
Dynamic Programming I Reset Progress Reveal Solutions

1 Recursive Formulae

Suppose that we want to compute 2n mod M for some numbers n ≥ 0 and M ≥ 2. 2n can require a
lot of digits to write down for large n, and we want to avoid that, since the end result is < M.

Our first attempt avoids multiplication and only uses addition modulo M. We use the fact that
2n = 2n−1 + 2n−1 (mod M).

function PowerOfTwo(n,M):
if n = 0 then

return 1

return (PowerOfTwo(n − 1,M) + PowerOfTwo(n − 1,M)) mod M

What is the runtime of the above algorithm?
Θ(n)

Θ(2n)

Θ(log n)

Correct

Now let us replace this algorithm with an iterative one that stores the results:

A← array indexed with 0, . . . , n
A[0]← 1
for i = 1, . . . , n do
A[i ]← (A[i − 1] + A[i − 1]) mod M

return A[n]

What is the runtime of the above algorithm?
Θ(n)

Θ(2n)

Θ(log n)

Correct

What if we are allowed to use multiplication? Suppose that n is a power of two.

B ← array indexed with 0, . . . , log n
B[0]← 2
for i = 1, . . . , log n do
B[i ]← (B[i − 1]× B[i − 1]) mod M

return B[log n]

What is the value of B[i ] in the above algorithm?

22
i
mod M

2i mod M

2i
2
mod M

Correct

What is the runtime of this algorithm?
Θ(n)

Θ(2n)

Θ(log n)

Correct

What if n is not a power of two? We can run the following slightly modified algorithm:

B ← array indexed with 0, . . . , blog nc
B[0]← 2
for i = 1, . . . , blog nc do
B[i ]← (B[i − 1]× B[i − 1]) mod M

Let the binary representation of n be (xblog ncxblog nc−1 · · · x0).
R← 1
for i = 0, . . . , blog nc do

if xi = 1 then
R← (R × B[i ]) mod M

return R

What is the runtime of this algorithm?
Θ(n)

Θ(2n)

Θ(log n)

Correct

Remark: A clever algorithm inspired by the above can compute Fibonacci(n) modulo a desired number
M, in time O(log n). As a challenge, try to use the following identity involving Fibonacci numbers and
matrix multiplication, to come up with this O(log n) algorithm.[

Fibonacci(n)
Fibonacci(n − 1)

]
=

[
1 1

1 0

] [
Fibonacci(n − 1)
Fibonacci(n − 2)

]

2 Shorest Paths

Suppose that we have a weighted graph with n vertices and m edges and no negative cycles (so shortest
paths are well-defined). Suppose for the below questions that our implementation of Dijkstra uses
red-black trees (and not Fibonacci heaps).

If m = n1.5, and we want to find the shortest path between some u and v which algorithm should we
use? We prefer algorithms with the smallest worst-case runtime.

Dijkstra
Bellman-Ford
Floyd-Warshall
Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct

What if all the edges have nonnegative weight?
Dijkstra
Bellman-Ford
Floyd-Warshall
Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct

Suppose that we have a graph with m = n1.5 edges that all have nonnegative weights. Which algorithm
should we use to find the shortest path between all pairs of vertices?

n2 runs of Dijkstra
n runs of Dijkstra

n2 runs of Bellman-Ford
n runs of Bellman-Ford
Floyd-Warshall
Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct

Suppose that we have a graph with m = Θ(n2) edges that all have nonnegative weights. Which
algorithm should we use to find the shortest path between all pairs of vertices?

n2 runs of Dijkstra
n runs of Dijkstra

n2 runs of Bellman-Ford
n runs of Bellman-Ford
Floyd-Warshall
Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct


	Recursive Formulae
	Shorest Paths

