑢? = ℎ 𝑢@ ≤
1
𝑛

This was all we needed to make 
sure that the buckets were 

balanced in expectation!

• We gave an example of a really small universal hash 
family, of size O(M2)
• That means we need only O(log M) bits to store it.

H is a universal hash family if:



Conclusion:
• We can build a hash table that supports 

INSERT/DELETE/SEARCH in O(1) expected time
• Requires O(n log(M)) bits of space.
• O(n) buckets 
• O(n) items with log(M) bits per item 
• O(log(M)) to store the hash function

Hashing a universe of size M into n 
buckets, where at most n of the 

items in M ever show up.



That’s it for data structures 
(for now)

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!



Before Next Time

• Graph algorithms!

• Pre-lecture exercise for Lecture 9
• Intro to graphs

Next Time


