Lecture 8
Hashing
Announcements

• Midterm: Feb 7-8 (Mon-Tue, 48 hours).
• Midterm covers up to (and incl.) lecture 7. This week’s lectures are not included.

• No homework this week: use the time to study for the exam!

• Pair submissions allowed for HW 4 – HW 8. See Ed for details.
Today: hashing

n=9 buckets

1
2
3
...
9

n=9 buckets

22 → NIL

13 → 43 → NIL

9 → NIL
• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magical.
Goal

• We want to store nodes with keys in a data structure that supports fast \texttt{INSERT/DELETE/SEARCH}.

- \texttt{INSERT} 5
- \texttt{DELETE} 4
- \texttt{SEARCH} 52

HERE IT IS

node with key “2”

data structure
Last time

• Self balancing trees:
 • $O(\log(n))$ deterministic \texttt{INSERT/DELETE/SEARCH}

#prettysweet

Today:

• Hash tables:
 • $O(1)$ expected time \texttt{INSERT/DELETE/SEARCH}
 • Worse worst-case performance, but often great in practice.

#evensweeterinpractice

eg, Python’s \texttt{dict}, Java’s \texttt{HashSet/HashMap}, C++’s \texttt{unordered_map}

Hash tables are used for databases, caching, object representation, …
One way to get $O(1)$ time

- Say all keys are in the set \{1,2,3,4,5,6,7,8,9\}.
 - **INSERT:**
 - 9
 - 6
 - 3
 - 5
 - **DELETE:**
 - 6
 - **SEARCH:**
 - 3
 - 2

Are we delegating to hardware/memory? What are the assumptions behind our model of computation?

This is called "direct addressing"
That should look familiar

- Kind of like COUNTINGSORT from Lecture 6.
- Same problem: if the keys may come from a "universe" $U = \{1,2, \ldots, 10000000000\}$, it takes a lot of space.
Solution?
Put things in buckets based on one digit

INSERT:

21 345 13 101 50 234 1

0 1 2 3 4 5 6 7 8 9

50 101 21 13 234 345

It’s in this bucket somewhere... go through until we find it.

Now **SEARCH** 21
Problem:

INSERT:

Now SEARCH

....this hasn't made our lives easier...
Hash tables

• That was an example of a hash table.
 • not a very good one, though.

• We will be more clever (and less deterministic) about our bucketing.

• This will result in fast (expected time) INSERT/DELETE/SEARCH.
But first! Terminology.

- U is a *universe* of size M.
 - M is really big.
- But only a few (at most n) elements of U are ever going to show up.
 - M is waaaayyyyyyyyy bigger than n.
- But we don’t know which ones will show up in advance.

Example: U is the set of all strings of at most 280 ascii characters. (128^{280} of them).

The only ones which I care about are those which appear as trending hashtags on twitter. #hashinghashtags

There are way fewer than 128^{280} of these.
Hash Functions

• A hash function $h: U \rightarrow \{1, \ldots, n\}$ is a function that maps elements of U to buckets 1, ..., n.

All of the keys in the universe live in this blob.

Universe U

Example:
$h(x) =$ least significant digit of x.

$h(13) = 3$
$h(22) = 2$

For this lecture, we are assuming that the number of things that show up is the same as the number of buckets, both are n.

This doesn’t have to be the case, although we do want:

#buckets = $O(\ #things\ which\ show\ up\)$
Hash Tables (with chaining)

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- A hash function $h: U \rightarrow \{1, \ldots, n\}$.
 - For example, $h(x) =$ least significant digit of x.

INSERT:

13 22 43 9

SEARCH 43:
Scan through all the elements in bucket $h(43) = 3$.

DELETE 43:
Search for 43 and remove it.
Aside: Hash tables with open addressing

- The previous slide is about hash tables with chaining.
- There’s also something called “open addressing”
- You don’t need to know about it for this class.

![Diagram of hash tables with open addressing](image)

This is a “chain”
Hash Tables (with chaining)

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- A hash function $h : U \rightarrow \{1, \ldots, n\}$.
 - For example, $h(x) =$ least significant digit of x.

