
Dynamic Programming II Reset Progress Reveal Solutions

1 Longest Common Subsequence Forensics

We are computing the longest common subsequence between two strings of length four S = X1X2X3X4
and T = Y1Y2Y3Y4. We fill the array C where Ci ,j is the length of the longest common subsequence
between the prefix of length i from S and the prefix of length j from T . The array C can be found
below with some entries masked: 

0 1 2 3 4

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 1

3 0 0 1 1 ♥
4 0 1 ♣ ♠ ♦


What can be said about X1 and Y4?

They are equal.
They are different.
They could be equal or different.

Correct

What can be said about X2 and Y3?
They are equal.
They are different.
They could be equal or different.

Correct

What can be said about X2 and Y4?
They are equal.
They are different.
They could be equal or different.

Correct

What is the value of ♥?
0
1
2
3
4
Multiple answers could be correct.

Correct

What is the value of ♠?
0
1
2
3
4
Multiple answers could be correct.

Correct

What is the value of ♣?
0
1
2
3
4
Multiple answers could be correct.

Correct

What is the value of ♦?
0
1
2
3
4
Multiple answers could be correct.

Correct

Suppose that in some (possibly different) instance of the longest common subsequence problem, we
have Ci ,j = Ci−1,j−1 + 1. Does that necessarily mean the i-th character of the first string and the j-th
character of the second string are equal?

Yes
No

Correct

2 LCS Space Complexity

Consider the LCS problem from lecture 13 and our dynamic programming algorithm for it. Given input
stings of lengths m and n, what is the memory complexity of this algorithm?
O(n +m)

O((n +m)2)

O(mn)

Correct

When we are filling up the i-th row of our dynamic programming table C, what rows do we need to
have access to?

We need to access all the n rows.
We need to access the first i rows.
We need to access the values in the i-th row and (i − 1)-th row.

Correct

Given the observation above can we optimize our space Complexity further?
No, the best memory Complexity is O(nm)

Yes we can reduce the memory complexity to O(n log(m)).

Yes we can reduce the memory complexity to O(mn ).

Yes we can reduce the memory complexity to O(min(m, n)).

Correct

3 Knapsack Forensics

Suppose we are trying to solve an instance of the unbounded knapsack problem. We fill the array K
whose entry Ki gives us the maximum value we can obtain from a knapsack of capacity i .

[0 1 2 3 4 5 6

0 0 1 3 ♠ ♥ ♦
]

What is the minimum possible value for ♠?

3

Correct

What is the minimum possible value for ♥?

4

Correct

What is the minimum possible value for ♦?

6

Correct

If we fill a knapsack of capacity 3 optimally, how many items do we put in the knapsack?
0
1
2
3
Multiple answers could be correct.

Correct

4 Maximum Independent Set on a Tree

Consider the maximum independent on trees problem from the lecture 13 slides. We saw a top-down
dynamic programming approach to solve this problem. Now we’d like to see how a bottom up approach
to solve MIS on a tree would look like. Which one of the following statements is correct?

In order to solve this problem bottom-up we need to order the vertices by increasing DFS finish
time.
In order to solve this problem bottom-up we need to order the vertices by decreasing DFS start
time.
Both of the above.
Any ordering would work.

Correct

What is the best run-time for the bottom-up approach to solve the MIS on a tree problem?
O(n +m)

O((n +m) log(n))

O((n +m)2)

Correct


	Longest Common Subsequence Forensics
	LCS Space Complexity
	Knapsack Forensics
	Maximum Independent Set on a Tree

