1 Longest Common Subsequence Forensics

We are computing the longest common subsequence between two strings of length four $S=x_{1} x_{2} x_{3} x_{4}$ and $T=Y_{1} Y_{2} Y_{2} Y_{4}$. We fill the array C where C_{j} is the length of the longest common subsequence between the prefix of length ifrom S and the prefix of length j from T. The array C can be found below with some entries maske

What can be said about X_{1} and Y_{4} ?
They are equal.
O They are equal.
O They could be equal or different.

Correct
They are equal.
They are equal.
O They could be equal or different.

Correct

What can be said about X_{2} and Y_{4} ?
O They are equal.
O They are different.
O They could be equal or different.

\bigcirc	
$\bigcirc 2$	
$\bigcirc 3$	
$\bigcirc 4$	
O Multiple answers could be correct.	
	Correct
What is the value of $\boldsymbol{\sim}$?	
$\bigcirc 0$	
O 1	
$\bigcirc 2$	
$\bigcirc 3$	
$\bigcirc \mathrm{O}$ Multiple answers could be correct.	
	Correct
What is the value of \boldsymbol{m} ?	
$\bigcirc 0$	
O 1	
$\bigcirc 2$	
$\bigcirc 3$	
$\bigcirc 4$	
O Multiple answers could be correct.	
	Correct
What is the value of Δ ?	
$\bigcirc 0$	
O 1	
$\bigcirc 2$	
$\bigcirc 3$	
$\bigcirc{ }^{4}$	
O Multiple answers could be correct.	

Suppose that in some (possibly different) instance of the longest common subseauence problem, we have $c_{i, j}=c_{i-1, j-1+1 .}$ Does that necessa
character of the second string are equal? 0 Yes

2 LCS Space Complexity

Consider the LCS problem from lecture 13 and our dynamic programming algorithm for it. Given input stings of lengths m and n, what is the memory complexity of this algorithm?
$O(n+m)$
$0 O\left((n+m)^{2}\right)$

- $O(m n)$

Correct
When we are filling up the i-th row of our dynamic programming table C, what rows do we need to
have access to? lave access to
We need to access all the n rows.
We need to access the firs
We need to access the values in the i-th row and ($i-1$)-th row.
Correct
Given the observation above can we optimize our space Complexity further?
Yes we can reduce the memory complexity to $O(n \log (m))$.
Yes we can reduce the memory complexity to $O\left(\frac{m}{n}\right)$.
O Yes we can reduce the memory complexity to $O(\min (m, n))$.

3 Knapsack Forensics

Suppose we are trying to solve an instance of the unbounded knapsack problem. We fill the array k whose entry K_{i} gives us the maximum value we can obtain from a knapsack of capacity i.

$$
\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 3 & & 0 & \diamond\rangle
\end{array}\right]
$$

Maximum Independent Set on a Tree
Consider the maximum independent on trees problem from the lecture 13 slides. We saw a top-down dynamic programming approach to solve this problem. Now we'd like to see how a bottom up approach to solve MIS on a tree would look like. Which one of the following statements is correct? In order to solve this por ber the vertices by increasing DFS finish In order to solve this problem bottom-up we need to order the vertices by decreasing DFS start O Both of the above.
Any ordering would work.
What is the best run-time for the bottom-wp an to solve the MIS on a tree problem?
$O(n+m)$
$O((n+m) \log (n))$
$O\left((n+m)^{2}\right)$

