1 Parts of Minimum Spanning Tree

For each of the following edges, determine whether it has to be necessarily part of some minimum
The minimum edge coming out of a vertex
0 always part of some MST.
O not necessarily part of some MST.
An edge on the shortest path betwe Correct
always part of some MST.
The smallest edge going across a
Correct
The smallest edge going across a cut
0 always part of some MST.
O not necessarily part of some MST.
Correct
2 Minimum Spanning Tree Example
Consider the graph below:

What is the weight of the minimum spanning tree in this graph?
$\qquad 16$

Assume we run Prim's algorithm on this graph to ford the minimum spanning tree starting at vertex What is the weight of the first edge added?
Correct

What is the weight of the second edge added? \qquad
Correct
What is the weight of the third edge added?
\square

Correct
What is the weight of the fourth edge added?
\square Correct
What is the weight of the fifth edge added?

Assume we run the Kruskal's algorithm on this graph to find the minimum spanning tree.
What is the weight of the first edge added? \qquad
Correct
What is the weight of the second edge added?

What is the weight of the third edge added?
3

Correct
What is the weight of the fourth edge added?
4
Correct
What is the weight of the fifth edge added?

3 Maximum Spanning Tree
Can we find the maximum spanning tree (instead of minimum) using the same Kruskal or Prim
algorithms?
O Yes, we can multiply the weights by -1 and run the minimum spanning tree algorithms.
Yes, we can modify both algorithms by choosing the edge with the greatest weight each time (nstead of the edge with the least weigh).
O Both of the above are correct.
O No, we can't
O No, we can't.
Correct
Consider the graph from the previous problem. This time we want to find the maximum spanning tre What is the weight of the maximum spanning tree in the graph?
\qquad
Correct
Assume t.
vertex A.
What is the weight of the first edge added? \square
Correct
What is the weight of the second edge added?
correct
What is the weight of the third edge added?
\square
Correct
What is the weight of the fourth edge added?

Correct
What is the weight of the fifth edge added \qquad
Correct
Assume we run Kruskal's algorithm on this graph to find the maximum spanning tree. What is the weight of the first edge added?

8
Correct

What is the weight of the second edge added?

- \qquad
Correct
What is the weight of the third edge added?

6

Correct
What is the weight of the fourth edge addes?

Correct
What is the weight of the fifth edge added?