INSERT:

- 13
- 22
- 43
- 9

SEARCH 43:

Scan through all the elements in bucket $h(43) = 3$.

DELETE 43:

Search for 43 and remove it.

For demonstration purposes only! This is a terrible hash function! Don’t use this!
What we want from a hash table

1. We want there to be not many buckets (say, \(n \)).
 - This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.
 - This means it will be fast to SEARCH/INSERT/DELETE

\[n=9 \text{ buckets} \]
Worst-case analysis

• Goal: Design a function $h: U \rightarrow \{1, \ldots, n\}$ so that:
 • No matter what n items of U a bad guy chooses, the buckets will be balanced.
 • Here, balanced means $O(1)$ entries per bucket.

• If we had this, then we’d achieve our dream of $O(1)$ INSERT/DELETE/SEARCH

Can you come up with such a function?

Think-Share Terrapins
1 min. think. (wait) 1 min. share
This is impossible!

No deterministic hash function can defeat worst-case input!
We really can’t beat the bad guy here.

• The universe U has M items
• They get hashed into n buckets
• At least one bucket has at least M/n items hashed to it.
• M is waayyyy bigger than n, so M/n is bigger than n.
• Bad guy chooses n of the items that landed in this very full bucket.
Solution:
Randomness
The game

1. An adversary chooses any \(n \) items \(u_1, u_2, \ldots, u_n \in U \), and any sequence of INSERT/DELETE/SEARCH operations on those items.

Plucky the pedantic penguin

2. You, the algorithm, chooses a **random** hash function \(h: U \rightarrow \{1, \ldots, n\} \).

3. **HASH IT OUT**

 INSERT 13, INSERT 22, INSERT 43, INSERT 92, INSERT 7, SEARCH 43, DELETE 92, SEARCH 7, INSERT 92

 \[
 \begin{array}{c}
 1 \quad \rightarrow \quad 43 \\
 2 \quad \rightarrow \quad 22 \\
 3 \quad \rightarrow \quad 13 \\
 \vdots \\
 n \quad \rightarrow \quad 92 \quad \rightarrow \quad 7
 \end{array}
 \]
Example of a random hash function

- Say that $h: U \to \{1, \ldots, n\}$ is a uniformly random function.
 - That means that $h(1)$ is a **uniformly random** number between 1 and n.
 - $h(2)$ is also a **uniformly random** number between 1 and n, independent of $h(1)$.
 - $h(3)$ is also a **uniformly random** number between 1 and n, independent of $h(1)$, $h(2)$.
 - ...
 - $h(M)$ is also a **uniformly random** number between 1 and n, independent of $h(1)$, $h(2)$, ..., $h(M-1)$.
Randomness helps

Intuitively: The bad guy can’t foil a hash function that he doesn’t yet know.

Why not? What if there’s some strategy that foils a random function with high probability?

We’ll need to do some analysis...
What do we want?

It’s **bad** if lots of items land in u_i’s bucket. So we want **not that**.
More precisely

- We want:
 - For all ways a bad guy could choose \(u_1, u_2, \ldots, u_n \) to put into the hash table, and for all \(i \in \{1, \ldots, n\} \),
 \[E[\text{number of items in } u_i \text{'s bucket }] \leq 2. \]
 - If that were the case:
 - For each INSERT/DELETE/SEARCH operation involving \(u_i \),
 \[E[\text{time of operation }] = O(1) \]

Note that the expected size of \(u_i \)'s linked list is not the same as the expected \{maximum size of linked lists\}. What is the latter?
So we want:

- For all $i=1, \ldots, n$,

 $E[\text{number of items in } u_i\text{'s bucket}] \leq 2$.
Aside

• For all $i=1, \ldots, n$:

$$E[\text{number of items in } u_i \text{'s bucket}] \leq 2.$$

VS

• For all $i=1,\ldots,n$:

$$E[\text{number of items in bucket } i] \leq 2$$

Suppose that:

Then $E[\text{number of items in bucket } i] = 1$ for all i. But $E[\text{number of items in 43's bucket}] = n$
This distinction came up on your pre-lecture exercise!

