DyﬂamIC Progl’ammlﬂg | Reset Progress Reveal Solutions

1 Recursive Formulae

Suppose that we want to compute 27 mod M for some numbers n > 0 and M > 2. 2" can require a
lot of digits to write down for large n, and we want to avoid that, since the end result is < M.

QOur first attempt avoids multiplication and only uses addition modulo M. We use the fact that
21 =2n=1 4 271 (mod M).

function PowerOfTwo(n, M):
if n =0 then
| return 1

return (PowerOfTwo(n — 1, M) + PowerOfTwo(n — 1, M)) mod M

What is the runtime of the above algorithm?
O O(n)
@ o(2")
O ©(logn)
Correct

Now let us replace this algorithm with an iterative one that stores the results:

A < array indexed with O, .. ., n
Al0] + 1
fori=1,..., n do

| Ali] < (Ali — 1] + Ali — 1]) mod M

return A[n|

What is the runtime of the above algorithm?
@ 9(n)
O o2
O O(log n)
Correct

What if we are allowed to use multiplication? Suppose that nis a power of two.

B < array indexed with O, .. ., logn
B[0] «+ 2
fori=1,..., logn do

| Bl + (Bli—1] x Bli - 1]) mod M

return Bllog n]

What is the value of B[i] in the above algorithm?
© 22 mod M
O 2/ mod M
O 2 mod M

Correct

What is the runtime of this algorithm?
O o(n)

O o(2"

@ S(logn)

Correct

What if nis not a power of two? We can run the following slightly modified algorithm:

B < array indexed with O, ..., |log n|
B[0] <2
fori=1,..., |logn| do
| Bli] < (Bli—1] x B[i = 1]) mod M
Let the binary representation of n be (X|jog n|X[iogn|—1"""X0)-
R<+1
fori=0,..., |logn| do
if x, = 1 then
L | R+ (RxB[]) mod M

return R

What is the runtime of this algorithm?
O o(n)

O o2

@ S(logn)

Correct

Remark: A clever algorithm inspired by the above can compute Fibonacci(n) modulo a desired number
M, in time O(log n). As a challenge, try to use the following identity involving Fibonacci numbers and
matrix multiplication, to come up with this O(log n) algorithm.

Fibonacci(n) | |1 1] [Fibonacci(n—1)
[Fibonacci(n— 1)] N [1 O] [Fibonacci(n—2)]

2 Shorest Paths

Suppose that we have a weighted graph with n vertices and m edges and no negative cycles (so shortest
paths are well-defined). Suppose for the below questions that our implementation of Dijkstra uses
red-black trees (and not Fibonacci heaps).

If m = n'®, and we want to find the shortest path between some u and v which algorithm should we

use? We prefer algorithms with the smallest worst-case runtime.

O Dijkstra

© Bellman-Ford

O Floyd-Warshall

O Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct

What if all the edges have nonnegative weight?

@ Dijkstra

O Bellman-Ford

O Floyd-Warshall

O Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct

Suppose that we have a graph with m = n®® edges that all have nonnegative weights. Which algorithm
should we use to find the shortest path between all pairs of vertices?

O n? runs of Dijkstra

© n runs of Dijkstra

O n? runs of Bellman-Ford
O n runs of Bellman-Ford

O Floyd-Warshall
O Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct
Suppose that we have a graph with m = ©(n?) edges that all have nonnegative weights. Which
algorithm should we use to find the shortest path between all pairs of vertices?

O n? runs of Dijkstra
O n runs of Dijkstra

O n? runs of Bellman-Ford
O n runs of Bellman-Ford

@ Floyd-Warshall
O Two or more of the above algorithms are correct and have the smallest worst-case runtime.

Correct

	Recursive Formulae
	Shorest Paths

