1 Grade-school multiplication

Suppose we multiply two n-digit integers $\left(x_{1} x_{2} \ldots x_{n}\right)$ and ($y_{1} y_{2} \ldots y_{n}$) using the grade-school multiplication algorithm. How many pairs of digits x_{i} and y_{j} get multiplied in this algorithm?
○ n^{3}
O $2 n-1$
O n^{2}

Correct

What is the smallest exponent x such that the number of one-digit operations in grade-school multiplication is always at most $10000 \cdot n^{x}$?

2

Correct

2 Divide-and-conquer multiplication

Suppose that we have a divide-and-conquer algorithm \mathcal{A} that multiplies two n-digit integers by recursively calling itself to perform t number of $\lceil n / 2\rceil$-digit integer multiplications; when $n \leq 1$, it performs single-digit multiplication.

If $t=4$, what is the smallest exponent x such that the number of one-digit multiplications is always at most $10000 \cdot n^{\times}$?

2

Correct

For what values of t does the algorithm perform fewer one-digit multiplications than the grade-school multiplication algorithm for inputs that have $n>10000$ digits?
O For all values of t
O $t=1,2$
O $t=1,2,3$
O $t=1,2,3,4$

Correct

What is the value of t for Karatsuba integer multiplication algorithm?