- Solution to pre-lecture exercise:
 - $E[\text{number of items in bucket 1}] = n/6$
 - $E[\text{number of items that land in the same bucket as item 1}] = n$
So we want:

- For all $i=1, ..., n$,
 $$E[\text{number of items in } u_i\text{'s bucket }] \leq 2.$$
Expected number of items in u_i’s bucket?

- $E[\cdot] = \sum_{j=1}^{n} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j\neq i} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j\neq i} 1/n$
- $= 1 + \frac{n-1}{n} \leq 2.$

That’s what we wanted!

h is uniformly random
A uniformly random hash function leads to balanced buckets

• We just showed:
 • For all ways a bad guy could choose u_1, u_2, \ldots, u_n, to put into the hash table, and for all $i \in \{1, \ldots, n\}$,
 $$
 E[\ \text{number of items in } u_i \text{'s bucket}] \leq 2.
 $$
 • Which implies:
 • No matter what sequence of operations and items the bad guy chooses,
 $$
 E[\ \text{time of INSERT/DELETE/SEARCH}] = O(1)
 $$
 • So, our solution is:

Pick a uniformly random hash function?
What’s wrong with this plan?

• Hint: How would you implement (and store) and uniformly random function $h: U \rightarrow \{1, \ldots, n\}$?

• If h is a uniformly random function:
 • That means that $h(1)$ is a uniformly random number between 1 and n.
 • $h(2)$ is also a uniformly random number between 1 and n, independent of $h(1)$.
 • $h(3)$ is also a uniformly random number between 1 and n, independent of $h(1)$, $h(2)$.
 • ...
 • $h(n)$ is also a uniformly random number between 1 and n, independent of $h(1)$, $h(2)$, ..., $h(n-1)$.
A uniformly random hash function is not a good idea.

- In order to store/evaluate a uniformly random hash function, we’d use a lookup table:

<table>
<thead>
<tr>
<th>x</th>
<th>h(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAA</td>
<td>1</td>
</tr>
<tr>
<td>AAAAAAB</td>
<td>5</td>
</tr>
<tr>
<td>AAAAAAC</td>
<td>3</td>
</tr>
<tr>
<td>AAAAAAD</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>ZZZZZY</td>
<td>7</td>
</tr>
<tr>
<td>ZZZZZZ</td>
<td>3</td>
</tr>
</tbody>
</table>

- Each value of $h(x)$ takes $\log(n)$ bits to store.
- Storing M such values requires $M\log(n)$ bits.
- In contrast, direct addressing (initializing a bucket for every item in the universe) requires only M bits.
Another way to say this

• There are lots of hash functions.
• There are n^M of them.
• Writing down a random one of them takes $\log(n^M)$ bits, which is $M \log(n)$.

All of the hash functions
$h: U \rightarrow \{1, \ldots, n\}$
Solution

• Pick from a smaller set of functions.

A cleverly chosen subset of functions. We call such a subset a hash family.

All of the hash functions $h: U \rightarrow \{1, \ldots, n\}$

We need only $\log |H|$ bits to store an element of H.
Outline

• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magic.
Hash families

• A hash family is a collection of hash functions.

“All of the hash functions” is an example of a hash family.
Example:
a smaller hash family

• $H = \{ \text{function which returns the least sig. digit, function which returns the most sig. digit} \}$

• Pick h in H at random.

• Store just one bit to remember which we picked.

All of the hash functions $h : U \rightarrow \{1, \ldots, n\}$

This is still a terrible idea! Don’t use this example! For pedagogical purposes only!
The game

1. An adversary (who knows H) chooses any \(n\) items \(u_1, u_2, \ldots, u_n \in U\), and any sequence of INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a \textbf{random} hash function \(h: U \rightarrow \{0, \ldots, 9\}\). Choose it randomly from \(H\).

3. \textbf{HASH IT OUT}\#hashpuns

\[\begin{array}{cccccccc}
19 & 22 & 42 & 92 & 0 \\
\end{array}\]

\text{INSERT} 19, \text{INSERT} 22, \text{INSERT} 42, \\
\text{INSERT} 92, \text{INSERT} 0, \text{SEARCH} 42, \\
\text{DELETE} 92, \text{SEARCH} 0, \text{INSERT} 92

\(h_0 = \text{Most_significant_digit}\) \\
\(h_1 = \text{Least_significant_digit}\) \\
\(H = \{h_0, h_1\}\)

I picked \(h_1\)
This is not a very good hash family

• H = { function which returns least sig. digit,
 function which returns most sig. digit }

• On the previous slide, the adversary could have been a lot more adversarial...
The game

1. An adversary (who knows H) chooses any \(n \) items \(u_1, u_2, \ldots, u_n \in U \), and any sequence of INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a **random** hash function \(h: U \to \{0, \ldots, 9\} \). Choose it randomly from \(H \).

3. **HASH IT OUT**

 I picked \(h_1 \)

\[\begin{array}{cccccc}
101 & 11 & 121 & 141 & 131 \\
\end{array}\]
• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 - like self-balancing binary trees
 - The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magic.
How to pick the hash family?

• Definitely not like in that example.
• Let’s go back to that computation from earlier....
Expected number of items in u_i’s bucket?

- $E[h] = \sum_{j=1}^{n} P\{h(u_i) = h(u_j)\}$
- $= 1 + \sum_{j \neq i} P\{h(u_i) = h(u_j)\}$
- $= 1 + \sum_{j \neq i} 1/n$
- $= 1 + \frac{n-1}{n} \leq 2$.

All that we needed was that this is $1/n$.
Strategy

• Pick a small hash family H, so that when I choose h randomly from H,

\[
\text{for all } u_i, u_j \in U \text{ with } u_i \neq u_j, \quad P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
\]

• A hash family H that satisfies this is called a **universal hash family**.

In English: fix any two elements of U. The probability that they collide under a random h in H is small.
So the whole scheme will be

Choose h randomly from a **universal hash family** H

We can store h using $\log|H|$ bits.

Probably these buckets will be pretty balanced.
Universal hash family

• H is a \textit{universal hash family} if, when h is chosen uniformly at random from H,

\[
P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
\]

for all \(u_i, u_j \in U \) with \(u_i \neq u_j \),
Example

• H = the set of all functions \(h: U \rightarrow \{1, \ldots, n\} \)

 • We saw this earlier – it corresponds to picking a uniformly random hash function.

 • Unfortunately, this H is really really large.

• Pick a small hash family H, so that when I choose h randomly from H,

\[
P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
\]

for all \(u_i, u_j \in U \) with \(u_i \neq u_j \).
Non-example

- $h_0 = \text{Most_significant_digit}$
- $h_1 = \text{Least_significant_digit}$
- $H = \{h_0, h_1\}$

Pick a small hash family H, so that when I choose h randomly from H,

for all $u_i, u_j \in U$ with $u_i \neq u_j$,

$$P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

Prove that this choice of H is NOT a universal hash family!

1 minute think
1 minute share
Non-example

• $h_0 = \text{Most_significant_digit}$
• $h_1 = \text{Least_significant_digit}$
• $H = \{h_0, h_1\}$

NOT a universal hash family:

$$P_{h \in H}\{h(101) = h(111)\} = 1 > \frac{1}{10}$$

• Pick a small hash family H, so that when I choose h randomly from H,

 for all $u_i, u_j \in U$ with $u_i \neq u_j$,

 $$P_{h \in H}\{h(u_i) = h(u_j)\} \leq \frac{1}{n}$$
A small universal hash family??

• Here’s one:
 • Pick a prime $p \geq M$.
 • Define
 \[f_{a,b}(x) = ax + b \mod p \]
 \[h_{a,b}(x) = f_{a,b}(x) \mod n \]
 • Define:
 \[H = \{ h_{a,b}(x) : a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \} \]

• Claim:
 H is a universal hash family.

How do you pick the prime number p that’s not too larger than M?
Say what?

• Example: \(M = p = 5, \ n = 3 \)

• To draw \(h \) from \(H \):
 • Pick a random \(a \) in \{1,...,4\}, \(b \) in \{0,...,4\}

• As per the definition:
 • \(f_{2,1}(x) = 2x + 1 \mod 5 \)
 • \(h_{2,1}(x) = f_{2,1}(x) \mod 3 \)

\(U = \begin{pmatrix} 3 & 2 & 1 & 4 & 0 \end{pmatrix} \)

This step just scrambles stuff up. No collisions here!

This step is the one where two different elements might collide.
h takes $O(\log M)$ bits to store

• Just need to store two numbers:
 • a is in $\{1, \ldots, p-1\}$
 • b is in $\{0, \ldots, p-1\}$
 • So about $2\log(p)$ bits
 • By our choice of p (close to M), that’s $O(\log(M))$ bits.

• Also, given a and b, h is fast to evaluate!
 • It takes time $O(1)$ to compute $h(x)$.

• Compare: direct addressing was M bits!
 • Twitter example: $2\log(M) = 2 \times 280 \log(128) = 3920$ vs $M = 128^{280}$
Why does this work?

• This is actually a little complicated.
 • See lecture note if you are curious.
 • You are NOT RESPONSIBLE for the proof in this class.
 • But you should know that a universal hash family of size \(O(M^2) \) exists.

Try to prove that this is a universal hash family!
But let’s check that it **does** work

- Check out the Python notebook for lecture 8

M=200, n=10

![Graph showing empirical probability of collision out of 100 trials for two different hash families: one not good and one universal. The x-axis represents the empirical probability of collision, ranging from 0.0 to 1.0, and the y-axis represents the number of pairs of (x, y) out of 19900 pairs. The graph shows a clear distinction between the two hash families, with the universal hash family having a more uniform distribution across the probability spectrum.](image)
So the whole scheme will be

Choose a and b at random and form the function $h_{a,b}$

We can store h in space $O(\log(M))$ since we just need to store a and b.

Probably these buckets will be pretty balanced.
Outline

• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magic.

Recap
Want $O(1)$ \textbf{INSERT/DELETE/SEARCH} \\

- We are interested in putting nodes with keys into a data structure that supports fast \textbf{INSERT/DELETE/SEARCH}. \\

\begin{itemize}
 \item \textbf{INSERT} 5 \\
 \item \textbf{DELETE} 4 \\
 \item \textbf{SEARCH} 52
\end{itemize}

\textbf{HERE IT IS} data structure
We studied this game.

1. An adversary chooses any n items $u_1, u_2, \ldots, u_n \in U$, and any sequence of L INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a random hash function $h: U \to \{1, \ldots, n\}$.

3. HASH IT OUT

- INSERT 13, INSERT 22, INSERT 43, INSERT 92, INSERT 7, SEARCH 43, DELETE 92, SEARCH 7, INSERT 92
Uniformly random \(h \) was good

- If we choose \(h \) uniformly at random,

 \[
P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
 \]

- That was enough to ensure that all INSERT/DELETE/SEARCH operations took \(O(1) \) time in expectation, even on adversarial inputs.
Uniformly random h was bad

• If we actually want to implement this, we have to store the hash function h.

• That takes a lot of space!
 • We may as well have just initialized a bucket for every single item in U.

• Instead, we chose a function randomly from a smaller set.
Universal Hash Families

H is a universal hash family if:

- If we choose h uniformly at random in H, for all $u_i, u_j \in U$ with $u_i \neq u_j$, $P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$

This was all we needed to make sure that the buckets were balanced in expectation!

- We gave an example of a really small universal hash family, of size $O(M^2)$

- That means we need only $O(\log M)$ bits to store it.
Conclusion:

• We can build a hash table that supports \textbf{INSERT/DELETE/SEARCH} in $O(1)$ expected time

• Requires $O(n \log(M))$ bits of space.
 • $O(n)$ buckets
 • $O(n)$ items with $\log(M)$ bits per item
 • $O(\log(M))$ to store the hash function
That’s it for data structures (for now)

Achievement unlocked
Data Structure: RBTrees and Hash Tables

Now we can use these going forward!
Next Time

• Graph algorithms!

Before Next Time

• Pre-lecture exercise for Lecture 9
 • Intro to graphs